首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data were obtained which indicated the possible cause of the defective elution from erythrocytes of the mutant virus (NDV(pi)) isolated from L cells persistently infected with the Herts strain of Newcastle disease virus (NDV(o)). The chicken erythrocyte receptors for the mutant and wild-type viruses were equally sensitive to the action of Vibrio cholera filtrate neuraminidase; this suggests that the failure of NDV(pi) to elute from chicken erythrocytes is not due to a specific neuraminidase-resistant receptor for this virus on the erythrocyte membrane. There was no difference in the enzyme content of the intact virions of NDV(o) and NDV(pi) when tested with a soluble substrate, indicating that the inefficient elution of NDV(pi) was not due to a reduced enzyme content. The neuraminidase activity of intact NDV(pi) virions was significantly more stable at 55 C than the enzyme of NDV(o) virions, whereas the dissociated enzymes of the two viruses were inactivated at the same rate. On the basis of these findings, it seems likely there is a structural difference between the two viruses. The neuraminidase protein of the mutant NDV(pi) may be incorporated into the viral envelope in such a manner that it is prevented from reacting with the substrate in the erythrocyte membrane, although it can react with a soluble substrate. The hemagglutinin activity of both intact and disrupted NDV(pi) was significantly more resistant to thermal inactivation than that of the wild-type NDV(o). This finding suggests a genetic difference in the hemagglutinin protein of the two viruses.  相似文献   

2.
Exposure of vesicular stomatitis (VS) virions to neuraminidase resulted in loss of their ability to agglutinate goose erythrocytes and to attach to L cells concomitant with hydrolysis of sialic acid. These viral adsorptive functions were also destroyed by tryspsinization. Sialyl transferase resialylation in vitro of neuraminidase-treated VS virions restored their hamagglutinating and adsorptive functions almost to original levels. Erythrocyte and L cell receptors for attachment of VS virions were blocked by fully sialylated fetuin and by VS viral sialoglycopeptides. Smaller VS viral glycopeptides generated by extensive trypsinization were less effective inhibitors of hemagglutination than were larger glycopeptides; neuraminic acid and neuraminosyl lactose had no capacity to inhibit hamagglutination or adsorption of virus to L cells. These data suggest that cellular receptors for viral adsorption recognize sialoglycopeptides of a certain size. Neuraminidase desialylation did not significantly alter the isoelectric point of VS virions. Cells exposed to DEAE-dextran, trypsin, or neuraminidase showed significantly increased capacity to attach fully sialylated but not desialylated VS virions. Neuraminidase desialylation of L cells, Chinese hamster ovary cells, and Madin-Darby bovine kidney cells resulted in enhanced susceptibility to plaque formation by VS virus.  相似文献   

3.
Biological and molecular properties of a temperature-sensitive mutant (C1) of Newcastle disease virus and its revertants were analyzed. C1 exhibited three temperature-sensitive alterations (plaque formation, virion assembly, and cytopathogenicity) and several defects which were also present at the permissive temperature. C1 virions contained low amounts of hemagglutinin-neuraminidase glycopeptides and consequently were deficient in hemagglutinating and neuraminidase activities. These virions also contained defective fusion glycoproteins which rendered them poorly hemolytic and slow to penetrate cultured chicken embryo cells. The biological activities of the membrane glycoproteins were recovered sequentially in a series of plaque-forming revertants. The coreversion of hemolysis, membrane-penetrating activities, and cytopathogenicity in the first-step revertant (S1) suggested that fusion glycoproteins were major contributors to cellular destruction. This revertant also provided evidence of a role for fusion glycoproteins in virion assembly. From S1 we isolated a large-plaque-forming revertant (L1) that assembled wild-type amounts of biologically active hemagglutinin-neuraminidase glycoproteins into virions. Although it was normal for hemagglutination, L1 had less than 3% of the neuraminidase activity of the wild type, demonstrating that these two activities can be uncoupled genetically. The neuraminidase deficiency of L1 did not impair its virulence in ovo or its reproduction in cultured cells.  相似文献   

4.
Interactions Between Sendai Virus and Human Erythrocytes   总被引:25,自引:5,他引:20       下载免费PDF全文
Concentrated Sendai virus, when adsorbed to erythrocytes at 4 C, caused invaginations in the plasma membrane. Following elevation of the temperature to 37 C, the plasma membrane became fused with the viral envelope before dissolution of the virions and rupture of the cells. Cell lysis was accompanied by rapid and total loss of hemoglobin to the extracellular space. Following aqueous pyridine extraction, the hemoglobin-free ghosts remaining were found to be devoid of N-acetylneuraminic acid and to have solubility properties different from those of normal erythrocyte ghosts. By the action of viral neuraminidase, bound N-acetylneuraminic acid was also liberated from purified virus receptor substance whose electrophoretic mobility was thereby substantially reduced. Cu++ selectively inhibited hemolysis and neuraminidase without interfering with hemagglutination and attachment. Neuraminidase appeared to be essential for Sendai virus hemolysis; viral particle size may also be a critical factor in this process.  相似文献   

5.
Koi herpesvirus (KHV) is the causative agent of a lethal disease in koi and common carp. In the present study, we describe the cloning of the KHV genome as a stable and infectious bacterial artificial chromosome (BAC) clone that can be used to produce KHV recombinant strains. This goal was achieved by the insertion of a loxP-flanked BAC cassette into the thymidine kinase (TK) locus. This insertion led to a BAC plasmid that was stably maintained in bacteria and was able to regenerate virions when permissive cells were transfected with the plasmid. Reconstituted virions free of the BAC cassette but carrying a disrupted TK locus (the FL BAC-excised strain) were produced by the transfection of Cre recombinase-expressing cells with the BAC. Similarly, virions with a wild-type revertant TK sequence (the FL BAC revertant strain) were produced by the cotransfection of cells with the BAC and a DNA fragment encoding the wild-type TK sequence. Reconstituted recombinant viruses were compared to the wild-type parental virus in vitro and in vivo. The FL BAC revertant strain and the FL BAC-excised strain replicated comparably to the parental FL strain. The FL BAC revertant strain induced KHV infection in koi carp that was indistinguishable from that induced by the parental strain, while the FL BAC-excised strain exhibited a partially attenuated phenotype. Finally, the usefulness of the KHV BAC for recombination studies was demonstrated by the production of an ORF16-deleted strain by using prokaryotic recombination technology. The availability of the KHV BAC is an important advance that will allow the study of viral genes involved in KHV pathogenesis, as well as the production of attenuated recombinant candidate vaccines.  相似文献   

6.
Type 1 human immunodeficiency viruses encoding mutated nef reading frames are 10- to 30-fold less infectious than are isogenic viruses in which the nef gene is intact. This defect in infectivity causes nef-negative viruses to grow at an attenuated rate in vitro. To investigate the mechanism of Nef-mediated enhancement of viral growth rate and infectivity, a complementation analysis of nef mutant viruses was performed. To provide Nef in trans upon viral infection, a CEM derivative cell line (designated CLN) that expresses Nef under the control of the viral long terminal repeat was constructed. When nef-negative virus was grown in CLN cells, its growth rate was restored to wild-type levels. However, the output of nef-negative virus during the first 72 h after infection of CLN cells was not restored, suggesting that provision of Nef within the newly infected cell does not enhance the productivity of a nef-negative provirus. The genetically nef-negative virions produced by the CLN cells, however, were restored to wild-type levels of infectivity as measured in a syncytium formation assay in which CD4-expressing HeLa cells were targets. These trans-complemented, genetically nef-negative virions yielded wild-type levels of viral output following a single cycle of replication in primary CD4 T cells as well as in parental CEM cells. To define the determinants for producer cell modification of virions by Nef, the role of myristoylation was investigated. Virus that encodes a myristoylation-negative nef was as impaired in infectivity as was virus encoding a deleted nef gene. Because myristoylation is required for both membrane association of Nef and optimal viral infectivity, the possibility that Nef protein is included in the virion was investigated. Wild-type virions were purified by filtration and exclusion chromatography. A Western blot (immunoblot) of the eluate fractions revealed a correlation between peak Nef signal and peak levels of p24 antigen. Although virion-associated Nef was detected in part as the 27-kDa full-length protein, the majority of immunoreactive protein was detected as a 20-kDa isoform. nef-negative virus lacked both 27- and 20-kDa immunoreactive species. Production of wild-type virions in the presence of a specific inhibitor of the human immunodeficiency virus type 1 protease resulted in virions which contained only 27-kDa full-length Nef protein. These data indicate that Nef is a virion protein which is processed by the viral protease into a 20-kDa isoform within the virion particle.  相似文献   

7.
Desialylation of human red blood cells (RBC) by Vibrio cholerae neuraminidase (VCN) was found to produce cells with electrophoretic properties which were inconsistent with the view of simple loss of N-acetylneuraminic acid (NANA) as the sole effect of VCN treatment. Modification of human RBC with 50--350 U VCN/10(10) RBC for one hour at 37 degrees C releases 90-100% of the NANA and produces a progressive decrease towards zero in their electrophoretic mobilities when measured in 0.15 M NaCl (pH 7.2) at 25 degrees C. The appearance of positive groups on the desialylated cells was indicated by the VCN-treated cells displaying positive mobilities below approximately pH 5.5 and increased negative mobilities at approximately pH 9 as well as substantial increases in their mobility at neutral pH following treatment with formaldehyde. Adsorption of about 95% of the VCN activity at 0 degrees C to the RBC did not produce any significant change in their electrophoretic mobilities thus indicating that the observed changes in the electrophoretic properties of the RBC following VCN treatment could not be attributable to adsorption of VCN. These studies indicate that the cationic charge groups which appear at the electrophoretic surface of the RBC after VCN treatment are probably of endogenous origin. It is suggested that this alteration rather than simple NANA release may operate to shorten the in vivo survival time of desialylated red cells.  相似文献   

8.
Maturation of dimeric viral RNA of Moloney murine leukemia virus.   总被引:31,自引:20,他引:11       下载免费PDF全文
W Fu  A Rein 《Journal of virology》1993,67(9):5443-5449
We have analyzed the dimeric RNA present in Moloney murine leukemia virus (MoMuLV) particles. We found that the RNA in newly released virions is in a conformation different from that in mature virions, since it has a different electrophoretic mobility in nondenaturing agarose gels and dissociates into monomers at a lower temperature. On the basis of these results, we suggest that the RNA initially packaged into nascent virions is already dimeric but that the dimer undergoes a maturation process after the virus is released from the cell. In further experiments, we tested the possibility that this maturation event is linked to the maturation cleavage of the virion proteins, which is catalyzed by the viral protease (PR). We found that the dimeric RNA isolated from PR- mutant virions resembles that from immature virions: it has a lower electrophoretic mobility and a lower sedimentation rate, and it also dissociates at a lower temperature than does RNA from mature wild-type virions. When Kirsten sarcoma virus is rescued by a PR- mutant or by a somewhat leaky cysteine array mutant of MoMuLV, its RNA also exhibits a electrophoretic mobility lower than that in the wild-type pseudotype. These results suggest that the maturation of dimeric RNA in released virus particles requires the cleavage of the Gag precursor and the presence of an intact cysteine array in the released nucleocapsid protein.  相似文献   

9.
The envelope of human parainfluenza virus type 3 (HPF3) contains two viral glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). HN, which is responsible for receptor attachment and for promoting F-mediated fusion, also possesses neuraminidase (receptor-destroying) activity. We reported previously that 4-guanidino-neu5Ac2en (4-GU-DANA) and related sialic acid-based inhibitors of HPF3 neuraminidase activity also inhibit HN-mediated receptor binding and fusion processes not involving neuraminidase activity. We have now examined this mechanism, as well as neuraminidase's role in the viral life cycle, using a neuraminidase-deficient HPF3 variant (C28a) and stable cell lines expressing C28a or wild-type (wt) HN. C28a, which has a wt F sequence and two point mutations in the HN gene corresponding to two amino acid changes in the HN protein, is the first HPF3 variant with insignificant neuraminidase activity. Cells expressing C28a HN did not bind erythrocytes at 4 degrees C unless pretreated with neuraminidase, but no such pretreatment was required for hemadsorption activity (HAD) at 22 or 37 degrees C. HAD was blocked by 4-GU-DANA, attesting to the ability of this compound to inhibit HN's receptor-binding activity. C28a or wt plaque enlargement, a process that involves cell-cell fusion and does not depend on virion release, is diminished by the presence of 4-GU-DANA, confirming the inhibitory effect of 4-GU-DANA on the fusogenic function of C28a HN. In C28a-infected cell monolayers, virion release and thus multicycle replication are severely restricted. This defect was corrected by supplementation of exogenous neuraminidase and also by the addition of 4-GU-DANA; neuraminidase destroys the receptors whereby newly formed C28a virions would remain attached to the cell surface, whereas 4-GU-DANA prevents the attachment itself, obviating the need for receptor cleavage. In accord with the ability of 4-GU-DANA to prevent attachment, the neuraminidase inhibitory effect of 4-GU-DANA on wt HPF3 did not diminish virion release into the medium. Thus, it is by inhibition of viral entry and syncytium formation that sialic acid analogs like 4-GU-DANA may counteract wt HPF3 infection.  相似文献   

10.
Herpes simplex virus type 1 (HSV-1) envelope proteins are posttranslationally modified by the addition of sialic acids to the termini of the glycan side chains. Although gC, gD, and gH are sialylated, it is not known whether sialic acids on these envelope proteins are functionally important. Digestion of sucrose gradient purified virions for 4 h with neuraminidases that remove both alpha2,3 and alpha2,6 linked sialic acids reduced titers by 1,000-fold. Digestion with a alpha2,3-specific neuraminidase had no effect, suggesting that alpha2,6-linked sialic acids are required for infection. Lectins specific for either alpha2,3 or alpha2,6 linkages blocked attachment and infection to the same extent. In addition, the mobility of gH, gB, and gD in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels was altered by digestion with either alpha2,3 specific neuraminidase or nonspecific neuraminidases, indicating the presence of both linkages on these proteins. The infectivity of a gC-1-null virus, DeltagC2-3, was reduced to the same extent as wild-type virus after neuraminidase digestion, and attachment was not altered. Neuraminidase digestion of virions resulted in reduced VP16 translocation to the nucleus, suggesting that the block occurred between attachment and entry. These results show for the first time that sialic acids on HSV-1 virions play an important role in infection and suggest that targeting virion sialic acids may be a valid antiviral drug development strategy.  相似文献   

11.
We have studied protein synthesis in cultured cells infected with the six noncytopathic (nc) mutants of the Australia-Victoria strain (AV-WT) of Newcastle disease virus and their plaque-forming revertants. Virus-specific polypeptides accumulated at 30 to 63% of wild-type levels in nc mutant-infected cells and between 66 and 175% of wild-type levels in revertant-infected cells. An exception was the L polypeptide, which accumulated in nc mutant-infected cells at only 5 to 20% of the levels found in wild-type infection. The reduced accumulation of the L polypeptide did not appear to be due to increased degradation of that polypeptide. A new polypeptide (X) accumulated instead of polypeptide P in cells infected with mutants nc4 or nc16 and in virions released from them. Peptide mapping identified X as an altered form of P. A revertant of mutant nc4 (nc4S1), which forms larger hemadsorbing spots, but still does not form plaques, accumulated P instead of the X polypeptide. Thus, a lesion in P can affect virus spread without affecting cytopathogenicity. Virions of mutant nc7 and two naturally occurring avirulent strains of Newcastle disease virus (NJ LaSota and B1-Hitchner) contained polypeptides (F7 and FA, respectively) related to, but migrating more rapidly than, F0 in sodium dodecyl sulfate-polyacrylamide gels. As previously reported for avirulent strains, a brief treatment of nc7 virions with trypsin converted F7 to F and increased infectivity. Similarly, culturing nc7-infected cells in the presence of trypsin facilitated fusion from within and viral spread from cell to cell. A plaque-forming revertant of nc7 still accumulated F7 in virions, indicating that the lesions responsible for the F7 and noncytopathic phenotypes are genetically separable. The virulent parental strain, AV-WT, exhibited a mean embryo death time of 42 h. Both the larger-spot-forming revertant of nc4 (nc4S1) and the small-plaque-forming revertant of nc7 exhibited a decrease in mean embryo death time (increase in virulence) from 74 to 63 h. A second-step, plaque-forming revertant derived from nc4S1 (nc4S1R1) exhibited a further decrease in mean embryo death time from 63 to 44 h. The results suggest that the FA-F7 and X lesions affect the ability of virus to spread from cell to cell. In addition, these lesions appear to be genetically separable from those responsible for the noncytopathic phenotype. However, both types of lesions cause an extension of mean embryo death time and, thus, may be relevant to virulence in vivo.  相似文献   

12.
Pomeranz LE  Blaho JA 《Journal of virology》2000,74(21):10041-10054
VP22, the 301-amino-acid phosphoprotein product of the herpes simplex virus type 1 (HSV-1) U(L)49 gene, is incorporated into the tegument during virus assembly. We previously showed that highly modified forms of VP22 are restricted to infected cell nuclei (L. E. Pomeranz and J. A. Blaho, J. Virol. 73:6769-6781, 1999). VP22 packaged into infectious virions appears undermodified, and nuclear- and virion-associated forms are easily differentiated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (J. A. Blaho, C. Mitchell, and B. Roizman, J. Biol. Chem. 269:17401-17410, 1994). As VP22 packaging-associated undermodification is unique among HSV-1 tegument proteins, we sought to determine the role of VP22 during viral replication. We now show the following. (i) VP22 modification occurs in the absence of other viral factors in cell lines which stably express its gene. (ii) RF177, a recombinant HSV-1 strain generated for this study, synthesizes only the amino-terminal 212 amino acids of VP22 (Delta212). (iii) Delta212 localizes to the nucleus and incorporates into virions during RF177 infection of Vero cells. Thus, the carboxy-terminal region is not required for nuclear localization of VP22. (iv) RF177 synthesizes the tegument proteins VP13/14, VP16, and VHS (virus host shutoff) and incorporates them into infectious virions as efficiently as wild-type virus. However, (v) the loss of VP22 in RF177 virus particles is compensated for by a redistribution of minor virion components. (vi) Mature RF177 virions are identical to wild-type particles based on electron microscopic analyses. (vii) Single-step growth kinetics of RF177 in Vero cells are essentially identical to those of wild-type virus. (viii) RF177 plaque size is reduced by nearly 40% compared to wild-type virus. Based on these results, we conclude that VP22 is not required for tegument formation, virion assembly/maturation, or productive HSV-1 replication, while the presence of full-length VP22 in the tegument is needed for efficient virus spread in Vero cell monolayers.  相似文献   

13.
14.
Cellular electrophoretic mobility of AH-130, an island-forming strain of rat ascites hepatomas, was reduced by chondroitinase-ABC treatment of cells but not affected by neuraminase. Assay of released sugars demonstrated the presence of chondroitin sulfates at the cell surface of AH-130, indicating that acidic residues of chondroitin sulfates were one of the factors responsible for negative surface charge of these cells and sialic acid was not. Surface-located chondroitin sulfates in AH-130 cells were abundant in chondroitin sulfate A. The mobility of free-cell-type subline cells was also lowered by the chondroitinase as well as by the neuraminidase, indicating the presence of chondroitin sulfates on the cell surface. The mobility of rat erythrocytes, however, was not affected by the chondroitinase.  相似文献   

15.
Utilization of Neuraminic Acid Receptors by Mycoplasmas   总被引:13,自引:0,他引:13       下载免费PDF全文
Erythrocytes and H-HeLa cells were treated with neuraminidase and then compared with untreated cells for their ability to adsorb to mycoplasma colonies or be agglutinated by suspensions of the mycoplasmas. Of the 17 mycoplasma serotypes examined, only 4 were found to use neuraminic acid receptors; these were Mycoplasma pneumoniae, M. gallisepticum, M. synoviae, and mycoplasma WR1. Not all strains of a serotype behaved alike. Thus, removal of receptors on erythrocytes for one strain of M. gallisepticum required at least 100 times the concentration of neuraminidase needed to remove them for another strain. The mechanism of attachment of erythrocytes to mycoplasma colonies does not appear to be the same as that for attachment to mycoplasmas in suspension.  相似文献   

16.
Temperature-sensitive (ts) mutant tsD1 of vesicular stomatitis virus, New Jersey serotype, is the sole representative of complementation group D. Clones derived from this mutant exhibited three different phenotypes with respect to electrophoretic mobility of the G and N polypeptides of the virion in sodium dodecyl sulfate-polyacrylamide gel. Analysis of non-ts pseudorevertants showed that none of the three phenotypes was associated with the temperature sensitivity of mutant tsD1. Additional phenotypes, some also involving the NS polypeptide, appeared during sequential cloning, indicating that mutations were generated at high frequency during replication of tsD1. Furthermore, mutations altering the electrophoretic mobility of the G, N, NS, and M polypeptides were induced in heterologous viruses multiplying in the same cells as tsD1. These heterologous viruses included another complementing ts mutant of vesicular stomatitis virus New Jersey and ts mutants of vesicular stomatitis virus Indiana and Chandipura virus. Complete or incomplete virions of tsD1 appeared to be equally efficient inducers of mutations in heterologous viruses. Analysis of the progeny of a mixed infection of two complementing ts mutants of vesicular stomatitis virus New Jersey with electrophoretically distinguishable G, N, NS, and M proteins yielded no recombinants and excluded recombination as a factor in the generation of the electrophoretic mobility variants. In vitro translation of total cytoplasmic RNA from BHK cells indicated that post-translational processing was not responsible for the aberrant electrophoretic mobility of the N, NS, and M protein mutants. Aberrant glycosylation could account for three of four G protein mutants, however. Some clones of tsD1 had an N polypeptide which migrated faster in sodium dodecyl sulfate-polyacrylamide gel than did the wild type, suggesting that the polypeptide might be shorter by about 10 amino acids. Determination of the nucleotide sequence to about 200 residues from each terminus of the N gene of one of these clones, a revertant, and the wild-type parent revealed no changes compatible with synthesis of a shorter polypeptide by premature termination or late initiation of translation. The sequence data indicated, however, that the N-protein mutant and its revertant differed from the parental wild type in two of the 399 nucleotides determined. These sequencing results and the phenomenon of enhanced mutability associated with mutant tsD1 reveal that rapid and extensive evolution of the viral genome can occur during the course of normal cytolytic infection of cultured cells.  相似文献   

17.
18.
The effect of neuraminidase, trypsin and pronase on the electrophoretic mobility of human erythrocytes and their aggregation induced by La3+ was studied in vitro. The aggregation of intact red cells differs from that of cells treated with neuraminidase and proteolytic enzymes. The above differences are observed in the range of La3+ suspension concentration from 20 to 330 microM. A possible mechanism of aggregation is discussed.  相似文献   

19.
The Australia-Victoria (AV) isolate of Newcastle disease virus (NDV) induces fusion from within but not fusion from without. L1, a neuraminidase (NA)-deficient virus derived from AV, has the opposite fusion phenotype from the wild-type virus. It fails to induce the former mode of fusion, but has gained a limited ability to promote the latter. Monoclonal antibodies to antigenic site 23 on the hemagglutinin-neuraminidase (HN) glycoprotein have previously been shown to select variants of the AV isolate that have altered NA activity or receptor-binding affinity. By using an antibody to this site, variants of L1 have been selected. Three of the variants have gained an increased affinity for sialic acid-containing receptors, as evidenced by the resistance of their hemagglutinating activity to the presence of reduced amounts of sialic acid on the surface of chicken erythrocytes. All four variants still have very low levels of NA activity, comparable to that of the parent virus, L1. The alteration in receptor-binding affinity results in a decreased potential for elution from cellular receptors and correlates with an increased ability to promote both modes of fusion. A single amino acid substitution in the HN protein of each variant, responsible for its escape from neutralization, has been identified. These studies identify two HN residues, 193 and 203, at which monoclonal antibody-selected substitution influences the receptor recognition properties of NDV and may influence its ability to promote syncytium formation.  相似文献   

20.
The C terminus of the HIV-1 Gag protein contains a proline-rich domain termed p6(Gag). This domain has been shown to play a role in efficient virus release and incorporation of Vpr into virions. In a previous study (X. F. Yu, L. Dawson, C. J. Tian, C. Flexner, and M. Dettenhofer, J. Virol. 72:3412-3417, 1998), we observed that the removal of the p6 domain of Gag as well as drastic mutations in the PTAP motif resulted in reduced virion-associated Pol proteins from transfected COS cells. In the present study, amino acid substitutions at residues 5 and 7 of p6(Gag) resulted in a cell type-dependent replication of the mutant virus in CD4(+) T cells; the virus was replication competent in Jurkat cells but restricted in H9 cells and primary blood-derived monocytes. Established Jurkat and H9 cell lines expressing p6(Gag) mutant and parental virus were used to further understand this defect. Mutant virions produced from H9 cells, which displayed no defect in extracellular virion production, showed an approximately 16-fold reduction in Pol protein levels, whereas the levels of Pol proteins were only marginally reduced in mutant virions produced from Jurkat cells. The reduction in the virion-associated Pol proteins could not be accounted for by differences in the levels of intracellular p160(Gag-Pol) or in the interaction between p55(Gag) and p160(Gag-Pol) precursors. Electron microscopic analysis of the p6(Gag) mutant virions showed a predominately immature morphology in the absence of significant defects in Gag proteolytic cleavage. Taken together, these data suggest that the proline-rich motif of p6(Gag) is involved in the late stages of virus maturation, which include the packaging of cleaved Pol proteins in viral particles, a process which may involve cell-type-specific factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号