首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
We have previously shown that porcine leukocytes convert leukotriene B4 (LTB4) to two major products, 10,11-dihydro-LTB4 and 10,11-dihydro-12-oxo-LTB4. Although we did not detect these products after incubation of LTB4 with human polymorphonuclear leukocytes, these cells converted 12-epi-6-trans-LTB4 to the corresponding 6,11-dihydro metabolite (i.e., there appeared to be a shift in the positions of the remaining double bonds). The objective of the present investigation was to determine whether 6-trans isomers of LTB4 are metabolized by porcine leukocytes by a pathway similar to LTB4, or whether they are metabolized by a pathway analogous to that in human leukocytes. We found that 6-trans-LTB4 and 12-epi-6-trans-LTB4 are metabolized more much extensively than LTB4 by porcine leukocytes. 6-trans-LTB4 appears to be converted by two different reductase pathways to two dihydro products differing in the positions of the two remaining double bonds between carbons 5 and 12. Dihydro-12-oxo and dihydro-5-oxo metabolites are also formed from this substrate. Porcine leukocytes also convert 6-trans-LTB4, presumably by a combination of the above two pathways, to tetrahydro, tetrahydro-12-oxo and tetrahydro-5-oxo metabolites, none of which possesses any conjugated double bonds. 12-epi-6-trans-LTB4 is also converted to tetrahydro metabolites by these cells. Experiments with deuterium-labeled 6-trans-LTB4 indicated that the deuterium in the 5-position was almost completely lost during the formation of tetrahydro-6-trans-LTB4, whereas about 80-85% of the deuterium in the 12-position was lost, suggesting a requirement for a 5-oxo intermediate. As with LTB4, 12-epi-8-cis-6-trans-LTB4, the product of the combined actions of 5-lipoxygenase and 12-lipoxygenase, was converted principally to dihydro and dihydro-12-oxo metabolites. Only a relatively small amount of the tetrahydro metabolite was detected.  相似文献   

2.
Eicosanoids containing a 12-hydroxyl group preceded by at least two conjugated double bonds are metabolized to 10,11-dihydro and 10,11-dihydro-12-oxo products by porcine polymorphonuclear leukocytes (PMNL) (Wainwright, S. L., Falck, J. R., Yadagiri, P., and Powell, W. S. (1990) Biochemistry 29, 10126-10135). These 10,11-dihydro metabolites could either have been formed by the direct reduction of the 10,11-double bond of the substrate, as previous evidence suggested, or via an initially formed 12-oxo intermediate. To gain some insight into the mechanism for the formation of dihydro products by this pathway, we investigated the metabolism of leukotriene B4 (LTB4), 12(S)-hydroxy-5,8,10,14-eicosatetraenoicacid(12(S)-HETE), and 12(R)-HETE by subcellular fractions from porcine PMNL. In the presence of NAD+ and a microsomal fraction from PMNL, each of the above 12-hydroxyeicosanoids was converted to a single product with a lambda max approximately 40 nm higher than that of the substrate, indicating that the conjugated diene or triene chromophore had been extended by one double bond, presumably by oxidation of the 12-hydroxyl group to an oxo group. In the case of LTB4, this was confirmed by mass spectrometry, which indicated that the product was identical to 12-oxo-LTB4. LTB4 was not converted to any products by a cytosolic fraction from PMNL, but was converted to both 10,11-dihydro-LTB4 and 10,11-dihydro-12-oxo-LTB4 by the 1500 x g supernatant in the presence of NAD+. Negligible amounts of dihydro products were formed in the presence of NADH or NADPH, suggesting that initial oxidation of the 12-hydroxyl group is a requirement for reduction of the 10,11-double bond. Consistent with this hypothesis, 12-oxo-LTB4 was rapidly metabolized to 10,11-dihydro-12-oxo-LTB4 by the cytosolic fraction in the presence of NADH. Only small amounts of this product, along with some LTB4, were formed by the microsomal fraction. These results indicate that the initial step in the formation of 10,11-dihydro products from 12-hydroxyeicosanoids is oxidation of the 12-hydroxyl group by a microsomal 12-hydroxyeicosanoid dehydrogenase in the presence of NAD+, which is followed by reduction of the olefinic double bond by a cytosolic delta 10-reductase in the presence of NADH.  相似文献   

3.
Leukotriene B4 (LTB4), a potent proinflammatory agent, is a major metabolite of arachidonic acid in polymorphonuclear leukocytes (PMNL). When porcine PMNL were incubated with LTB4 and the products purified by reversed-phase high-pressure liquid chromatography (HPLC), we previously identified two metabolites: 10,11-dihydro-LTB4 and 10,11-dihydro-12-oxo-LTB4 [Powell, W. S., & Gravelle, F. (1989) J. Biol. Chem. 264, 5364-5369]. Further analysis of the reaction products by normal-phase HPLC has now revealed the presence of a third major metabolite of LTB4. This product is not formed in detectable amounts in the first 5 min of the reaction but accounts for about 20-30% of the reaction products after 60 min, when LTB4 has been completely metabolized. The mass spectrum and gas chromatographic properties of the new metabolite are identical with those of 10,11-dihydro-LTB4, suggesting that it is a stereoisomer of this compound. This product was identified as 10,11-dihydro-12-epi-LTB4 [i.e., 5(S),12(R)-dihydroxy-6,8,14-eicosatrienoic acid] by comparison of its chromatographic properties with those of the authentic chemically synthesized compound. Both 10,11-dihydro-LTB4 and 10,11-dihydro-12-oxo-LTB4 were enzymatically converted to 10,11-dihydro-12-epi-LTB4 by porcine PMNL, the former compound being the better substrate. The reaction was reversible, since both 10,11-dihydro-12-epi-LTB4 and 10,11-dihydro-12-oxo-LTB4 could be converted to 10,11-dihydro-LTB4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Previous studies have shown that leukotriene B4 is metabolized by polymorphonuclear leukocytes (PMNL) by a 20-hydroxylase, a 19-hydroxylase, and a reductase. We have now identified for the first time LTB4 metabolites formed by a combination of the reductase and omega-oxidation pathways. We have also discovered that rat PMNL metabolize LTB4 by a novel pathway to 18-hydroxy products. Dihydro metabolites of LTB4 have formerly been reported only after incubation of exogenous LTB4 with PMNL, but we have now shown that they are formed to the same extent from endogenous arachidonic acid after stimulation of PMNL with the ionophore, A23187. The following metabolites have been identified after incubation of either LTB4 or arachidonic acid with rat PMNL: 10,11-dihydro-LTB4, 10,11-dihydro-12-epi-LTB4, 10,11-dihydro-12-oxo-LTB4, 19-hydroxy-LTB4, 19-hydroxy-10,11-dihydro-LTB4, 19-oxo-10,11-dihydro-LTB4, 18-hydroxy-LTB4, 18-hydroxy-10,11-dihydro-LTB4, and 18-hydroxy-10,11-dihydro-12-oxo-LTB4. Negligible amounts of 20-hydroxylated products were formed. Incubation of PMNL with 10,11-dihydro-LTB4 resulted in the formation of all of the above dihydro metabolites. However, none of the omega-oxidized metabolites of LTB4 was further metabolized to a significant extent when incubated with PMNL, possibly at least partially because they were not substrates for a specific LTB4 uptake mechanism. We found that the biosynthesis and metabolism of LTB4 is considerably enhanced in PMNL from an inflammatory site (carrageenan-induced pleurisy) compared with peripheral PMNL. When arachidonic acid was the substrate, the greatest increase was observed for products formed by the reductase pathway, which were about eight times higher in pleural PMNL. The rates of formation of both LTA hydrolase and omega-hydroxylase products were about three times higher, whereas the total amounts of 5-lipoxygenase products were about twice as high in pleural PMNL. The amounts of products formed by the above enzymatic pathways reached maximal levels about 4-6 h after injection of carrageenan and then declined.  相似文献   

5.
Rat polymorphonuclear leukocytes metabolize leukotriene B4 (LTB4) by at least two major pathways. LTB4 is converted by a reductase in these cells to a dihydro metabolite in which one of the three conjugated double bonds has been reduced to give a conjugated diene with a UV absorption maximum at 230 nm. DihydroLTB4 appears to be a key intermediate in the metabolism of LTB4 by rat polymorphonuclear leukocytes, since a number of other metabolites, exhibiting UV absorbance at 235 nm, but not at 280 nm, have been detected by high pressure liquid chromatography. In addition, these cells contain a 19-hydroxylase, which converts LTB4 to 19-hydroxyLTB4, which has a typical leukotriene UV spectrum, exhibiting absorption maxima at 261, 270, and 282 nm.  相似文献   

6.
The major dihydroxy metabolites of arachidonic acid formed by human polymorphonuclear leukocytes (PMNL) are leukotriene B4 (LTB4), 6-trans-LTB4, and 12-epi-6-trans-LTB4. LTB4, and to a lesser extent its 6-trans isomers, are metabolized to 20-hydroxy products by a hydroxylase in PMNL. We have recently reported the existence of a second pathway involving a reductase which, combined with the hydroxylase, results in the conversion of 6-trans-LTB4 to dihydro-6-trans-LTB4. We have now investigated some of the characteristics of this novel triene reductase pathway in human PMNL and have characterized some of the products and their mechanism of formation. At low substrate concentrations, the major pathway for the initial metabolism of both 6-trans-LTB4 and 12-epi-6-trans-LTB4 is reduction of the conjugated triene chromophore to give dihydro products with single absorption maxima at about 230 nm. Dihydro-6-trans-LTB4 is rapidly converted to its 20-hydroxy metabolite by LTB4 20-hydroxylase. However, 20-hydroxy-6-trans-LTB4 is not a substrate for the reductase. Neither 12-epi-6-trans-LTB4 nor its dihydro metabolite, 5,12-dihydroxy-7,9,14-eicosatrienoic acid, which was identified by gas chromatography-mass spectrometry, were very good substrates for the hydroxylase. The dihydro metabolites of 6-trans-LTB4 and 12-epi-6-trans-LTB4 were formed rapidly during the initial phase of the reaction, whereas the corresponding dihydro-20-hydroxy metabolites were formed only after a lag phase. Experiments utilizing deuterium-labeled 12-epi-6-trans-LTB4 indicated that a hydrogen atom is lost from the 5-position of the substrate, suggesting that the initial step in the formation of the dihydro products is the formation of a 5-oxo intermediate. LTB4 is metabolized very rapidly by LTB4 20-hydroxylase in PMNL, and we have not yet identified dihydro products derived from this substance. However, LTB4 strongly inhibits the conversion of 12-epi-6-trans-LTB4 to dihydro products, suggesting that it may also interact with the reductase.  相似文献   

7.
Exogenous [3H]leukotriene B4 (LTB4) was converted into several polar and non-polar metabolites in the chopped human lung. One of the major metabolites was identified as 5(S),12-dihydroxy-6,8,14-eicosatrienoic acid (10,11-dihydro-LTB4) by means of co-chromatography with authentic standards, ultraviolet spectrometry and gas chromatography-mass spectrometry. Analysis of chiral straight phase HPLC revealed the presence of both the 12(S) and 12(R) epimers of dihydro-LTB4. Dihydro-LTB4 was also formed from endogenously generated LTB4 in ionophore A23187 stimulated incubations. The dihydro metabolites were approximately 100 times less potent than LTB4 in causing guinea pig lung strip contraction and leukocyte-dependent inflammation in the hamster cheek pouch in vivo.  相似文献   

8.
Human polymorphonuclear leukocytes (PMNL) convert 6-trans isomers of leukotriene B4 (LTB4) to dihydro metabolites (Powell, W.S., and Gravelle, F. (1988) J. Biol. Chem. 263, 2170-2177). In the present study we investigated the mechanism for the initial step in the formation of these products. We found that the 1,500 x g supernatant fraction from human PMNL converts 12-epi-6-trans-LTB4 to its 5-oxo metabolite which was identified by mass spectrometry and UV spectrophotometry. The latter compound was subsequently converted to the corresponding dihydro-oxo product, which was further metabolized to 6,11-dihydro-12-epi-6-trans-LTB4, which was the major product after longer incubation times. The 5-hydroxyeicosanoid dehydrogenase activity is localized in the microsomal fraction and requires NADP+ as a cofactor. These experiments therefore suggest that the initial step in the formation of dihydro metabolites of 6-trans isomers of LTB4 is oxidation of the 5-hydroxyl group by a microsomal dehydrogenase. Studies with a variety of substrates revealed that the microsomal dehydrogenase in human PMNL oxidizes the hydroxyl groups of a number of other eicosanoids which contain a 5(S)-hydroxyl group followed by a 6-trans double bond. There is little or no oxidation of hydroxyl groups in the 8-, 9-, 11-, 12-, or 15-positions of eicosanoids, or of the 5-hydroxyl group of LTB4, which has a 6-cis rather than a 6-trans double bond. The preferred substrate for this enzyme is 5(S)-hydroxy-6,8,11,14-eicosatetraenoic acid (5(S)-HETE) (Km, 0.2 microM), which is converted to 5-oxo-6,8,11,14-eicosatetraenoic acid. Unlike 5(S)-HETE, 5(R)-HETE is a poor substrate for the 5(S)-hydroxyeicosanoid dehydrogenase, indicating that in addition to exhibiting a high degree of positional specificity, this enzyme is also highly stereospecific. In addition to 5(S)-HETE and 6-trans isomers of LTB4, 5,15-diHETE is also a good substrate for this enzyme, being converted to 5-oxo-15-hydroxy-6,8,11,13-eicosatetraenoic acid (5-oxo-15-hydroxy-ETE). The oxidation of 5(S)-HETE to 5-oxo-ETE is reversible since human PMNL microsomes stereospecifically reduce 5-oxo-ETE to the 5(S)-hydroxy compound in the presence of NADPH. 5-Oxo-ETE is formed rapidly from 5(S)-HETE by intact human PMNL, but because of the reversibility of the reaction, its concentration only reaches about 25% that of 5(S)-HETE.  相似文献   

9.
Leukotriene B4 (LTB4) is a potent chemoattractant for neutrophils and is thought to play a role in a variety of inflammatory responses in humans. The metabolism of LTB4 in vitro is complex with several competing pathways of biotransformation, but metabolism in vivo, especially for normal human subjects, is poorly understood. As part of a Phase I Clinical Trial of human tolerance to LTB4, four human subjects were injected with 150 nmol/kg LTB4 with one additional subject as placebo control. The urine of the subjects was collected in two separate pools (0-6 and 7-24 h), and aliquots from these urine collections were analyzed using high performance liquid chromatography, UV spectroscopy, and negative ion electrospray ionization tandem mass spectrometry for metabolites of LTB4. In the current investigation, 11 different metabolites of LTB4 were identified in the urine from those subjects injected with LTB4, and none were present in the urine from the placebo-injected subject. The unconjugated LTB4 metabolites found in urine were structurally characterized as 18-carboxy-LTB4, 10,11-dihydro-18-carboxy-LTB4, 20-carboxy-LTB4, and 10,11-dihydro-20-carboxy-LTB4. Several glucuronide-conjugated metabolites of LTB4 were characterized including 17-, 18-, 19-, and 20-hydroxy-LTB4, 10-hydroxy-4,6,12-octadecatrienoic acid, LTB4, and 10,11-dihydro-LTB4. The amount of LTB4 glucuronide (16.7-29.4 pmol/ml) and 20-carboxy-LTB4 (18.9-30.6 pmol/ml) present in the urine of subjects injected with LTB4 was determined using an isotope dilution mass spectrometric assay before and after treatment of the urine samples with beta-glucuronidase. The urinary metabolites of LTB4 identified in this investigation were excreted in low amounts, yet it is possible that one or more of these metabolites could be used to assess LTB4 biosynthesis following activation of the 5-lipoxygenase pathway in vivo.  相似文献   

10.
Properties of leukotriene B4 20-hydroxylase from polymorphonuclear leukocytes   总被引:16,自引:0,他引:16  
Human polymorphonuclear leukocytes (PMNL) convert arachidonic acid (20:4) to a number of dihydroxy metabolites, including leukotriene B4 (LTB4) 5S,12R-dihydroxy-6,8,10,14-EEEZ-icosatetraenoic acid (isomer-1), 5S,12S-dihydroxy-6,8,10,14-EEEZ-icosatetraenoic acid, 5S,12S-dihydroxy-6,8,10,14-EZEZ-icosatetraenoic acid (5S,12S-dh-20:4), 5,6-dihydroxy-7,9,11,14-icosatetraenoic acid, and 5,15-dihydroxy-6,8,11,13-icosatetraenoic acid. LTB4 was synthesized rapidly after stimulation of PMNL with the divalent cation ionophore, A23187, but its concentration rapidly declined after about 4 min, in contrast to the other dihydroxy metabolites of 20:4 whose concentrations remained stable for at least 20 min. The amounts of polar metabolites (identified primarily as 20-hydroxy-LTB4) increased steadily with time up to 20 min. These results suggest that LTB4 may be specifically converted to its 20-hydroxy metabolite by PMNL. We prepared 3H- and 14C-labeled analogs of the dihydroxyicosatetraenoic acid metabolites described above by incubation of labeled 20:4 with PMNL. Although all of these substances were metabolized to some extent by human PMNL, LTB4 (apparent Km, 1.0 microM) was metabolized the most rapidly, followed by 5S,12S-dh-20:4 (apparent Km, 2.4 microM) and isomer-1 (apparent Km, 4.8 microM). All three substrates were shown by mass spectrometry to be converted to their 20-hydroxy metabolites. LTB4 was also metabolized to its omega-carboxy derivative. Human mononuclear leukocytes and rabbit PMNL metabolized LTB4 very slowly, whereas rat PMNL metabolized this substrate at about one-sixth the rate of human PMNL. These results demonstrate that human PMNL contain an omega-hydroxylase that specifically converts LTB4 to its 20-hydroxy metabolite. This enzyme may be important for the regulation of LTB4 levels in vivo.  相似文献   

11.
The lipoxins (LX) are autacoids that act within a local inflammatory milieu to dampen neutrophil recruitment and promote resolution. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) and 15-oxoprostaglandin 13-reductase, also termed leukotriene B(4) 12-hydroxydehydrogenase (PGR/LTB(4)DH), are two enzymatic activities appreciated for their roles in the metabolism of prostaglandins and LTB(4). Here, we determined whether these oxidoreductases also catalyze the conversion of lipoxin A(4) (LXA(4)) and assessed the activities of these LXA(4) metabolites. 15-Oxo-LXA(4) was generated by incubating LXA(4) with 15-PGDH and NAD(+) for studies of its further conversion. PGR/LTB(4)DH catalyzed the NADH-dependent reduction of 15-oxo-LXA(4) to yield 13,14-dihydro-15-oxo-LXA(4). With NADH as a cofactor, 15-PGDH acted as a 15-carbonyl reductase and catalyzed the conversion of 13,14-dihydro-15-oxo-LXA(4) to 13, 14-dihydro-LXA(4). Human polymorphonuclear leukocytes (PMN) exposed to native LXA(4), 15-oxo-LXA(4), or 13,14-dihydro-LXA(4) did not produce superoxide anions. At concentrations where LXA(4) and a metabolically stable LXA(4) analog potently inhibited leukotriene B(4)-induced superoxide anion generation, the further metabolites were devoid of activity. Neither 15-oxo-LXA(4) nor 13, 14-dihydro-LXA(4) effectively competed with (3)H-labeled LXA(4) for specific binding to recombinant LXA(4) receptor (ALXR). In addition, introducing recombinant PGR/LTB(4)DH into a murine exudative model of inflammation increased PMN number by approximately 2-fold, suggesting that this enzyme participates in the regulation of PMN trafficking. These results establish the structures of LXA(4) further metabolites and indicate that conversion of LXA(4) to oxo- and dihydro- products represents a mode of LXA(4) inactivation in inflammation. Moreover, they suggest that these eicosanoid oxidoreductases have multifaceted roles controlling the levels of specific eicosanoids involved in the regulation of inflammation.  相似文献   

12.
Leukotriene B4 (LTB4), formed by the 5-lipoxygenase pathway in human polymorphonuclear leukocytes (PMN), may be an important mediator of inflammation. Recent studies suggest that human leukocytes can convert LTB4 to products that are less biologically active. To examine the catabolism of LTB4, we developed (using high performance liquid chromatography) a sensitive, reproducible assay for this mediator and its omega-oxidation products (20-OH- and 20-COOH-LTB4). With this assay, we have found that human PMN (but not human monocytes, lymphocytes, or platelets) convert exogenous LTB4 almost exclusively to 20-OH- and 20-COOH-LTB4 (identified by gas chromatography-mass spectrometry). Catabolism of exogenous LTB4 by omega-oxidation is rapid (t1/2 approximately 4 min at 37 degrees C in reaction mixtures containing 1.0 microM LTB4 and 20 X 10(6) PMN/ml), temperature-dependent (negligible at 0 degrees C), and varies with cell number as well as with initial substrate concentration. The pathway for omega-oxidation in PMN is specific for LTB4 and 5(S),12(S)-dihydroxy-6,8,10,14-eicosatetraenoic acid (only small amounts of other dihydroxylated-derivatives of arachidonic acid are converted to omega-oxidation products). Even PMN that are stimulated by phorbol myristate acetate to produce large amounts of superoxide anion radicals catabolize exogenous leukotriene B4 primarily by omega-oxidation. Finally, LTB4 that is generated when PMN are stimulated with the calcium ionophore, A23187, is rapidly catabolized by omega-oxidation. Thus, human PMN not only generate and respond to LTB4, but also rapidly and specifically catabolize this mediator by omega-oxidation.  相似文献   

13.
Leukotriene B5 (LTB5) and three stereoisomers were prepared biosynthetically from eicosapentaenoic acid and compared with the analogous derivatives of arachidonic acid for their chemotactic and aggregating effects on human neutrophilic polymorphonuclear leukocytes. Leukotriene B4 (LTB4), LTB5, and the 6-trans-diastereoisomers of each were generated by activating polymorphonuclear leukocytes with the calcium ionophore A23187 in the presence of 14C-labeled and unlabeled arachidonic acid or 14C-labeled and unlabeled eicosapentaenoic acid, respectively. The double lipoxygenase products, (5S,12S)-6-trans-8-cis-LTB4 and (5S,12S)-6-trans-8-cis-LTB5, were generated from 5S-hydroxyeicosatetraenoic acid and racemic 5-hydroxyeicosapentaenoic acid intermediates by incubation with platelet sonicates. The products of each reaction were isolated by reverse-phase-high performance liquid chromatography and identified by their retention times relative to the appropriate totally synthetic standards, ultraviolet absorption spectra, immunoreactivity in a radioimmunoassay for LTB4, and, for all but the double lipoxygenase products, by incorporation of radiolabel from the specific polyunsaturated fatty acid source. When the concentration of LTB5 eliciting maximum chemotactic response of human polymorphonuclear leukocytes, 50 ng/ml (1.5 X 10(-7) M), and that eliciting a maximum aggregation response, 20 ng/ml (5.9 X 10(-8) M), were compared with the interpolated values of LTB4 eliciting comparable effects, the potency of LTB5 relative to LTB4 was approximately 1:8 as a chemotactic agent and about 1:20 as an aggregating agent. The double lipoxygenase products and the resolved 6-trans-diastereoisomers of the pentaene and tetraene series were about 2 logs less active as chemotactic factors than LTB4 and only (5S,12S)-6-trans-8-cis-LTB4 had even minimal aggregating activity.  相似文献   

14.
Human monocytes metabolize LTB4 by an additional pathway different from omega-oxidation. Reverse-phase high performance liquid chromatography showed four metabolites: 20-COOH-LTB4, 20-OH-LTB4 and two metabolites less polar than LTB4 with an UV maximum at 232 nm. Gas-chromatography mass-spectrometry showed nearly identical mass spectra for both metabolites. The main mass fragments of the two metabolites were increased by two mass units compared to LTB4. Our findings suggest that LTB4 had been reduced to a known and a new dihydro-metabolite of LTB4. Both metabolites together amounted to 85% of total metabolites. The remaining 15% were omega-oxidation products. Thus, the major pathway of LTB4 metabolism by human monocytes is reduction to dihydro-LTB4.  相似文献   

15.
Aureobasidium pullulans, originally introduced as an inadvertent contaminant in solutions used for evaluating the stability of prostaglandins, proved to lead to the rapid disappearance of the cyclopentenone unit of PGA2 (as monitored by circular dichroic spectroscopy). The cyclopentenone unit is converted, in various metabolites, to a 9-keto, 9 alpha or 9 beta-hydroxy group lacking the ring unsaturation. The major EtoAc-soluble 9-hydroxy metabolite (Compound-I) was shown to be 9 alpha, 15 alpha-dihydroxy-2, 3, 4, 5-tetranor-13-trans-prostenoic acid. Similar tetranor 9-hydroxy metabolites with one additional degree of unsaturation, and with a 9 beta-hydroxy group, also occur but these have not been fully characterized. Only two of the wide range of 9-keto metabolites are fully characterized by mass spectral (MS) data: 9, 15-oxo-2, 3, 4, 5-tetranorprostanoic acid and 9, 15-oxo-2, 3, 4, 5-tetranor-13-trans-prostenoic acid. The water soluble metabolites have not been characterized further. The fully characterized metabolites together with MS data from mixtures of minor metabolites indicate that A. pullulans can perform the following transformation: beta-oxidation, dehydrogenation at C-15, reduction of the enone carbon-carbon double bonds (both delta 10,11 and delta 13,14), reduction of the 9-ketone, and possibly migration of the cyclopentyl double bond (delta 10, 11 leads to delta 11, 12). A. pullulans metabolizes 15-epimeric PGA2 equally readily with the production of similar products. PGA1 affords less 9-keto metabolites with compound I constituting 33% of the product by HPLC analysis. A. pullulans displays some enantioselectivity, PGA2 and 15-epi-PGA2 are each metabolized more rapidly than their enantiomers. Other prostaglandins appear to be less readily metabolized.  相似文献   

16.
Incubation of porcine leukocytes with [1-14C]-15-hydroperoxyeicosapentaenoic acid (15-HPEPE) results in the formation of a group of polar metabolites which after separation and purification by RP-HPLC and SP-HPLC were found to be a series of new compounds containing three hydroxy groups and four conjugated double bonds. The structures of these new metabolites were established by U. V. spectrophotometry and GC/MS to be trihydroxy pentaenes of EPA, i.e., 5,6,15-trihydroxy-7,9,11,13,17-eicosapentaenoic acid and 5,14,15-trihydroxy-6,8,10,12,17-eicosapentaenoic acid. Because of the additional double bond at C17-18, these two new metabolites of EPA were proposed to be lipoxene A and lipoxene B, respectively.  相似文献   

17.
A simple and efficient method for preparing 11,12-leukotriene A4 has been established by the stereospecific biomimetic route from arachidonic acid. 12S-Hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid was synthesized using a partially purified 12-lipoxygenase of porcine leukocytes. The methyl ester of the compound was then chemically converted to two labile epoxides with a conjugated triene structure. These compounds were identified by proton NMR and mass spectrometry to be 11S,12S-oxido-5Z,7E,9E,14Z-eicosatetraenoic acid (11,12-leukotriene A4) and its geometric isomer.  相似文献   

18.
Human peripheral blood mononuclear cells were isolated and assessed for the presence of contaminating polymorphonuclear leukocytes and platelets. Incubations of these cell isolates were performed in the presence or absence of the calcium ionophore A23187 and/or 1-14C-labeled or unlabeled arachidonic acid. Using reverse phase high pressure liquid chromatography with simultaneous monitoring of ultraviolet light absorption at 229 and 280 nm and, where appropriate, of radioactivity, our studies reveal that human peripheral blood mononuclear cells generate leukotrienes C4 and B4 (LTC4 and LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) following stimulation with A23187. The ratio of LTC4 to LTB4 was approximately 10-fold greater among the mononuclear cells than among similar incubations of polymorphonuclear leukocytes. Furthermore, the mononuclear cells failed to metabolize LTB4 into the omega-hydroxy or omega-carboxy derivatives that were always present in, and very characteristic of incubations of polymorphonuclear leukocytes. Depletion of monocytes from the mononuclear cells by double adherence resulted in virtual loss of the generation of 5-lipoxygenase-derived products by the remaining nonadherent cells, supporting the conclusion that the monocytes and not the lymphocytes were the source of LTC4, LTB4, and 5-HETE. The presence of both 12-HETE and the cyclooxygenase-derived 12-hydroxyheptadecatrienoic acid correlated with the degree of platelet contamination, suggesting that the platelets account for the presence of these compounds.  相似文献   

19.
Leukotriene (LT) synthesis and metabolism were studied in porcine aortic endothelial cells. Leukotrienes were identified by combinations of guinea pig lung parenchymal strip bioassay, radioimmunoassay, and UV spectrophotometry with high performance liquid chromatography. Endothelial cells stimulated with the calcium ionophore, A23187, were unable to convert arachidonic acid to detectable levels of LTA4-derived products including the biologically active metabolites, LTB4 or LTC4. However, these cells readily converted exogenous LTA4 to the potent slow-reacting substance, LTC4. Smaller quantities of 11-trans-LTC4 and LTD4 were also observed. LTB4 was not detectable in these incubations nor was LTB4 metabolism observed. The possible intercellular transfer of LTA4 between polymorphonuclear leukocytes (PMNL) and endothelial cells was tested since PMNL release LTA4 when stimulated and have significant contact with endothelium. When A23187-stimulated neutrophils were coincubated with endothelial cells, a significant increase in LTC4 levels was detected over PMNL alone. LTC4 is formed by the enzymatic conjugation of glutathione (GSH) with LTA4. Therefore in some experiments, endothelial cells were prelabeled with [35S]cysteine to allow intracellular synthesis of [35S]GSH. When unlabeled PMNL were added, as a source of LTA4 to the prelabeled endothelial cells, substantial levels of [35S] LTC4 were recovered. The data indicate that endothelial cells synthesize LTC4 from LTA4. They also demonstrate a specific PMNL-endothelial cell interaction in which endothelial cell LTC4 synthesis results from the intercellular transfer of LTA4 produced by PMNL.  相似文献   

20.
A previously unidentified leukotriene was isolated from incubations of human polymorphonuclear leukocytes with ionophore A23187. The compound eluted between LTB4 and 20-carboxy LTB4 on SP-HPLC and between the two 6-trans isomers of LTB4 on RP-HPLC. Ultraviolet spectroscopy revealed three absorption bands at 258 nm, 268 nm and 278 nm. 1802 was incorporated by the OH at both C5 and C12. Oxidative ozonolysis indicated the presence of 5S, 12S configuration. The structure of the newly identified leukotriene is 5S, 12S-dihydroxy-icosatetraenoic acid. Stereochemistry of the double bonds and biologic activity were not investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号