首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolution, biogeography, and patterns of diversification in passerine birds   总被引:6,自引:0,他引:6  
This paper summarizes and discusses the many new insights into passerine evolution gained from an increased general interest in avian evolution among biologists, and particularly from the extensive use of DNA sequence data in phylogenetic reconstruction. The sister group relationship between the New Zealand rifleman and all other passerines, indicates the importance of the former southern supercontinent Gondwana in the earliest evolution of this group. Following the break-up of Gondwana, the ancestors of other major passerine groups became isolated in Australia (oscines), South America (New World suboscines), and possibly, the then connected Kerguelen Plateau/India/Madagascar tectonic plates (Old World suboscines). The oscines underwent a significant radiation in the Australo-Papuan region and only a few oscine lineages have spread further than to the nearby Southeast Asia. A remarkable exception is the ancestor to the vast Passerida radiation, which now comprises 35% of all bird species. This group obviously benefitted greatly from the increased diversity in plant seed size and morphology during the Tertiary. The lyrebirds (and possibly scrub-birds) constitute the sister group to all other oscines, which renders "Corvida" ( sensu Sibley and Ahlquist 1990) paraphyletic. Sequence data suggests that Passerida, the other clade of oscines postulated based on the results of DNA–DNA hybridizations, is monophyletic, and that the rockfowl and rock-jumpers are the most basal members of this clade. The suboscines in the Old World (Eurylamides) and the New World (Tyrannides), respectively, are sister groups. A provisional, working classification of the passerines is presented based on the increased understanding of the major patterns of passerine evolution.  相似文献   

2.
Aim To analyse the historical biogeography of the lichen genus Chroodiscus using a phenotype‐based phylogeny in the context of continental drift and evolution of tropical rain forest vegetation. Location All tropical regions (Central and South America, Africa, India, Southeast Asia, north‐east Australia). Methods We performed a phenotype‐based phylogenetic analysis and ancestral character state reconstruction of 14 species of the lichen genus Chroodiscus, using paup * and mesquite ; dispersal–vicariance analysis (DIVA) and dispersal–extinction–cladogenesis (DEC) modelling to trace the geographical origin of individual clades; and ordination and clustering by means of pc‐ord , based on a novel similarity index, to visualize the biogeographical relationships of floristic regions in which Chroodiscus occurs. Results The 14 species of Chroodiscus show distinctive distribution patterns, with one pantropical and one amphi‐Pacific taxon and 12 species each restricted to a single continent. The genus comprises four clades. DIVA and DEC modelling suggest a South American origin of Chroodiscus in the mid to late Cretaceous (120–100 Ma), with subsequent expansion through a South American–African–Indian–Southeast Asian–Australian dispersal route and late diversification of the argillaceus clade in Southeast Asia. Based on the abundance of extant taxa, the probability of speciation events in Chroodiscus is shown to be extremely low. Slow dispersal of foliicolous rain forest understorey lichens is consistent with estimated phylogenetic ages of individual species and with average lengths of biological species intervals in fungi (10–20 Myr). Main conclusions The present‐day distribution of Chroodiscus can be explained by vicariance and mid‐distance dispersal through the interconnection or proximity of continental shelves, without the need for recent, trans‐oceanic long‐distance dispersal. Phylogenetic reconstruction and age estimation for Chroodiscus are consistent with the ‘biotic ferry’ hypothesis: a South American origin and subsequent eastward expansion through Africa towards Southeast Asia and north‐eastern Australia via the Indian subcontinent. The present‐day pantropical distributions of many clades and species of foliicolous lichens might thus be explained by eastward expansion through continental drift, along with the evolution of modern rain forests starting 120 Ma, rather than by the existence of a hypothetical continuous area of pre‐modern rain forest spanning South America, Africa and Southeast Asia during the mid and late Cretaceous.  相似文献   

3.
The Lophopidae are found in South America, Africa, Australia, India and Southeast Asia. This distribution appears to be typically Gondwanan, triggered by tectonic events beginning over 100 Ma. However, within the Fulgoromorpha, the lophopids are considered to be relatively recently. In this study, biological, geological and phylogenetic information is evaluated to provide a parsimonious explanation for the distribution of the group and its geographic region of ancestral origin. The Lophopidae can be divided into four monophyletic groups. The ancestors of two groups appear to have originated somewhere along the western Pacific island arc system. Another group appears to have an origin in Southeast Asia. A reliable explanation for the ancestral origin of the fourth group was not possible because it consists of only one genus present in Central and South America. A biogeographic map of the two groups of lophids of the western Pacific island arc is concordant with their phylogeny based on biological and morphological data. Based on this finding, the best explanation for the origin and evolution of the Lophopidae and their current distribution of these lophopids is through vicariance. Similar types of eco-evolutionary events explain radiation and distribution of the Lophopidae, in general.  相似文献   

4.
Aims Insular Southeast Asia and adjacent regions are geographically complex, and were dramatically affected by both Pliocene and Pleistocene changes in climate, sea level and geology. These circumstances allow the testing of several biogeographical hypotheses regarding species distribution patterns and phylogeny. Avian species in this area present a challenge to biogeographers, as many are less hindered by barriers that may block the movements of other species. Widely distributed Southeast Asian avian lineages, of which there are many, have been generally neglected. Ficedula flycatchers are distributed across Eurasia, but are most diverse within southern Asia and Southeast Asian and Indo‐Australian islands. We tested the roles of vicariance, dispersal and the evolution of migratory behaviours as mechanisms of speciation within the Ficedula flycatchers, with a focus on species distributed in insular Southeast Asia. Methods Using a published molecular phylogeny of Ficedula flycatchers, we reconstructed ancestral geographical areas using dispersal vicariance analysis, weighted ancestral area analysis, and a maximum likelihood method. We evaluated the evolution of migratory behaviours using maximum likelihood ancestral character state reconstruction. Speciation timing estimates were calculated via local molecular clock methods. Results Ficedula originated in southern mainland Asia, c. 6.5 Ma. Our analyses indicate that two lineages within Ficedula independently and contemporaneously colonized insular Southeast Asia and Indo‐Australia, c. 5 Ma. The potential impact of vicariance due to rising sea levels is difficult to assess in these early colonization events because the ancestral areas to these clades are reconstructed as oceanic islands. Within each of these clades, inter‐island dispersal was critical to species’ diversification across oceanic and continental islands. Furthermore, Pliocene and Pleistocene climatic change may have caused the disjunct island distributions between several pairs of sister taxa. Both vicariance and dispersal shaped the distributions of continental species. Main conclusions This study presents the first evaluation, for Ficedula, of the importance of vicariance and dispersal in shaping distributions, particularly across insular Southeast Asia and Indo‐Australia. Although vicariant speciation may have initially separated the island clades from mainland ancestors, speciation within these clades was driven primarily by dispersal. Our results contribute to the emerging body of literature concluding that dynamic geological processes and climatic change throughout the Pliocene and Pleistocene have been important factors in faunal diversification across continental and oceanic islands.  相似文献   

5.
The systematic relationships among avian families within Crown Corvida have been poorly studied so far and as such been of limited use for biogeographic interpretations. The group has its origin in Australia and is thought to have colonized Africa and the New World via Asia beginning some 35 Mya when terranes of Australian origin approached Asian landmasses. Recent detailed tectonic mapping of the origin of land masses in the region around Wallace's line have revealed a particularly complex movement of terranes over the last 20-30 Myr. Thus the biogeographic dispersal pattern of Crown Corvida is a particularly exciting case for linking vicariance and dispersal events with Earth history. Here we examine phylogenetic affinities among 72 taxa covering a broad range of genera in the basal radiations within Crown Corvida with an emphasis on Campephagidae and Pachycephalidae. Bayesian analyses of nuclear DNA sequence data identified the family Campephagidae as monophyletic but the large genus Coracina is not. Within the family Pachycephalidae the genera Pachycephala and Colluricincla are paraphyletic with respect to each other. The resulting phylogeny suggests that patterns of dispersal across Wallace's line are complex and began at least 25 Mya. We find evidence of explosive radiations and multi-directional dispersal within the last 10 Myr, and three independent long distance ocean dispersal events between Wallacea and Africa at 10-15 Mya. Furthermore, the study reveals that in the Campephagidae a complex series of dispersal events rather than vicariance is the most likely explanation for the current biogeographic pattern in the region.  相似文献   

6.
Passerine birds comprise over half of avian diversity, but have proved difficult to classify. Despite a long history of work on this group, no comprehensive hypothesis of passerine family-level relationships was available until recent analyses of DNA-DNA hybridization data. Unfortunately, given the value of such a hypothesis in comparative studies of passerine ecology and behaviour, the DNA-hybridization results have not been well tested using independent data and analytical approaches. Therefore, we analysed nucleotide sequence variation at the nuclear RAG-1 and c-mos genes from 69 passerine taxa, including representatives of most currently recognized families. In contradiction to previous DNA-hybridization studies, our analyses suggest paraphyly of suboscine passerines because the suboscine New Zealand wren Acanthisitta was found to be sister to all other passerines. Additionally, we reconstructed the parvorder Corvida as a basal paraphyletic grade within the oscine passerines. Finally, we found strong evidence that several family-level taxa are misplaced in the hybridization results, including the Alaudidae, Irenidae, and Melanocharitidae. The hypothesis of relationships we present here suggests that the oscine passerines arose on the Australian continental plate while it was isolated by oceanic barriers and that a major northern radiation of oscines (i.e. the parvorder Passerida) originated subsequent to dispersal from the south.  相似文献   

7.
Understanding oscine passerine dispersal patterns out of their Australian area of origin is hampered by a paucity of robust phylogenies. We constructed a molecular phylogeny of the oscine family, Oriolidae, which is distributed from Australia through to the Old World. We used the phylogeny to assess direction and timing of dispersal and whether dispersal can be linked with the well‐documented movements of geological terranes in the Indonesian Archipelago. We sampled 29 of 33 species of Oriolidae from fresh tissue and from toe pads from museum specimens, and examined two nuclear introns and two mitochondrial genes. Model‐based phylogenetic analyses yielded strong support for clades that generally mirrored classical systematics. Biogeographical analyses and divergence time estimates demonstrated that the family originated in the Australo‐Papuan region from where it dispersed first to Asia and then onwards to Africa and the Philippines before back‐colonising Asia and the Indonesian archipelago. Thus, contrary to several other avian families in the region, Oriolidae represents a sequential dispersal pattern from Australia to Africa via Asia. However, it is noteworthy that the Pacific islands and archipelagos remain uncolonised and that members inhabiting Wallacea are recent colonisers suggesting that Oriolidae are poorly adapted to island life.  相似文献   

8.
Aim The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. Location Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance‐based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa–Australia, Africa–India and southern South America–Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae. Transitions to conifers probably occurred no earlier than 65 Ma. Main conclusions The Inocybaceae initially diversified no later than the Cretaceous in Palaeotropical settings, in association with angiosperms. Diversification within major clades of the family accelerated during the Palaeogene in north and south temperate regions, whereas several relictual lineages persisted in the tropics. Both vicariance and dispersal patterns are detected. Species from Neotropical and south temperate regions are largely derived from immigrant ancestors from north temperate or Palaeotropical regions. Transitions to conifer hosts occurred later, probably during the Palaeogene.  相似文献   

9.
Aim  The flowering plant family Proteaceae is putatively of Gondwanan age, with modern and fossil lineages found on all southern continents. Here we test whether the present distribution of Proteaceae can be explained by vicariance caused by the break-up of Gondwana.
Location  Africa, especially southern Africa, Australia, New Zealand, South America, New Caledonia, New Guinea, Southeast Asia, Sulawesi, Tasmania.
Methods  We obtained chloroplast DNA sequence data from the rbc L gene, the rbc L- atp B spacer, and the atp B gene from leaf samples of forty-five genera collected from the field and from living collections. We analysed these data using Bayesian phylogenetic and molecular dating methods, with five carefully selected fossil calibration points to obtain age estimates for the nodes within the family.
Results  Four of eight trans-continental disjunctions of sister groups within our sample of the Proteaceae post-date the break-up of Gondwana. These involve independent lineages, two with an Africa-Australia disjunction, one with an Africa–South America disjunction, and one with a New Zealand–Australasia disjunction. The date of the radiation of the bird-pollinated Embothriinae corresponds approximately to the hypothesized date of origin of nectar-feeding birds in Australia.
Main conclusions  The findings suggest that disjunct distributions in Proteaceae result from both Gondwanan vicariance and transoceanic dispersal. Our results imply that ancestors of some taxa dispersed across oceans rather than rafting with Gondwanan fragments as previously thought. This finding agrees with other studies of Gondwanan plants in dating the divergence of Australian, New Zealand and New Caledonian taxa in the Eocene, consistent with the existence of a shared, ancestral Eocene flora but contrary to a vicariance scenario based on accepted geological knowledge.  相似文献   

10.
Thespesia consists of 16 species of trees and shrubs from Southeast Asia–Oceania, Africa and America, the most well known being T. populnea, a small tree of tropical coastal areas around the world. Phylogenetic relationships in the genus and among its allies in tribe Gossypieae were inferred using three plastid and two nuclear regions to ascertain its generic delimitation and explore its biogeographical history. Maximum‐likelihood and Bayesian analyses confirmed that Thespesia is not monophyletic and, based on these results, Azanza is reinstated to accommodate the two species previously placed in Thespesia section Lampas. Dating analyses and ancestral range estimation indicated that Thespesia s.s. most likely originated in Southeast Asia–Oceania c. 30 Mya, but extant species did not begin to differentiate until the late Miocene. Two dispersal events, one into Africa c. 11 Mya and another into America (Antilles) c. 9 Mya, gave rise to the African and the Greater Antillean endemics, respectively. The two most widespread hydrochorous species, T. populnea and T. populneoides, originated in Southeast Asia–Oceania from where they spread to other parts of the world. Our analysis also indicated a much earlier origin than previously reported for the eumalvoid clade and its tribes Gossypieae, Malveae and Hibisceae suggesting that vicariance might have had an important role early in the history of these groups.  相似文献   

11.
This study provides an overview of the historical biogeography of the major clades of Apiales based on extensive taxon sampling from all major lineages of the order, and character sampling of sequence data from the plastid rpl16 intron and trnD-trnY-trnE-trnT intergenic spacers. Divergence times were estimated in BEAST using relaxed molecular clocks and six calibration points from three families. Biogeographic reconstructions were estimated in DIVA and Lagrange using stratified and non-stratified models, addressing alternative scenarios for taxa with conflicting or poorly supported placements. Our analyses in BEAST estimated the origin of Apiales to Australasia in the Early Cretaceous (c.117 Ma). Most major clades also appear to have originated in Australasia, with the youngest family (Apiaceae) originating in the Late Cretaceous, c. 87 Ma. Diversification of the early lineages appears to be influenced by vicariance events related to the break up of Africa and Australasia (Torricelliaceae from Griseliniaceae and Apiineae), Australasia from Zealandia (e.g., Myodocarpaceae and Araliaceae), and Antarctica from South America, Australia, and possibly Africa (main lineages of Apiaceae). Long-distance dispersal appears as the likely explanation for many younger lineages within major clades, including Subantarctic pathways (e.g., Griseliniaceae and Azorelloideae), across the Pacific and Indian Ocean Basins (e.g., Pittosporaceae and Araliaceae), from Asia across Europe into the Americas (Araliaceae).  相似文献   

12.

Aim

The ectomycorrhizal genus Strobilomyces is widely distributed throughout many parts of the world, but its origin, divergence and distribution patterns remain largely unresolved. In this study, we aim to explore the species diversity, distribution and evolutionary patterns of Strobilomyces on a global scale by establishing a general phylogenetic framework with extensive sampling.

Location

Africa, Australasia, East Asia, Europe, North America, Central America and Southeast Asia.

Methods

The genealogical concordance phylogenetic species recognition method was used to delimit phylogenetic species. Divergence times were estimated using a Bayesian uncorrelated lognormal relaxed molecular clock. The ancestral area and host of Strobilomyces were inferred via the programs rasp and mesquite . The change of diversification rate over time was estimated using Ape, Laser and Bammtools software packages.

Results

We recognize a novel African clade and 49 phylogenetic species with morphological evidence, including 18 new phylogenetic species and 23 previously described ones. Strobilomyces probably originated in Africa, in association with Detarioideae/Phyllanthaceae/Monotoideae during the early Eocene. The dispersal to Southeast Asia can be explained by Wolfe's “Boreotropical migration” hypothesis. East Asia, Australasia, Europe and North/Central America are primarily the recipients of immigrant taxa during the Oligocene or later. A rapid radiation implied by one diversification shift was inferred within Strobilomyces during the Miocene.

Main conclusions

An unexpected phylogenetic species diversity within Strobilomyces was uncovered. The highest diversity, resulting probably from a rapid radiation, was found in East Asia. Dispersal played an important role in the current distribution pattern of Strobilomyces. The Palaeotropical disjunction is explained by species dispersal from Africa to Southeast Asia through boreotropical forests during the early Eocene. Species from the Northern Hemisphere and Australasia are largely derived from immigrant ancestors from Southeast Asia.  相似文献   

13.
Disjunctive distributions across paleotropical regions in the Indian Ocean Basin (IOB) often invoke dispersal/vicariance debates. Exacum (Gentianaceae, tribe Exaceae) species are spread around the IOB, in Africa, Madagascar, Socotra, the Arabian peninsula, Sri Lanka, India, the Himalayas, mainland Southeast Asia including southern China and Malaysia, and northern Australia. The distribution of this genus was suggested to be a typical example of vicariance resulting from the breakup of the Gondwanan supercontinent. The molecular phylogeny of Exacum is in principle congruent with morphological conclusions and shows a pattern that resembles a vicariance scenario with rapid divergence among lineages, but our molecular dating analysis demonstrates that the radiation is too recent to be associated with the Gondwanan continental breakup. We used our dating analysis to test the results of DIVA and found that the program predicted impossible vicariance events. Ancestral area reconstruction suggests that Exacum originated in Madagascar, and divergence dating suggests its origin was not before the Eocene. The Madagascan progenitor, the most recent common ancestor of Exacum, colonized Sri Lanka and southern India via long-distance dispersals. This colonizer underwent an extensive range expansion and spread to Socotra-Arabia, northern India, and mainland Southeast Asia in the northern IOB when it was warm and humid in these regions. This widespread common ancestor retreated subsequently from most parts of these regions and survived in isolation in Socotra-Arabia, southern India-Sri Lanka, and perhaps mainland Southeast Asia, possibly as a consequence of drastic climatic changes, particularly the spreading drought during the Neogene. Secondary diversification from these surviving centers and Madagascar resulted in the extant main lineages of the genus. The vicariance-like pattern shown by the phylogeny appears to have resulted from long-distance dispersals followed by extensive range expansion and subsequent fragmentation. The extant African species E. oldenlandioides is confirmed to be recently dispersed from Madagascar.  相似文献   

14.
The mitochondrial genomes of the Komodo monitor (Varanus komodoensis) and the Nile monitor (V. niloticus) were previously shown to have an extensive gene rearrangement. Here, we show that this gene arrangement widely occurs in varanid taxa originated from Africa, Asia and Australasia. Based on phylogenetic relationships of the varanids constructed using mitochondrial DNA sequences encoding the NADH dehydrogenase subunit 2 gene and seven flanking tRNA genes, we estimated their divergence times by the Bayesian method without assuming the molecular clock. The results suggested that the mitochondrial DNA gene rearrangement took place once in an ancestral varanid lineage in the Paleocene or earlier. Our results are more consistent with Cenozoic over-water dispersal of Southeast Asian varanids across the Indonesian Archipelago rather than the Cretaceous Gondwanan vicariance for the origin of Australasian varanids.  相似文献   

15.
The relative importance of dispersal and vicariance in the diversification of taxa has been much debated. Within butterflies, a few studies published so far have demonstrated vicariant patterns at the global level. We studied the historical biogeography of the genus Junonia (Nymphalidae: Nymphalinae) at the intercontinental level based on a molecular phylogeny. The genus is distributed over all major biogeographical regions of the world except the Palaearctic. We found dispersal to be the dominant process in the diversification of the genus. The genus originated and started diversifying in Africa about 20 Ma and soon after dispersed into Asia possibly through the Arabian Peninsula. From Asia, there were dispersals into Africa and Australasia, all around 5 Ma. The origin of the New World species is ambiguous; the ancestral may have dispersed from Asia via the Beringian Strait or from Africa over the Atlantic, about 3 Ma. We found no evidence for vicariance at the intercontinental scale. We argue that dispersal is as important as vicariance, if not more, in the global diversification of butterflies.  相似文献   

16.
Spiny ants (Polyrhachis Smith) are a hyper‐diverse genus of ants distributed throughout the Palaeotropics and the temperate zones of Australia. To investigate the evolution and biogeographic history of the group, we reconstructed their phylogeny and biogeography using molecular data from 209 taxa and seven genes. Our molecular data support the monophyly of Polyrhachis at the generic level and several of the 13 recognized subgenera, but not all are recovered as monophyletic. We found that Campomyrma Wheeler consists of two distinct clades that follow biogeographic affinities, that the boundaries of Hagiomyrma Wheeler are unclear depending on the analysis, that Myrma Billberg might be treated as one or two clades, and that Myrmhopla Forel is not monophyletic, as previously proposed. Our biogeographic ancestral range analyses suggest that the evolution of Polyrhachis originated in South‐East Asia, with an age of the modern crown‐group Polyrhachis of 58 Ma. Spiny ants dispersed out of South‐East Asia to Australia several times, but only once to mainland Africa around 26 Ma.  相似文献   

17.
This study compares results on reconstructing the ancestral state of characters and ancestral areas of distribution in Cornaceae to gain insights into the impact of using different analytical methods. Ancestral character state reconstructions were compared among three methods (parsimony, maximum likelihood, and stochastic character mapping) using MESQUITE and a full Bayesian method in BAYESTRAITS and inferences of ancestral area distribution were compared between the parsimony-based dispersal-vicariance analysis (DIVA) and a newly developed maximum likelihood (ML) method. Results indicated that among the six inflorescence and fruit characters examined, "perfect" binary characters (no homoplasy, no polymorphism within terminals, and no missing data) are little affected by choice of method, while homoplasious characters and missing data are sensitive to methods used. Ancestral areas at deep nodes of the phylogeny are substantially different between DIVA and ML and strikingly different between analyses including and excluding fossils at three deepest nodes. These results, while raising caution in making conclusions on trait evolution and historical biogeography using conventional methods, demonstrate a limitation in our current understanding of character evolution and biogeography. The biogeographic history favored by the ML analyses including fossils suggested the origin and early radiation of Cornus likely occurred in the late Cretaceous and earliest Tertiary in Europe and intercontinental disjunctions in three lineages involved movements across the North Atlantic Land Bridge (BLB) in the early and mid Tertiary. This result is congruent with the role of NALB for post-Eocene migration and in connecting tropical floras in North America and Africa, and in eastern Asia and South America. However, alternative hypotheses with an origin in eastern Asia and early Trans-Beringia migrations of the genus cannot be ruled out.  相似文献   

18.
Aim  The genus Prosopis includes 44 species and has a pseudoamphitropical, disjunct distribution. We aimed to determine whether American Prosopis sections arose in North or South America, and to explain the current distribution of their species on the basis of their genetic relationships.
Location  South-western USA, Mexico, Caribbean Antilles, Peru–Ecuador, central and northern Argentina, south-western Argentina (Patagonia) and Cuyo, south-western Asia and northern Africa.
Methods  Internal transcribed spacer fragments from 21 species of Prosopis were sequenced and the data were used to analyse the phylogenetic relationships using Microlobius and Mimosa as outgroups. Genetic distances were calculated to estimate the degree of divergence. Dispersal–vicariance (DIVA) analysis was conducted to help understand the biogeographical history of the genus.
Main conclusions  The sections Strombocarpa and Algarobia are not monophyletic. Prosopis argentina (section Monilicarpa ) and the species of Algarobia are included in single clade. The phylogeny, DIVA analysis, and the pattern of genetic distances indicate that the ancestral area for the American species was wide, from south-western USA to Central and northern Argentina. Successive vicariance events split this area, and long-distance dispersal episodes (perhaps mediated by birds) led to recolonizations from North to South America, and vice versa .  相似文献   

19.
Phylogenetic relationships of the lyrebirds are investigated using DNA sequence data. The aligned data matrix consists of 4027 bp obtained from three nuclear genes (c-myc, RAG-1 and myoglobin intron II) and two mitochondrial genes (cytochrome b and ND2). Both maximum-likelihood and parsimony analyses show that the lyrebirds unambiguously belong to the oscine radiation, and that they are the sister taxon to all other oscines. The results do not support the suggestion based on DNA-DNA hybridization data (Sibley and Ahlquist, 1990) that the treecreepers and bowerbirds are part of the lyrebird clade. Nevertheless, treecreepers and bowerbirds are sister taxa to all other oscines (except the lyrebirds) and may constitute a monophyletic group, although bootstrap support values for this clade are low. A major disagreement between the present analysis and that based on DNA-DNA hybridization data is that the Corvida (sensu Sibley and Ahlquist, 1990) and Passerida are not reciprocally monophyletic, as we find the latter group be nested within the Corvida. Also, the superfamilies Meliphagoidea and Corvoidea sensu, are not recovered as monophyletic in the present study. Within the oscine radiation, all taxa belonging to the earliest splits are confined to the Australo-Papuan region. This suggests strongly that the origins and early radiation of the oscines occurred in the southern supercontinent Gondwana. A new classification of the major groups of passerines is presented following from the results presented in the present study, as well as those published recently on analyses of sequence data from the nuclear c-myc and RAG-1 genes (Ericson et al., 2002; Irestedt et al., 2001).  相似文献   

20.
Aim Figs (Ficus, Moraceae) are exploited by rich communities of often host‐specific phytophagous wasps. Among them, gall‐inducing Sycophaginae (Hymenoptera, Chalcidoidea) may share a common history with Ficus and their mutualistic pollinators (Agaonidae). We investigate here, for the first time, the phylogeny and biogeographical history of Sycophaginae and compare the timing of radiation and dispersion of major clades with available data on Ficus and fig pollinators. Reconstructing the history of their host colonization and association over space and time is central to understanding how fig wasp communities were assembled. Location World‐wide. Methods Maximum likelihood and Bayesian analyses were conducted on 4267 bp of mitochondrial and nuclear DNA to produce a phylogeny of all genera of Sycophaginae. Two relaxed clock methods with or without rate autocorrelation were used for date estimation. Analyses of ancestral area were also conducted to investigate the geographical origin of the Sycophaginae. Results The phylogeny is well resolved and supported. Our data suggest a post‐Gondwanan origin for the Sycophaginae (50–40 Ma) and two independent out‐of‐Australia dispersal events to continental Asia. Given palaeoclimatic and palaeogeographic records, the following scenario appears the most likely. The ancestor of Idarnes+Apocryptophagus migrated to Greater India through the Ninetyeast Ridge (40–30 Ma). The ancestor of Anidarnes+Conidarnes dispersed later via Sundaland (25–20 Ma). Idarnes and Anidarnes subsequently reached the New World via the North Atlantic land bridges during the Late Oligocene Warming Event. Apocryptophagus reached Africa c. 20 Ma via the Arabic corridors and returned to Australasia following the expansion of Sundaland tropical forests (20–10 Ma). Main conclusions Sycophaginae probably invaded the fig microcosm in Australia c. 50–40 Ma after the origin of their host plant. Once associated with figs, they dispersed out of Australia and radiated together with their host fig and associated pollinator through the tropics. We recorded a good coincidence of timing between dispersal events of Sycophaginae and continental connections. Furthermore, fruit pigeons that disperse figs probably spread out of Australasia through the Indian Ocean via the Ninetyeast Ridge c. 38 Ma. Therefore, our study highlights the potential for combining molecular phylogenetics with multiple methods of dating of interacting groups to reconstruct the historical biogeography of plant–herbivore associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号