首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Creatine kinase (ATP: creatine N-phosphotransferase, EC 2.7.3.2) was completely denatured using 3 M guanidine hydrochloride for 2 h as in previous studies [Yao et al. (1982), Sci. Sin. 25B, 1296–1302; Yao et al. (1984), Biochemistry 23, 2740–2744; Yao et al. (1982), Sci. Sin. 25B, 1186–1193]. Under suitable conditions, about 60–70% of the activity can be recovered in the presence of different Mg2+ concentrations. Both the reactivation and the refolding processes follow two-phase courses after dilution in the proper solutions. A comparison of the rate constants for the refolding of unfolded creatine kinase with those for the recovery of its catalytic activity at various Mg2+ concentrations shows that these are not synchronized. The reactivity of guanidine hydrochloride-denatured creatine kinase can be inhibited by Mg2+; however, the rates of reactivation are independent of the Mg2+ concentration. In addition, Mg2+ affects the fluorescence intensity, but the rate constants of refolding are independent of Mg2+ concentration. Although the reactivation of GdHCl-denatured creatine kinase is complete about 3 h after dilution with reactivation solutions, the conformational changes during refolding occur in a much slower reaction. Mg2+ can induce complex changes in the relative fluorescence intensity during refolding over a broad range of concentrations.  相似文献   

2.
Creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) is a good model for studying dissociation and reassociation during unfolding and refolding. This study compares self-reassociated CK dimers and CK dimers that contain hybrid dimers under proper conditions. Creatine kinase forms a monomer when denatured in 6 M urea for 1 h which will very quickly form a dimer when the denaturant is diluted under suitable conditions. After modification by DTNB, CK was denatured in 6 M urea to form a modified CK monomer. Dimerization of this modified subunit of CK occurred upon dilution into a suitable buffer containing DTT. Therefore, three different types of reassociated CK dimers including a hybrid dimer can be made from two different CK monomers in the proper conditions. The CK monomers are from a urea-denatured monomer of DTNB-modified CK and from an unmodified urea dissociated monomer. Equal enzyme concentration ratios of these two monomers were mixed in the presence of urea, then diluted into the proper buffer to form the three types of reassociated CK dimers including the hybrid dimer. Reassociated CK dimers including all three different types recover about 75% activity following a two-phase course (k 1 = 4.88 × 10–3 s–1, k 2 = 0.68 × 10–3 s–1). Intrinsic fluorescence spectra of the three different CK monomers which were dissociated in 6 M urea, dissociated in 6 M urea after DTNB modification, and a mixture of the first two dissociated enzymes were studied in the presence of the denaturant urea. The three monomers had different fluorescence intensities and emission maxima. The intrinsic fluorescence maximum intensity changes of the reassociated CK dimers were also studied. The refolding processes also follow biphasic kinetics (k 1 = 3.28 × 10–3 s–1, k 2 = 0.11 × 10–3 s –1) after dilution in the proper solutions. Tsou's method [Tsou (1988), Adv. Enzymol. Rel. Areas Mol. Biol. 61, 381–436] was also used to measure the kinetic reactivation rate constants for the different three types of reassociated CK dimers, with different kinetic reactivation rate constants observed for each type. CK dissociation and reassociation schemes are suggested based on the results.  相似文献   

3.
We have developed a novel enzymatic cycling method that uses creatine kinase (CK) to measure creatine. The method takes advantage of the reversibility of the CK reaction in which the forward (creatine phosphate forming) and reverse reactions are catalyzed in the presence of an excess amount of ATP and IDP, respectively. Real-time detection was accomplished using ADP-dependent glucokinase (ADP–GK) together with glucose-6-phosphate dehydrogenase. ADP, one of the cycling reaction products, was distinguished from IDP by using the nucleotide selectivity of the ADP–GK. The increasing level of ADP was measured from the level of reduced NADP at 340 nm. The method is appropriate for an assay that requires high sensitivity because the rate of increase in absorbance at 340 nm is proportional to the amount of CK present in the reaction mix. We reasoned that the method with CK in combination with creatinine amidohydrolase could be used to assay creatinine, an important marker of kidney function. Our results confirmed the quantitative capability of the assay.  相似文献   

4.
High enzyme activity of mitochondrial creatine kinase (creatine-N-phosphotransferase, mCK, EC 2.7.3.2) was detected in serum from a patient with advanced carcinoma of the rectum and its isoforms were characterized by means of isoelectric focusing (IEF). Three forms of mCK, membrane-bound (pI 6.9–7.0), octameric (pI 7.0–7.9) and dimeric (pI 6.7, 6.8, 6.9 and 7.0), were detected in the fresh serum. These three forms of mCK were converted to five dimeric isoforms, and these were characterized as one reduced form (pI 7.0) and four oxidized (pI 6.6, 6.7, 6.8 and 6.9) forms upon treatment with urea, hydrogen peroxide or 2-mercaptoethanol (2-ME). The C-terminal of the mCKs was concluded to be a lysine residue because the mCKs treated with carboxypeptidase B migrated to positions closer to the anode than did those not treated with carboxypeptidase B. Therefore, four bands were concluded to represent one reduced-delysined isoform (pI 6.4) and three oxidized-delysined isoforms (pI 6.1, 6.2 and 6.3). The broad octameric mCK band disappeared and a narrow band focused at pI 6.8–6.9 appeared upon probable delysination of the mCKs. Thus, the number of lysine residues at the C-terminal of the octamer was concluded to be variable due to variable catalysis by carboxypeptidase N in the plasma. mCKs seemed to be inactivated during conversion from a membrane-bound form to dimeric oxidized-delysined forms via the octameric, dimeric reduced and oxidized forms.  相似文献   

5.
The time course and dose-response to proteolysis of three dimeric isozymes of creatine kinase, CK-MM (muscle), CK-BB (brain), and CK-MB (heart) and the homologous monomer, arginine kinase were compared. Chymotrypsin and trypsin cause a rapid and significant loss of intact CK-BB, but limited hydrolysis of CK-MM. After 1h of hydrolysis by chymotrypsin, 80% of CK-MM is intact as judged by quantification of monomers after electrophoresis in sodium dodecyl sulfate. While 50% of the intact monomers of CK-MB remain under these conditions, no CK-BB monomers are detected. These results indicate that treatment with chymotrypsin leads to a CK-MB devoid of the B-subunit. When treated with trypsin for 1h, CK-MM is totally resistant to hydrolysis and all CK-BB is highly degraded. However, CK-MB exhibits approximately 90% intact monomers, indicating survival of intact B-subunit in CK-MB. This suggests that heterodimerization of a B-subunit with an M-subunit may have a protective effect against hydrolysis by trypsin. In view of the considerably larger number of potentially tryptic sensitive sites on the muscle isozyme, the resistance of CK-MM and susceptibility of CK-BB dimers to trypsin implies that differences in subunit tertiary structure are a factor in proteolysis of the homodimeric isozymes. Arginine kinase is rapidly degraded by trypsin, but is minimally affected by chymotrypsin. The finding that both a monomeric (arginine kinase) and dimeric (CK-BB) phosphagen kinase are highly susceptible to proteolysis by trypsin indicates that quaternary structure is not, in and of itself, an advantage in resistance to proteolysis. Since both arginine kinase and muscle creatine kinase are resistant to chymotryptic hydrolysis, it seems unlikely that in general, the increased packing density, which may result from dimerization can account for the stability of CK-MM towards trypsin.  相似文献   

6.
Creatine kinase is a crucial enzyme for brain, heart and skeletal muscle energy homeostasis, and a decrease of its activity has been associated with cell death. Many biological properties have been attributed to ruthenium complexes. In this context, this work was performed in order to evaluate creatine kinase activity from rat brain, heart and skeletal muscle (quadriceps) after administration of ruthenium complexes, trans-[RuCl(2)(nic)(4)] (nic=3-pyridinecarboxylic acid) 180.7 micromol/kg (complex I), trans-[RuCl(2)(i-nic)(4)] (i-nic=4-pyridinecarboxylic acid) 13.6 micromol/kg (complex II), trans-[RuCl(2)(dinic)(4)] (dinic=3,5-pyridinedicarboxylic acid) 180.7 micromol/kg (complex III) and trans-[RuCl(2)(i-dinic)(4)] (i-dinic=3,4-pyridinedicarboxylic acid) 180.7 micromol/kg (complex IV). Our results showed that complex I caused inhibition of creatine kinase activity in hippocampus, striatum, cerebral cortex, heart and skeletal muscle. Besides, complex II did not affect the enzyme activity. complexes III and IV increased creatine kinase activity in hippocampus, striatum, cerebral cortex and heart, but not in skeletal muscle. Besides, none of the complexes in vitro altered creatine kinase activity, suggesting that enzymatic activity is indirectly affected by complexes I, III and IV. It is believed that diminution of creatine kinase in brain of rats caused by complex I may be related to results from other study reporting memory impairment caused by the same complex. Further research is necessary in order to elucidate the effects of ruthenium complexes in other important metabolic enzymes.  相似文献   

7.
In creatine kinases (CKs), the amino acid residue-96 is a strictly conserved arginine. This residue is not directly associated with substrate binding, but it is located close to the binding site of the substrate creatine. On the other hand, the residue-96 is known to be involved in expression in the substrate specificity of various other phosphagen (guanidino) kinases, since each enzyme has a specific residue at this position: arginine kinase (Tyr), glycocyamine kinase (Ile), taurocyamine kinase (His) and lombricine kinase (Lys). To gain a greater understanding of the role of residue-96 in CKs, we replaced this residue in zebra fish Danio rerio cytoplasmic CK with other 19 amino acids, and expressed these constructs in Escherichia coli. All the twenty recombinant enzymes, including the wild-type, were obtained as soluble form, and their activities were determined in the forward direction. Compared with the activity of wild-type, the R96K mutant showed significant activity (8.3% to the wild-type), but 10 mutants (R96Y, A, S, E, H, T, F, C, V and N) showed a weak activity (0.056–1.0%). In the remaining mutants (R96Q, G, M, P, L, W, D and I), the activity was less than 0.05%. Our mutagenesis studies indicated that Arg-96 in Danio CK can be substituted for partially by Lys, but other replacements caused remarkable loss of activity. From careful inspection of the crystal structures (transition state analog complex (TSAC) and open state) of Torpedo cytoplasmic CK, we found that the side chain of R96 forms hydrogen bonds with A339 and D340 only in the TSAC structure. Based on the assumption that CKs consist of four dynamic domains (domains 1–3, and fixed domain), the above hydrogen bonds act to link putative domains 1 and 3 in TSAC structure. We suggest that residue-96 in CK and equivalent residues in other phosphagen kinases, which are structurally similar, have dual roles: (1) one involves in distinguishing guanidino substrates, and (2) the other plays a key role in organizing the hydrogen-bond network around residue-96 which offers an appropriate active center for the high catalytic turnover. The mode of development of the network appears to be unique each phosphagen kinase, reflecting evolution of each enzyme.  相似文献   

8.
Atypical mitochondrial creatine kinase (creatine N-phosphotransferase, CK, EC 2.7.3.2) was detected in the serum of a patient with carcinoma of germ cell origin, probably hepatoid yolk sac tumor. The pI of the oligomeric atypical mitochondrial CK (Mi-CK) was found at the acidic side compared to that of the typical ubiquitous Mi-CK (uMi-CK), while the molecular size of the atypical Mi-CK was similar to that of the typical uMi-CK. The pIs of the oligomeric and the dimeric atypical Mi-CKs became the same as those of the typical uMi-CK upon treatment with 2-mercaptoethanol. Therefore, the atypical Mi-CK was suggested to be an oxidized form of uMi-CK, and the oxidation might have occurred in the mitochondria because the oligomeric atypical Mi-CK had atypical pIs. The physicochemical characteristics of the oxidized uMi-CK were similar to those of the typical uMi-CK.  相似文献   

9.
A real-time fluorogenic kinase assay using myelin basic protein (MBP) as a substrate is reported. MBP is part of a noncovalent complex with a negatively charged, dye-labeled lipopeptide, (N-heptadecanoyl)-K(dye2)-linker-EEIYGEF-amide. The complex is approximately 20 times less fluorescent than the free lipopeptide. The MBP-lipopeptide complex serves as a protein substrate for several Ser/Thr kinases. We infer that the observed fluorescence increase on the addition of kinase and ATP is due to the phosphorylation of MBP, which decreases the affinity of MBP with the negatively charged, dye-labeled lipopeptide. Several protein kinases (protein kinase C βII, mitogen-activated protein kinase [MAPK] Erk1, and MAPK Erk2) were tested with the assay. The assay exhibited a fivefold fluorescence increase over background, provided kinetic values comparable to literature values (apparent KmATP), and produced inhibitor constants comparable to literature values for a typical inhibitor, namely staurosporine.  相似文献   

10.
Mazon H  Marcillat O  Forest E  Vial C 《Biochimie》2005,87(12):1101-1110
Hydrogen/deuterium exchange coupled to mass spectrometry has been used to investigate the structure and dynamics of native dimeric cytosolic muscle creatine kinase. The protein was incubated in D2O for various time. After H/D exchange and rapid quenching of the reaction, the partially deuterated protein was cleaved in parallel by two different proteases (pepsin or type XIII protease from Aspergillus saitoi) to increase the sequence coverage and spatial resolution of deuterium incorporation. The resulting peptides were analyzed by liquid chromatography coupled to mass spectrometry. In comparison with the 3D structure of MM-CK, the analysis of the two independent proteolysis deuteration patterns allowed us to get new insights into CK local dynamics as compared to a previous study using pepsin [Mazon et al. Protein Science 13 (2004) 476-486]. In particular, we obtained more information on the kinetics and extent of deuterium exchange in the N- and C-terminal extremities represented by the 1-22 and 362-380 pepsin peptides. Indeed, we observed a very different behaviour of the 1-12 and 13-22 type XIII protease peptides, and similarly for the 362-373 and 374-380 peptides. Moreover, comparison of the deuteration patterns of type XIII protease segments of the large 90-126 pepsin peptide led us to identify a small relatively dynamic region (108-114).  相似文献   

11.
The creatine kinase (CK) system is essential for cellular energetics in tissues or cells with high and fluctuating energy requirements. Creatine itself is known to protect cells from stress-induced injury. By using an siRNA approach to silence the CK isoenzymes in human keratinocyte HaCaT cells, expressing low levels of cytoplasmic CK and high levels of mitochondrial CK, as well as HeLa cancer cells, expressing high levels of cytoplasmic CK and low levels of mitochondrial CK, we successfully lowered the respective CK expression levels and studied the effects of either abolishing cytosolic brain-type BB-CK or ubiquitous mitochondrial uMi-CK in these cells. In both cell lines, targeting the dominant CK isoform by the respective siRNAs had the strongest effect on overall CK activity. However, irrespective of the expression level in both cell lines, inhibition of the mitochondrial CK isoform generally caused the strongest decline in cell viability and cell proliferation. These findings are congruent with electron microscopic data showing substantial alteration of mitochondrial morphology as well as mitochondrial membrane topology after targeting uMi-CK in both cell lines. Only for the rate of apoptosis, it was the least expressed CK present in each of the cell lines whose inhibition led to the highest proportion of apoptotic cells, i.e., downregulation of uMi-CK in case of HeLaS3 and BB-CK in case of HaCaT cells. We conclude from these data that a major phenotype is linked to reduction of mitochondrial CK alone or in combination with cytosolic CK, and that this effect is independent of the relative expression levels of Mi-CK in the cell type considered. The mitochondrial CK isoform appears to play the most crucial role in maintaining cell viability by stabilizing contact sites between inner and outer mitochondrial membranes and maintaining local metabolite channeling, thus avoiding transition pore opening which eventually results in activation of caspase cell-death pathways.  相似文献   

12.
A 31P nuclear magnetic resonance saturation transfer method was used to measure the temperature dependence of creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts. A decrease in temperature from 37 to 4°C lowered the observed steady-state fluxes by about 80%. These data were used in conjunction with calculated changes in substrate concentrations with temperature to estimate the activation energy for creatine kinase in situ. The apparent activation energy of 42 kJ/mol agrees reasonably well with the range of literature values for the enzyme in vitro. This demonstrates that the reaction is not diffusion-limited in situ and that extraction and dilution of the enzyme for study in vitro does not alter fundamental kinetic properties of the enzyme exhibited in the intact tissue.  相似文献   

13.
A monoclonal antibody against the skeletal muscle enzyme, creatine kinase   总被引:3,自引:0,他引:3  
G E Morris  L P Head 《FEBS letters》1982,145(1):163-168
  相似文献   

14.
Rats were fed a diet containing 1% of the creatine substrate analogue β-guanidinopropionic acid for 6–10 weeks. 31P-NMR investigation of isolated, glucose-perfused working hearts showed a 90% reduction in [phosphocreatine] from 22.2 to 2.5 μmol/g dry wt in guanidinopropionic acid-fed animals but no change in [Pi], [ATP], or intracellular pH. The unidirectional exchange flux in the creatine kinase reaction (direction phosphocreatine → ATP) was measured by saturation transfer NMR in hearts working against a perfusion pressure of 70 cm of water. This exchange was 10 μmol/g dry wt per s in control hearts and decreased 4-fold to 2.5–2.8 μmol/g dry wt per s in hearts from guanidinopropionic acid-fed animals. Oxygen consumption and cardiac performance were measured in parallel experiments at two perfusion pressures, 70 and 140 cm. No significant differences were observed in oxygen uptake or in any of the performance criteria between hearts from control and guanidinopropionic acid-fed rats at either workload. Assuming an ADP:O ratio of 3, the oxygen consumption measurements correspond to ATP turnover rates of 4.2–7.8 μmol/g dry per s. These rates are 1.5–3-times greater than the rate of the phosphocreatine → ATP exchange in hearts from guanidinopropionic acid-fed rats. These data suggest that phosphocreatine cannot be an obligate intermediate of energy transduction in the heart.  相似文献   

15.
In myofilaments obtained by Triton X-100 lysis of frog heart cells in high ionic strength medium, the activity of bound creatine kinase cannot be detected by a coupled enzymatic assay. ATP is channelized toward myosin ATPase, through the unstirred layer near myofilaments and cannot diffuse into the bulk solution. Model systems based upon the coupled kinetics of enzymes co-immobilized on the same surface may explain this behaviour. This may also account for why myofilament-bound creatine kinase is more efficient than free enzyme in the cytosol for the physiological recycling of ADP into ATP.  相似文献   

16.
Oxidative modification of creatine kinase BB in Alzheimer's disease brain   总被引:11,自引:0,他引:11  
Creatine kinase (CK) BB, a member of the CK gene family, is a predominantly cytosolic CK isoform in the brain and plays a key role in regulation of the ATP level in neural cells. CK BB levels are reduced in brain regions affected by neurodegeneration in Alzheimer's disease (AD), Pick's disease, and Lewy body dementia, and this reduction is not a result of decreased mRNA levels. This study demonstrates that posttranslational modification of CK BB plays a role in the decrease of CK activity in AD brain. The specific CK BB activity and protein carbonyl content were determined in brain extracts of six AD and six age-matched control subjects. CK BB activity per microgram of immunoreactive CK BB protein was lower in AD than in control brain extracts, indicating the presence of inactive CK BB molecules. The analysis of specific protein carbonyl levels in CK BB, performed by two-dimensional fingerprinting of oxidatively modified proteins, identified CK BB as one of the targets of protein oxidation in the AD brain. The increase of protein carbonyl content in CK BB provides evidence that oxidative posttranslational modification of CK BB plays a role in the loss of CK BB activity in AD.  相似文献   

17.
Creatine kinase (CK) is a key enzyme to maintain the energy homeostasis in vertebrate excitable tissues. Due to its importance in cellular energetics, the activity and level of CK are crucial to cellular and body functions. CK is sensitive to oxidative stresses and is thought to be one of the main targets of oxidative modification in neurodegenerative diseases. In this research, we investigated the effect of copper, an essential trace element for all organisms and an inducer of the reactive oxygen species, on CK refolding. It was found that trace amounts of Cu(2+) (3mol eq of Cu(2+)) could efficiently block the refolding of CK. The Cu(2+)-trapped CK could not be reactivated by the addition of EDTA, but could be reactivated by DTT. Spectroscopic experiments suggested that copper ions blocked CK refolding by specifically binding with the monomeric refolding intermediate, which further retarded CK refolding and promoted the formation of off-pathway aggregates. The results herein suggested that Cu(2+)-induced CK dysfunction might be caused not only by the post-translational oxidation, but also by the direct binding of copper ions with the newly-synthesized polypeptides.  相似文献   

18.
The courses of refolding and reactivation of urea-denatured creatine kinase (CK) (ATP:creatine N-phosphotrans-ferase, EC 2.7.3.2) have been studied in the absence and presence of zinc ions. The presence of Zn2+ at low concentrations blocks the reactivation and refolding of urea-denatured CK and keeps it in a partially folded state. The partially folded state proved to be a monomeric state which resembles the molten globule state in the CK folding pathway. During refolding in the presence of Zn2+ , creatine kinase forms aggregates with the aggregation dependent on zinc concentration and temperature. In the presence of EDTA, the partially folded creatine kinase can be reactivated and refolded following a biphasic course, suggesting the existence of a monomeric intermediate during the refolding of CK. The results also suggest that low concentrations of zinc ions might be toxic to some proteins such as creatine kinase by disrupting their proper folding.  相似文献   

19.
The cationic amphiphile, cholesteryl-3-carboxyamidoethylene-trimethylammonium iodide, can alter the substrate specificity of protein kinase C (PKC). The phosphorylation of histone catalyzed by PKC requires the binding of the enzyme to phospholipid vesicles. This cationic amphiphile reduces both the binding of PKC to lipid and as a consequence its rate of phosphorylation of histone. In contrast, PKC bound to large unilamellar vesicles (LUVs) composed of 50 mol % POPS, 20 mol % POPC, and 30 mol % of this amphiphile catalyzes protamine sulfate phosphorylation by an almost 4 fold greater rate. This activation requires phosphatidylserine (PS) and is inhibited by Ca2+. The extent of activation is affected by the time of incubation of PKC with LUVs. This data suggests a novel mechanism by which PKC-dependent signal transduction pathways may be altered by altering the protein targets of this enzyme.  相似文献   

20.
Fluxes catalyzed by soluble creatine kinase (MM) in equilibrium in vitro and by the creatine kinase system in perfused rat hearts were studied by 31P-NMR saturation transfer method. It was found that in vitro both forward and reverse fluxes through creatine kinase at equilibrium were almost equal and very stable to changes in ratio (from 0.2 to 3.0) as well as to changes in pH (from 7.4 to 6.5 or 8.1), free Mg2+ concentration and 2-fold decrease of total adenine nucleotides and creatine pools (from 8.0 to 4.0 mM and from 30 to 14 mM, respectively). In the rat hearts perfused by the Langendorff method the creatine kinase-catalyzed flux from phosphocreatine to ATP was increased by 50% when oxygen consumption grew from 8 to 55 μmol/min per g of dry wt. due to transition from rest to high workload. These changes could not be exclusively explained on the basis of the equilibrium model by activation of heart creatine kinase due to some decrease in ratio (from 1.8 to 0.8) observed during transition from rest to high workload. Analysis of our data showed that an increase in the flux via creatine kinase is correlated with an increase in the rate of ATP synthesis with a linearity coefficient higher than 1.0. These data are more consistent with the concept of energy channeling by phosphocreatine shuttle than with that of the creatine kinase equilibrium in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号