首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The major dihydroxy metabolites of arachidonic acid formed by human polymorphonuclear leukocytes (PMNL) are leukotriene B4 (LTB4), 6-trans-LTB4, and 12-epi-6-trans-LTB4. LTB4, and to a lesser extent its 6-trans isomers, are metabolized to 20-hydroxy products by a hydroxylase in PMNL. We have recently reported the existence of a second pathway involving a reductase which, combined with the hydroxylase, results in the conversion of 6-trans-LTB4 to dihydro-6-trans-LTB4. We have now investigated some of the characteristics of this novel triene reductase pathway in human PMNL and have characterized some of the products and their mechanism of formation. At low substrate concentrations, the major pathway for the initial metabolism of both 6-trans-LTB4 and 12-epi-6-trans-LTB4 is reduction of the conjugated triene chromophore to give dihydro products with single absorption maxima at about 230 nm. Dihydro-6-trans-LTB4 is rapidly converted to its 20-hydroxy metabolite by LTB4 20-hydroxylase. However, 20-hydroxy-6-trans-LTB4 is not a substrate for the reductase. Neither 12-epi-6-trans-LTB4 nor its dihydro metabolite, 5,12-dihydroxy-7,9,14-eicosatrienoic acid, which was identified by gas chromatography-mass spectrometry, were very good substrates for the hydroxylase. The dihydro metabolites of 6-trans-LTB4 and 12-epi-6-trans-LTB4 were formed rapidly during the initial phase of the reaction, whereas the corresponding dihydro-20-hydroxy metabolites were formed only after a lag phase. Experiments utilizing deuterium-labeled 12-epi-6-trans-LTB4 indicated that a hydrogen atom is lost from the 5-position of the substrate, suggesting that the initial step in the formation of the dihydro products is the formation of a 5-oxo intermediate. LTB4 is metabolized very rapidly by LTB4 20-hydroxylase in PMNL, and we have not yet identified dihydro products derived from this substance. However, LTB4 strongly inhibits the conversion of 12-epi-6-trans-LTB4 to dihydro products, suggesting that it may also interact with the reductase.  相似文献   

2.
We have previously shown that porcine leukocytes convert leukotriene B4 (LTB4) to two major products, 10,11-dihydro-LTB4 and 10,11-dihydro-12-oxo-LTB4. Although we did not detect these products after incubation of LTB4 with human polymorphonuclear leukocytes, these cells converted 12-epi-6-trans-LTB4 to the corresponding 6,11-dihydro metabolite (i.e., there appeared to be a shift in the positions of the remaining double bonds). The objective of the present investigation was to determine whether 6-trans isomers of LTB4 are metabolized by porcine leukocytes by a pathway similar to LTB4, or whether they are metabolized by a pathway analogous to that in human leukocytes. We found that 6-trans-LTB4 and 12-epi-6-trans-LTB4 are metabolized more much extensively than LTB4 by porcine leukocytes. 6-trans-LTB4 appears to be converted by two different reductase pathways to two dihydro products differing in the positions of the two remaining double bonds between carbons 5 and 12. Dihydro-12-oxo and dihydro-5-oxo metabolites are also formed from this substrate. Porcine leukocytes also convert 6-trans-LTB4, presumably by a combination of the above two pathways, to tetrahydro, tetrahydro-12-oxo and tetrahydro-5-oxo metabolites, none of which possesses any conjugated double bonds. 12-epi-6-trans-LTB4 is also converted to tetrahydro metabolites by these cells. Experiments with deuterium-labeled 6-trans-LTB4 indicated that the deuterium in the 5-position was almost completely lost during the formation of tetrahydro-6-trans-LTB4, whereas about 80-85% of the deuterium in the 12-position was lost, suggesting a requirement for a 5-oxo intermediate. As with LTB4, 12-epi-8-cis-6-trans-LTB4, the product of the combined actions of 5-lipoxygenase and 12-lipoxygenase, was converted principally to dihydro and dihydro-12-oxo metabolites. Only a relatively small amount of the tetrahydro metabolite was detected.  相似文献   

3.
Rat polymorphonuclear leukocytes metabolize leukotriene B4 (LTB4) by at least two major pathways. LTB4 is converted by a reductase in these cells to a dihydro metabolite in which one of the three conjugated double bonds has been reduced to give a conjugated diene with a UV absorption maximum at 230 nm. DihydroLTB4 appears to be a key intermediate in the metabolism of LTB4 by rat polymorphonuclear leukocytes, since a number of other metabolites, exhibiting UV absorbance at 235 nm, but not at 280 nm, have been detected by high pressure liquid chromatography. In addition, these cells contain a 19-hydroxylase, which converts LTB4 to 19-hydroxyLTB4, which has a typical leukotriene UV spectrum, exhibiting absorption maxima at 261, 270, and 282 nm.  相似文献   

4.
Previous studies have shown that leukotriene B4 is metabolized by polymorphonuclear leukocytes (PMNL) by a 20-hydroxylase, a 19-hydroxylase, and a reductase. We have now identified for the first time LTB4 metabolites formed by a combination of the reductase and omega-oxidation pathways. We have also discovered that rat PMNL metabolize LTB4 by a novel pathway to 18-hydroxy products. Dihydro metabolites of LTB4 have formerly been reported only after incubation of exogenous LTB4 with PMNL, but we have now shown that they are formed to the same extent from endogenous arachidonic acid after stimulation of PMNL with the ionophore, A23187. The following metabolites have been identified after incubation of either LTB4 or arachidonic acid with rat PMNL: 10,11-dihydro-LTB4, 10,11-dihydro-12-epi-LTB4, 10,11-dihydro-12-oxo-LTB4, 19-hydroxy-LTB4, 19-hydroxy-10,11-dihydro-LTB4, 19-oxo-10,11-dihydro-LTB4, 18-hydroxy-LTB4, 18-hydroxy-10,11-dihydro-LTB4, and 18-hydroxy-10,11-dihydro-12-oxo-LTB4. Negligible amounts of 20-hydroxylated products were formed. Incubation of PMNL with 10,11-dihydro-LTB4 resulted in the formation of all of the above dihydro metabolites. However, none of the omega-oxidized metabolites of LTB4 was further metabolized to a significant extent when incubated with PMNL, possibly at least partially because they were not substrates for a specific LTB4 uptake mechanism. We found that the biosynthesis and metabolism of LTB4 is considerably enhanced in PMNL from an inflammatory site (carrageenan-induced pleurisy) compared with peripheral PMNL. When arachidonic acid was the substrate, the greatest increase was observed for products formed by the reductase pathway, which were about eight times higher in pleural PMNL. The rates of formation of both LTA hydrolase and omega-hydroxylase products were about three times higher, whereas the total amounts of 5-lipoxygenase products were about twice as high in pleural PMNL. The amounts of products formed by the above enzymatic pathways reached maximal levels about 4-6 h after injection of carrageenan and then declined.  相似文献   

5.
6.
When chopped porcine pulmonary arteries were incubated with calcium ionophore A23187 (1) in the presence of indomethacin there was a time dependent generation of a substance which produced contractions of superfused strips of guinea-pig ileum smooth muscle (GPISM) which were indistinguishable from those induced by LTD4. This material however had a different retention time from LTD4 when subjected to HPLC and co-chromatographed with synthetic LTE4. In addition to LTE4 a substance which had properties indistinguishable from those of LTB4 when assayed on a combination of guinea-pig lung parenchymal strips (GPP) and GPISM (2) was generated from the pulmonary artery. This substance co-chromatographed with synthetic LTB4. The adventitia and intima were the richest source of LTE4, the adventitia releasing slightly more than the intima. The output of LTB4 and LTE4 was inhibited by 6,9-deepoxy-6,9-(phenylimino)-delta 6,8 prostaglandin I (U-60,257). Nordihydroguaiaretic acid (NDGA) inhibited the generation of LTE4.  相似文献   

7.
Human erythrocytes transformed leukotriene A4 into leukotriene B4. Metabolism was proportional to the erythrocyte concentration, even at subphysiological levels (0.08-4 X 10(9) erythrocytes/ml). Comparative metabolic studies excluded the possibility that leukotriene B4 originated from trace amounts of polymorphonuclear leukocytes or platelets present in the purified erythrocyte suspensions. For example, suspensions of isolated platelets (100-500 X 10(6) cells/ml) failed to convert leukotriene A4 into leukotriene B4; and conversion by suspensions of isolated polymorphonuclear neutrophils was insufficient to account for the amounts of leukotriene B4 formed by erythrocytes. Leukotriene B4 formation was maximal within 2 min and substrate concentration dependent. Enzymatic activity originated from a 56 degrees C labile nondialyzable (Mr greater than 30,000) soluble component in the 100,000 X g supernatant obtained from lysed erythrocytes. In contrast to the contemporary view, our results indicate that human erythrocytes are not metabolically inert in terms of eicosanoid biosynthesis. The role of human erythrocytes during inflammatory or pulmonary disorders deserves re-examination in this context.  相似文献   

8.
Leukotriene B4 (5(S),12(R)-di-hydroxy-eicosa-6,14-cis-8,10-trans-tetraenoic acid [LTB4]) is a product of the 5-lipoxygenation of arachidonic acid, which elicits human PMN leukocyte chemotactic responses in vitro that are 50% of the maximal level at concentrations of 3 X 10(-9) M to 10(-8) M and are maximal at 2 X 10(-8) M to 10(-7) M. The specific binding of highly purified [3H]LTB4 to human PMN leukocytes was assessed both by extracting the unbound and weakly bound [3H]LTB4 with acetone at -78 degrees C and by centrifuging the PMN leukocytes through cushions of phthalate oil to separate the unbound from bound [3H]LTB4. The levels of total binding of [3H]LTB4 and of nonspecific binding of [3H]LTB4, in the presence of a 1500-fold molar excess of nonradioactive LTB4, were approximately two times higher with the phthalate oil method. Scatchard plots of the concentration dependence of the specific binding (total - nonspecific binding) of [3H]LTB4 to PMN leukocytes were linear for the acetone extraction and phthalate oil methods and revealed dissociation constants of 10.8 X 10(-9) M and 13.9 X 10(-9) M, respectively, and mean of 2.6 X 10(4) and 4.0 X 10(4) receptors per PMN leukocyte. The 5(S),12(S)-all-trans-di-HETE analog of LTB4 and 5-HETE competitively inhibited by 50% the binding of [3H]LTB4 to PMN leukocytes at respective concentrations that evoked half-maximal chemotactic responses, whereas neither N-formyl-methionyl-leucyl-phenylalanine nor chemotactic fragments of C5 inhibited the binding. Human erythrocytes exhibited no specific binding sites for [3H]LTB4. Human PMN leukocytes possess a subset of receptors for LTB4 that are distinct from those specific for peptide chemotactic factors.  相似文献   

9.
Arachidonate 5-lipoxygenase purified from porcine leukocytes transformed arachidonic acid to 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid. By the leukotriene A synthase activity of the same enzyme the product was further metabolized to leukotriene A4 (actually detected as 6-trans-leukotriene B4, 12-epi-6-trans-leukotriene B4, and 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acids). The enzyme was incubated with [10-DR-3H]- or [10-LS-3H]-labeled arachidonic acid, and 6-trans-LTB4 and its 12-epimer were analyzed. More than 90% of 10-DR-hydrogen was lost while about 100% of 10-LS-hydrogen was retained, indicating a stereospecific hydrogen elimination from C-10 during the formation of leukotriene A4.  相似文献   

10.
Properties of leukotriene B4 20-hydroxylase from polymorphonuclear leukocytes   总被引:16,自引:0,他引:16  
Human polymorphonuclear leukocytes (PMNL) convert arachidonic acid (20:4) to a number of dihydroxy metabolites, including leukotriene B4 (LTB4) 5S,12R-dihydroxy-6,8,10,14-EEEZ-icosatetraenoic acid (isomer-1), 5S,12S-dihydroxy-6,8,10,14-EEEZ-icosatetraenoic acid, 5S,12S-dihydroxy-6,8,10,14-EZEZ-icosatetraenoic acid (5S,12S-dh-20:4), 5,6-dihydroxy-7,9,11,14-icosatetraenoic acid, and 5,15-dihydroxy-6,8,11,13-icosatetraenoic acid. LTB4 was synthesized rapidly after stimulation of PMNL with the divalent cation ionophore, A23187, but its concentration rapidly declined after about 4 min, in contrast to the other dihydroxy metabolites of 20:4 whose concentrations remained stable for at least 20 min. The amounts of polar metabolites (identified primarily as 20-hydroxy-LTB4) increased steadily with time up to 20 min. These results suggest that LTB4 may be specifically converted to its 20-hydroxy metabolite by PMNL. We prepared 3H- and 14C-labeled analogs of the dihydroxyicosatetraenoic acid metabolites described above by incubation of labeled 20:4 with PMNL. Although all of these substances were metabolized to some extent by human PMNL, LTB4 (apparent Km, 1.0 microM) was metabolized the most rapidly, followed by 5S,12S-dh-20:4 (apparent Km, 2.4 microM) and isomer-1 (apparent Km, 4.8 microM). All three substrates were shown by mass spectrometry to be converted to their 20-hydroxy metabolites. LTB4 was also metabolized to its omega-carboxy derivative. Human mononuclear leukocytes and rabbit PMNL metabolized LTB4 very slowly, whereas rat PMNL metabolized this substrate at about one-sixth the rate of human PMNL. These results demonstrate that human PMNL contain an omega-hydroxylase that specifically converts LTB4 to its 20-hydroxy metabolite. This enzyme may be important for the regulation of LTB4 levels in vivo.  相似文献   

11.
Leukotriene B4 (LTB4), 20-OH-LTB4, and 20-COOH-LTB4 were studied for their relative activities towards guinea pig peritoneal eosinophils and neutrophils during in vitro chemotaxis in modified Boyden chambers. The leukotrienes were also injected into guinea pig skin, and the cellular infiltrate in 4 hour biopsies was evaluated histologically. Eosinophils migrated more actively than neutrophils towards LTB4 in vitro, while in vivo, more neutrophils were observed. 20-OH-LTB4 was markedly less active than LTB4 in vivo and in vitro, and 20-COOH-LTB was barely active at all. Crude ionophore-stimulated neutrophil supernatants (ECF) were more active towards eosinophils than towards neutrophils, both in vivo and in vitro, compared to the pure leukotrienes. The data confirm the potent chemotactic properties of LTB4 for eosinophils and neutrophils, with less activity of its w-metabolites.  相似文献   

12.
The formation of leukotriene B4 and its omega-oxidised metabolites has been compared in calcium ionophore-stimulated polymorphonuclear leukocytes, in the absence of exogenous substrate, from fourteen psoriatic subjects and thirteen healthy controls. Although there was no significant difference in the levels of leukotriene B4, the psoriatic cells synthesised significantly greater amounts of omega-oxidation products than control cells. This difference was confirmed in an experiment comparing the time course of formation of the omega-oxidation products of leukotriene B4, under similar conditions, in polymorphonuclear leukocytes from four psoriatic subjects and three healthy controls. The kinetic constants for the metabolism of exogenous leukotriene B4 by 20-hydroxylase were determined by a radiochromatographic enzyme assay in polymorphonuclear leukocytes from three patients with psoriasis and three healthy controls. No significant differences were found in the apparent Km and Vmax values. It is concluded that the increased formation of omega-oxidation products in psoriatic cells may be secondary to increased synthesis of leukotriene B4 by these cells, with consequent increased metabolism, rather than to an inherent abnormality of the 20-hydroxylase system. Further work is needed to determine the kinetics of the enzymes involved in leukotriene B4 synthesis in the psoriatic polymorphonuclear leukocyte, and also to assess the contribution of the leukotriene B4 and omega-oxidation products from polymorphonuclear leukocytes infiltrating the skin to the pathogenesis of the psoriatic lesion.  相似文献   

13.
Recently, we characterized the export of leukotriene (LT) C4 from human eosinophils as a carrier-mediated process (Lam, B. K., Owen, W. F., Jr., Austen, K. F., and Soberman, R. J. (1989) J. Biol. Chem. 264, 12885-12889). To determine whether a similar mechanism regulates the release of leukotriene B4 (LTB4), human polymorphonuclear leukocytes (PMN) were preloaded with LTB4 by incubation with 25 microM leukotriene A4 (LTA4) at 0 degrees C for 60 min. PMN converted LTA4 to LTB4 in a time-dependent manner as determined by resolution of products by reverse-phase high performance liquid chromatography and quantitation by integrated optical density. When PMN preloaded with LTB4 were resuspended in buffer at 37 degrees C for 0-90 s, there occurred a time-dependent release of LTB4 but little formation or release of 20-hydroxy-LTB4 and 20-carboxy-LTB4. When PMN were preloaded with increasing amounts of intracellular LTB4 by incubation with 3.1-50.0 microM LTA4 and were then resuspended in buffer at 37 degrees C for 20 s, there occurred a concentration-dependent and saturable release of LTB4 with a Km of 798 pmol/10(7) cells and a Vmax of 383 pmol/10(7) cells/20 s. The release of LTB4 was temperature-sensitive with a Q10 of 3.0 and an energy of activation of 19.9 kcal/mol. The rate of LTB4 release at 37 degrees C is about 50 times the rate of 20-carboxy-LTB4 release. PMN preloaded with LTB4 and resuspended at 0 degree C for 1-60 min in the presence of 30 microM LTA5 progressively converted LTA5 to LTB5. The rate of LTB4 release at 0 degree C was inhibited over the entire time period, peaking at about 50% at 30 min. These results indicate that the release of LTB4 from PMN is a carrier-mediated process that is distinct from its biosynthesis.  相似文献   

14.
The synthesis and release of leukotriene B4 (LTB4) from canine polymorphonuclear leukocytes (PMNs) was characterized in terms of incubation time, temperature and effects of calcium ionophore A23187 concentrations. Maximal LTB4 concentrations were determined when canine PMNs were incubated with 10 microM A23187. Increasing LTB4 concentrations were determined through 10 min incubation. The maximal LTB4 concentrations (310 +/- 30 pg LTB4/2.5 x 10(5) cells) determined at 10 min did not change through a 55 min incubation period. Greater LTB4 concentrations were synthesized by canine PMNs at 37 degrees C (268 +/- 12 pg LTB4/2.5 x 10(5) cells) than at 25 degrees C (206 +/- 11 pg LTB4/2.5 x 10(5) cells) or 5 degrees C (59 +/- 3 pg LTB4/2.5 x 10(5) cells). The synthesis of LTB4 in canine PMNs was inhibited by incubation of the cells with either of two known lipoxygenase inhibitors, BWA4C or BW755C. BWA4C inhibited LTB4 synthesis with an approximate IC50 = 0.1 microM, whereas BW755C inhibited LTB4 synthesis with an approximate IC50 = 10 microM. These results indicate canine PMNs have the capability to synthesize large quantities of LTB4 when stimulated with calcium ionophore A23187. Furthermore, the 5-lipoxygenase inhibitors BWA4C, an acetohydroxyamic acid, and BW755C, a phenyl pyrazoline, can readily inhibit LTB4 synthesis in canine PMNs.  相似文献   

15.
Leukotriene B4 (LTB4) is a potent mediator of pro-inflammatory responses including neutrophil degranulation. Leukotriene B4 dimethylamide has been synthesized and shown to inhibit neutrophil degranulation induced by LTB4. The inhibition required time to develop (~60 secs), and had a KD of circa 2 × 10?7M, and occurred at concentrations where LTB4 dimethylamide had negligible agonist activity.  相似文献   

16.
The order of potency of retinoids as inhibitors of A23187-induced production of leukotriene B4 (LTB4) in human polymorphonuclear leukocytes (PMN) was retinoic acid greater than retinal greater than retinol. However, the conversion of exogenous arachidonate (AA) to LTB4 by PMN homogenates was inhibited in the rank order retinol greater than retinal much greater than retinoic acid. The agreement between active concentrations of retinol in these two systems is consistent with this compound acting directly to inhibit AA metabolism: this is not so for the other retinoids. The order of potency for inhibition of phorbol dibutyrate (PDBu)-stimulated superoxide (O-2) production in HL60 granulocytes was retinol greater than retinoic acid much greater than retinal (inactive); neither retinol nor retinal displaced [3H]PDBu from HL60 cells. We conclude that inhibition of LTB4 production by retinoic acid and retinal is neither through inhibition of AA metabolism nor through inhibition of protein kinase C.  相似文献   

17.
Production of two eicosanoids derived from lipoxygenase and cyclooxygenase activities: leukotriene B4 (LTB4) and prostaglandin E2 (PGE2), respectively, have been simultaneously determined in turbot (Scophthalmus maximus) blood leucocyte and kidney macrophage supernatants by a reverse phase high performance liquid chromatography (HPLC) system coupled with a Diode–Array detector. Levels of LTB4 after calcium ionophore challenge were 4.08 ng ml−1 in blood leukocyte supernatants and 0.25 ng ml−1 in kidney macrophage supernatants. The levels found for PGE2 were 428.23 and 606.67 ng ml−1 in blood leukocytes and kidney macrophage supernatants, respectively. When blood leukocytes were treated with the respective inhibitors for the enzymes implicated on the synthesis of both compounds an inhibition of 90.35% was observed for PGE2 and 76.44% for LTB4. The detection limit of the method was 0.15 ng ml−1 for LTB4 and 50 ng ml−1 for PGE2.  相似文献   

18.
Radiolabeled leukotriene (LT) B4 was incubated with isolated rat hepatocytes in order to assess the metabolism of this chemotactic leukotriene by the liver. At least eight radioactive metabolites were observed, three of which were previously identified as 20-hydroxy-, 20-carboxy-, and 18-carboxy-19,20-dinor-LTB4. A less lipophilic major metabolite (designated HIV) was purified by two reverse phase high performance liquid chromatography separations and was found to exhibit maximal UV absorbance at 269 nm with shoulders at 260 and 280 indicating the presence of a conjugated triene chromophore. Negative ion electron capture gas chromatography/mass spectrometry analysis of the pentafluorobenzyl ester, trimethylsilyl ether derivative of HIV, and positive ion electron ionization mass spectra of the methyl ester trimethylsilyl derivative were consistent with a structure of this metabolite being 16-carboxy-14,15-dihydro-17,18,19,20-tetranor-LTB3. The appearance of this metabolite supports the concept of further beta-oxidation of LTB4 to the carbon 16 which requires the action of 2,4-dienoyl-CoA reductase to remove the 14,15-double bond located two carbon atoms removed from the CoA thioester moiety. One minor metabolite was analyzed by negative ion continuous flow fast atom bombardment mass spectrometry which revealed an ion at m/z 444 which by high resolution mass spectrometry was shown to contain both nitrogen and sulfur. Tandem mass spectrometry suggested the presence of SO3- as well as other fragments corresponding to the amino acid taurine. Incubation of isolated rat hepatocytes with [14C]taurine as well as [3H]LTB4 revealed the incorporation of both radioactive isotopes into this metabolite. The data supported the identification of this metabolite as tauro-18-carboxy-19,20-dinor-LTB4. Amino acid conjugation of leukotrienes has not been previously reported and suggests that such intermediates might participate in enterohepatic circulation of LTB4 metabolites in the intact animal and thus serve as an alternative metabolic route for LTB4 elimination.  相似文献   

19.
Polymorphonuclear leukocytes (PMNL) were preincubated in the presence and absence of lipopolysaccharide (LPS) prior to stimulation of arachidonic acid (20:4) metabolism by addition of the divalent cation ionophore, A23187. Analysis of the products by high pressure liquid chromatography showed that LPS inhibited the formation of leukotriene B4, 5-hydroxy-6,8,11,14- icosatetraenoic acid and 12-hydroxy-5,8,10,14-icosatetraenoic acid by about 70%. In the absence of ionophore, LPS had little effect on the basal synthesis of 20:4 metabolites. Preincubation with LPS also inhibited the formation of the above 3 products in the presence of an excess of exogenous 20:4, suggesting that its action was mediated by the inhibition of lipoxygenases rather than phospholipase.  相似文献   

20.
Leukotriene E4 was incubated with subcellular fractions from rat liver homogenates. A product identified as 5-hydroxy-6-S-(2-acetamido-3-thiopropionyl)-7,9-trans-11,14- cis-eicosatetraenoic acid (N-acetyl leukotriene E4) was formed. Enzymes catalyzing the reaction were associated with particulate fractions sedimenting between 600 and 8500 g and 20,000 and 105,000 g. Acetyl coenzyme A served as the donor of the acetyl group. N-Acetyl leukotriene E4 was also formed by the 105,000g sediment fractions from kidney, spleen, skin, and lung. The myotropic activity of N-acetyl leukotriene E4 on isolated guinea pig ileum was reduced over 100-fold compared to that of leukotriene D4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号