首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
E Heyduk  T Heyduk  J C Lee 《Biochemistry》1992,31(14):3682-3688
Escherichia coli cAMP receptor protein (CRP) is a homodimer in which each subunit is composed of two domains. The C-terminal domain is responsible for DNA recognition, whereas the larger N-terminal domain is involved in cAMP binding. Biochemical and genetic evidence suggests that both intersubunit and interdomain interactions play important roles in the regulatory mechanism of this protein. Essentially all intersubunit contacts occur via a long C-helix which is a part of the N-terminal domain. In this work, intersubunit interactions in CRP were studied with the use of two proteolytic fragments of the protein. Subtilisin digestion produces a fragment (S-CRP) which includes residues 1-117 and in which about 85% of the C-helix is removed, whereas chymotrypsin digestion produces a fragment (CH-CRP) consisting of residues 1-136, in which the whole C-helix is preserved. Both fragments were purified and subjected to functional tests which included cAMP binding, subunit assembly, and hydrodynamic properties in the presence and absence of cAMP. S-CRP binds cAMP with a similar affinity to that of native CRP but with reduced cooperativity. CH-CRP exhibits about 1 order of magnitude tighter binding of cAMP than S-CRP or CRP and the highest degree of negative cooperativity. Both fragments are dimeric with dimerization constants around 10(8) M-1. Ligand binding promotes dimerization and induces a small contraction of both S-CRP and CH-CRP. There is no apparent correlation between dimer stability and cooperativity of ligand binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Summary The regulation of catabolite repression of -galactosidase has been studied in Escherichia coli mutants deleted for the adenyl cyclase gene (cya ), and thus unable to synthesize cyclic AMP. It has been found that, provided a second mutation occurs either in the crp gene coding for the catabolite gene activator protein (CAP) or in the Lactose region, these mutants exhibit catabolite repression. If the catabolite repression seen in the mutant strains corresponds to the mechanism operating in wild-type cells, the results would suggest that the intracellular concentration of cyclic AMP cannot be the unique regulator of catabolite repression.Jacques Monod was still with us when most of the work described in this and the following paper was accomplished. His constant interest, his unfailing advice, his warm support, were invaluable. It will be difficult for us to ever enjoy a successful experiment without regretting that he cannot share this pleasure with us.  相似文献   

3.
4.
The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.  相似文献   

5.
6.
How cyclic AMP and its receptor protein act in Escherichia coli   总被引:24,自引:0,他引:24  
S Adhya  S Garges 《Cell》1982,29(2):287-289
  相似文献   

7.
The properties of the two monoclonal antibodies which were found to inhibit cyclic AMP receptor protein (CRP)-stimulated abortive initiation without affecting cAMP binding (Li, X.-M., and Krakow, J. S. (1986) J. Biol. Chem. 260, 4378-4383) have been characterized. Binding of monoclonal antibody (mAb) 66C3 to CRP is stimulated by cAMP while CRP binding by mAb 63B2 is not affected by cAMP. Binding of cAMP-CRP-mAb 63B2 to the lac P+ DNA is completely inhibited. Whereas cAMP-CRP forms a stable complex only at the CRP site 1 of the lac P+ promoter fragment, cAMP-CRP-mAb 66C3 binds to both site 1 and site 2. DNase I footprinting using a HpaII fragment carrying only the lac site 2 does not show any protection by cAMP-CRP-mAb 66C3. With the lac L8UV5 promoter, binding is not seen at either the L8 site 1 or the unaltered site 2. In the presence of 25% glycerol, cAMP-CRP-mAb 66C3 binds to both L8 site 1 and site 2. RNA polymerase is unable to bind to the cAMP-CRP-mAb 66C3-lac P+ complex. In the presence of RNA polymerase, cAMP-CRP forms a stable complex at the L8 site 1, the subsequent addition of mAb 66C3 results in the release of CRP. The CRP present in the lac P+ open promoter complex is partially resistant to subsequent incubation with mAb 66C3. The results provide further evidence regarding possible contacts between CRP and RNA polymerase involved in establishing the open promoter complex.  相似文献   

8.
9.
The monoclonal antibody (mAb) 64D1 was found to inhibit cAMP binding by the cAMP receptor protein (CRP) from Escherichia coli (Li, X.-M., and Krakow, J. S. (1985) J. Biol. Chem. 260, 4378-4383). CRP is relatively resistant to attack by the Staphylococcus aureus V8 protease, chymotrypsin, trypsin, and subtilisin whereas both mAb 64D1-CRP and cAMP-CRP are attacked by these proteases yielding N-terminal core fragments. The fragment patterns resulting from proteolysis of mAb 64D1-CRP and cAMP-CRP differ indicating that the CRP in each complex is in a different conformation. The data presented indicate that the preferred conformation of the antigenic site for mAb 64D1 is present in unliganded CRP. Binding of mAb 64D1 to CRP is inhibited at high cAMP concentration. Formation of a stable cAMP-CRP-lac P+-RNA polymerase open promoter complex resistant to dissociation by mAb 64D1 occurs at a much lower cAMP concentration. The observed increase in resistance to mAb 64D1 may reflect a possible conformational change in CRP effected by contact with RNA polymerase in the open promoter complex.  相似文献   

10.
H Aiba  A Hanamura  T Tobe 《Gene》1989,85(1):91-97
  相似文献   

11.
12.
An Escherichia coli cya mutant deficient in adenylyl cyclase and an E. coli crp mutant deficient in cyclic AMP receptor protein (CRP) accumulate substantial amounts of L-glutamate extracellularly when entering stationary phase of growth. The cya mutant grown in the presence of cyclic AMP accumulates little glutamate whereas the addition of cyclic AMP has no effect on glutamate accumulation in the crp mutant. It is proposed that an E. coli cell entering stationary phase requires a change in cell envelope structure which involes a cyclic AMP-CRP dependent process, and without this process the permeability of the cell membrane increases.  相似文献   

13.
14.
15.
By labeling adenosine 3′, 5′-cyclic monophosphate (cyclic AMP) with [32P] phosphate and chromatographing it on a thin-layer alumina plate, we have determined the extra- and intracellular amounts of cyclic AMP in an Escherichia coli CRP? mutant (deficient in a cyclic AMP receptor protein) and its isogenic CRP+ cell. The CRP? cell was found to excrete cyclic AMP at an abnormally high rate as compared to the CRP+ cell when growing on glucose or glycerol, which can be correlated with the abnormally high intracellular levels of cyclic AMP in the CRP? cell.  相似文献   

16.
Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase.  相似文献   

17.
Dong A  Malecki JM  Lee L  Carpenter JF  Lee JC 《Biochemistry》2002,41(21):6660-6667
Cyclic AMP receptor protein (CRP) regulates the expression of a large number of genes in E. coli. It is activated by cAMP binding, which leads to some yet undefined conformational changes. These changes do not involve significant redistribution of secondary structures. A potential mechanism of activation is a ligand-induced change in structural dynamics. Hence, the cAMP-mediated conformational and structural dynamics changes in the wild-type CRP were investigated using hydrogen-deuterium exchange and Fourier transform infrared spectroscopy. Upon cAMP binding, the two functional domains within the wild-type CRP undergo conformational and structural dynamics changes in two opposite directions. While the smaller DNA-binding domain becomes more flexible, the larger cAMP-binding domain shifts to a less dynamic conformation, evidenced by a faster and a slower amide H-D exchange, respectively. To a lesser extent, binding of cGMP, a nonfunctional analogue of cAMP, also stabilizes the cAMP-binding domain, but it fails to mimic the relaxation effect of cAMP on the DNA-binding domain. Despite changes in the conformation and structural dynamics, cAMP binding does not alter significantly the secondary structural composition of the wild-type CRP. The apparent difference between functional and nonfunctional analogues of cAMP is the ability of cAMP to effect an increase in the dynamic motions of the DNA binding domain.  相似文献   

18.
19.
20.
The protomeric form of the cyclic AMP receptor protein (CRP) of Escherichia coli is composed of two identical subunits of molecular weight 22,500 and contains two buried and two available cysteine residues. Titration of the two available cysteines with DTNB4 eliminates cyclic AMP-dependent DNA binding activity which is regenerated by incubating the modified protein with β-mercaptoethanol. In the absence of cAMP, the formation of the TNB anion from DTNB and the incorporation of [14C]TNB into CRP are approximately stoichiometric. In the presence of cAMP, there is an increase in the rate of formation of the TNB anion while the incorporation of [14C]TNB into CRP is markedly inhibited. These observations are reconciled by the observation that cAMP induces DTNB-mediated disulfide crosslinking of the two available sulfhydryls to produce a species migrating as a 45,000 molecular weight subunit on SDS-polyacrylamide gels. A mechanism is suggested by which an intersubunit, intraprotomer disulfide bond is produced by secondary disulfide interchange after the incorporation of the initial TNB group. Based on the observation of cAMP-mediated disulfide crosslinking, the available cysteines of the DNA binding region are proposed to reside in close proximity as part of an antiparallel β-sheet structure formed by the two carboxyl proximal polypeptides when CRP is in the DNA binding conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号