首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transposon-induced B. pseudomallei mutants deficient in membrane proteins production were obtained for evaluation of the functional role of these cell components. In comparison with the wild type strain B. pseudomallei 57576, mutant clones TTM6, TTM7 and TTM9 carrying Tn5 chromosome insertions were characterized by lost or decreased production of outer membrane proteins 27, 48, 52, 150, 200 kDa. Alterations in outer membrane protein spectra were accompanied by twofold increase in susceptibility of bacteria to fluoroquinolones (pefloxacin, ofloxacin) and cephalosporins (ceftazidime) and noticeable reduction of virulence for white mice and guinea pigs in contrast to the initial strain, the obtained mutants were also less resistant in in vitro phagocyte killing.  相似文献   

2.
Some strains of the human pathogen Streptococcus pyogenes express a surface protein called protein H, which is released from the streptococcal surface by a cysteine proteinase produced by the bacteria. Here, we find that soluble protein H binds to the surface of lymphocytes and granulocytes, and that the molecule is taken up by lymphocytes and transported to the perinuclear region. The translocation over the cell membrane is rapid, and the uptake and intracellular transportation is not dependent on actin polymerization. Protein H could be immunoprecipitated from cell extracts and nuclear preparations of lymphocytes, and analysis of molecular interactions between protein H and proteins of different cellular compartments demonstrated a binding to nucleophosmin/ B23, a protein known to shuttle between the cytoplasm and the nucleus, and to the nuclear proteins SET and hnRNP A2/B1. Nucleophosmin/B23 was co-immunoprecipitated with protein H from cell and nuclear extracts, and binding experiments, including kinetic analyses, suggest that protein H dissociating from nucleophosmin/B23 complexes in the perinuclear region or in the nucleus binds to proteins SET and hnRNP A2/B1. Finally, the uptake and intracellular transportation of protein H was found to result in a cytostatic effect on B and T lymphocytes.  相似文献   

3.
Previous observations that in vitro adherence of Biomphalaria glabrata embryonic (Bge) cells to sporocyst larval stages of Schistosoma mansoni was strongly inhibited by fucoidan, a sulfated polymer of L-fucose, suggested a role for lectinlike Bge cell receptors in sporocyst binding interactions. In the present investigation, monoclonal antibodies with specificities to 3 major glycan determinants found on schistosomes, LacdiNAc, fucosylated LacdiNAc (LDNF), and the Lewis X antigen, were used in adhesion blocking studies to further analyze the molecular interactions at the host-parasite interface. Results showed that only the anti-LDNF antibody significantly reduced snail Bge cell adhesion to the surface of sporocysts, suggesting that fucosyl determinants may be important in larval-host cell interactions. Affinity chromatographic separation of fucosyl-reactive Bge cell proteins from fucoidan-bound Sepharose 4B revealed the presence of polypeptides ranging from 6 to 200 kDa after elution with fucoidan-containing buffer. Pre-elution of the Bge protein-bound affinity column with dextran (Dex) and dextran sulfate (DexS) before introduction of the fucoidan buffer served as controls for protein binding based on nonspecific sugar or negative charge interactions. A subset of polypeptides (approximately 35-150 kDa) released by fucoidan elution was identified as Bge surface membrane proteins, representing putative fucosyl-binding proteins. Far-western blot analysis also demonstrated binding reactivity between Bge cell and sporocyst tegumental proteins. The finding that several of these parasite-binding Bge cell proteins were also fucoidan-reactive suggests the possible involvement of these molecules in mediating cellular interactions with sporocyst tegumental carbohydrates. It is concluded that Bge cells have surface protein(s) that may be playing a role in facilitating host cell adhesion to the surface of schistosome primary sporocysts through larval fucosylated glycoconjugates.  相似文献   

4.
Western blot after SDS-PAGE for protein separation showed two immunoreactive bands corresponding to monomers (38–40 kDa) and oligomers (210–230 kDa) of nucleophosmin in HeLa cell lysates. Decreasing the buffer ionic strength during the incubation of cells and nuclei destabilized these oligomers. We also showed the existence of two B23/nucleophosmin pools in nuclei of HeLa cells with different sensitivity to hypotonic buffer treatment: one extractable from the nucleus and the other non-extractable and tightly bound to the nucleus. A detailed structural analysis of the extractable B23 pool was carried out: two closely related nucleophosmin isoforms (B23.1 and B23.2) were identified as a result of analysis of C-terminal amino acid sequences using carboxypeptidase hydrolysis; the N-termini of both isoforms are blocked by an acetyl group. As a result of sequencing of the deacetylated proteins, it has been established that the N-terminal amino acid sequence of nucleophosmin in these preparations is truncated by nine amino acid residues and the acetylated residue is Ser. The truncated monomer of nucleophosmin (represented only by the extractable part of the protein) on addition of magnesium ions to low ionic strength buffer or increase in buffer ionic strength was shown to form oligomers with molecular weights (210–230 kDa) similar to those revealed in the total cell lysate. It should be noted that the set of oligomers in this case differs from the one in total cell lysate. Our strategy of characterization of B23 forms for HeLa cells can be applied for other tumor cells.  相似文献   

5.
6.
To survive within its host erythrocyte, Plasmodium falciparum must export hundreds of proteins across both its parasite plasma membrane and surrounding parasitophorous vacuole membrane, most of which are likely to use a protein complex known as PTEX (Plasmodium translocon of exported proteins). PTEX is a putative protein trafficking machinery responsible for the export of hundreds of proteins across the parasitophorous vacuole membrane and into the human host cell. Five proteins are known to comprise the PTEX complex, and in this study, three of the major stoichiometric components are investigated including HSP101 (a AAA(+) ATPase), a protein of no known function termed PTEX150, and the apparent membrane component EXP2. We show that these proteins are synthesized in the preceding schizont stage (PTEX150 and HSP101) or even earlier in the life cycle (EXP2), and before invasion these components reside within the dense granules of invasive merozoites. From these apical organelles, the protein complex is released into the host cell where it resides with little turnover in the parasitophorous vacuole membrane for most of the remainder of the following cell cycle. At this membrane, PTEX is arranged in a stable macromolecular complex of >1230 kDa that includes an ~600-kDa apparently homo-oligomeric complex of EXP2 that can be separated from the remainder of the PTEX complex using non-ionic detergents. Two different biochemical methods undertaken here suggest that PTEX components associate as EXP2-PTEX150-HSP101, with EXP2 associating with the vacuolar membrane. Collectively, these data support the hypothesis that EXP2 oligomerizes and potentially forms the putative membrane-spanning pore to which the remainder of the PTEX complex is attached.  相似文献   

7.
The molecular chaperone nucleophosmin has been identified as a novel Bax binding protein with this interaction proposed to be a key event in the activation and translocation of Bax in mitochondrial dysfunction and apoptotic cell death. Using a proximity assay, we have quantitatively defined the high affinity and saturable interaction between Bax and nucleophosmin indicative of a competitive and specific mechanism. Binding of full length Bax to nucleophosmin was only observed after conformational change was induced using non-ionic detergents (e.g., NP-40). The Bax-nucleophosmin interaction was inhibited by a Bax C-terminal antibody (IC50 = 1 nM) but minimally affected by antibodies directed against either the N-terminus or α-helices 4 and 5. Bcl-2 and p53 inhibited the interaction between full length activated Bax and nucleophosmin. The proximity assay based on the Bax-nucleophosmin interaction was robust and reproducible (Z′ = 0.50) facilitating its use for screening a small chemical library. A low molecular weight non-peptide compound, 2-(5-methyl-2-phenyl-1,3-thiazol-4-yl)ethanohydrazide, partially inhibited the Bax-nucleophosmin interaction (IC50 = 100 nM) and also attenuated UV-induced cell death of HEK293 cells. The present investigations demonstrate the importance of exposure of the C-terminus of Bax for its interaction with nucleophosmin. These protein–protein interaction assays provide a technical approach both for the study of Bax-interacting proteins and for the discovery of novel anti-apoptotic agents. L. Kerr and J. Sharkey have contributed equally to this work.  相似文献   

8.
Nucleostemin (NS) is expressed in the nucleoli of adult and embryonic stem cells and in many tumors and tumor-derived cell lines. In coimmunoprecipitation experiments, nucleostemin is recovered with the tumor suppressor p53, and more recently we have demonstrated that nucleostemin exerts its role in cell cycle progression via a p53-dependent pathway. Here, we report that in human osteosarcoma cells, nucleostemin interacts with nucleophosmin, a nucleolar protein believed to possess oncogenic potential. Nucleostemin (NS) and nucleophosmin (NPM) displayed an extremely high degree of colocalization in the granular component of the nucleolus during interphase, and both proteins associated with prenucleolar bodies in late mitosis before the reformation of nucleoli. Coimmunoprecipitation experiments revealed that NS and NPM co-reside in complexes, and yeast two-hybrid experiments confirmed that they are interactive proteins, revealing the NPM-interactive region to be the 46-amino acid N-terminal domain of NS. In bimolecular fluorescence complementation studies, bright nucleolar signals were observed, indicating that these two proteins directly interact in the nucleolus in vivo. These results support the notion that cell cycle regulatory proteins congress and interact in the nucleolus, adding to the emerging concept that this nuclear domain has functions beyond ribosome production.  相似文献   

9.
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, leading to their desensitization and endocytosis. GRKs have also been implicated in phosphorylating other classes of proteins and can localize in a variety of cellular compartments, including the nucleus. Here, we attempted to identify potential nuclear substrates for GRK5. Our studies reveal that GRK5 is able to interact with and phosphorylate nucleophosmin (NPM1) both in vitro and in intact cells. NPM1 is a nuclear protein that regulates a variety of cell functions including centrosomal duplication, cell cycle control, and apoptosis. GRK5 interaction with NPM1 is mediated by the N-terminal domain of each protein, and GRK5 primarily phosphorylates NPM1 at Ser-4, a site shared with polo-like kinase 1 (PLK1). NPM1 phosphorylation by GRK5 and PLK1 correlates with the sensitivity of cells to undergo apoptosis with cells having higher GRK5 levels being less sensitive and cells with lower GRK5 being more sensitive to PLK1 inhibitor-induced apoptosis. Taken together, our results demonstrate that GRK5 phosphorylates Ser-4 in nucleophosmin and regulates the sensitivity of cells to PLK1 inhibition.  相似文献   

10.
Tyrosine phosphorylation of cellular proteins induced by various hematopoietic growth factors such as interleukin 3 (IL3), granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL4) was studied in several multi-factor-dependent myeloid cell lines. Among the growth factors, IL3 specifically induced rapid tyrosine phosphorylation of a membrane glycoprotein of mol. wt 150 kd (gpp150) in the IL3-dependent cell lines, IC2 and DA-1. The IL3-induced tyrosine phosphorylation of gpp150 was detected within 30 s, reached a maximum at 3 min and decreased thereafter. The concentration of IL3 required for half-maximum stimulation of gpp150 tyrosine phosphorylation with 2.5 x 10(6)/ml cells was approximately 200 pM, which is the same as the dissociation constant for 125I-labeled IL3 binding. gpp150 was constitutively phosphorylated on tyrosine residue(s) in growth factor independent variants, IC2Tr and DA-1Tr, derived from IC2 and DA-1 respectively. Neither variant synthesized IL3. The present findings suggest that tyrosine phosphorylation of gpp150 is a critical event involved in both IL3-dependent and -independent growth.  相似文献   

11.
通过选择性抽提经环六亚甲基双乙酰胺(hexamethylene bisacetamide,HMBA)诱导处理前后的人肝癌SMMC-7721细胞核基质,并运用亚细胞蛋白质组学等分析技术,研究nucleophosmin (NPM)在核基质上的表达和定位变化,及其与相关基因产物的共定位关系,观察研究了nucleophosmin 在诱导分化前后人肝癌SMMC-7721细胞核基质中的存在、分布及其与相关基因产物的共定位关系.双向凝胶电泳和质谱鉴定结果显示,nucleophosmin 存在于 SMMC-7721 细胞核基质蛋白组分中,在 HMBA 处理后细胞核基质中表达下调.蛋白质印迹杂交实验结果确证了 nucleophosmin 在核基质中的存在及其在诱导处理后细胞核基质中表达下调的变化.免疫荧光显微镜观察显示,nucleophosmin 定位在 SMMC-7721细胞核基质上,经 HMBA处理后出现分布位置与表达水平的变化.激光扫描共聚焦显微镜观察结果显示,SMMC-7721细胞中,nucleophosmin与 c-fos、c-myc、rb、p53 等基因产物具有共定位关系,但在诱导处理后细胞内的共定位区域发生了改变.研究结果证实,nucleophosmin 是一种核基质蛋白,定位于核基质纤维上,nucleophosmin 在人肝癌 SMMC-7721 细胞诱导分化过程中的表达分布,及其与相关癌基因、抑癌基因产物的关系对 SMMC-7721 细胞分化具有重要影响.  相似文献   

12.
Rubella virus (RUBV), a positive-strand RNA virus, replicates its RNA within membrane-associated replication complexes (RCs) in the cytoplasm of infected cells. RNA synthesis is mediated by the nonstructural proteins (NSPs) P200 and its cleavage products, P150 and P90 (N and C terminal within P200, respectively), which are processed by a protease residing at the C terminus of P150. In this study of NSP maturation, we found that early NSP localization into foci appeared to target the membranes of the endoplasmic reticulum. During maturation, P150 and P90 likely interact within the context of P200 and remain in a complex after cleavage. We found that P150-P90 interactions were blocked by mutational disruption of an alpha helix at the N terminus (amino acids [aa] 36 to 49) of P200 and that these mutations also had an effect on NSP targeting, processing, and membrane association. While the P150-P90 interaction also required residues 1700 to 1900 within P90, focus formation required the entire RNA-dependent RNA polymerase (aa 1700 to 2116). Surprisingly, the RUBV capsid protein (CP) rescued RNA synthesis by several alanine-scanning mutations in the N-terminal alpha helix, and packaged replicon assays showed that rescue could be mediated by CP in the virus particle. We hypothesize that CP rescues these mutations as well as internal deletions of the Q domain within P150 and mutations in the 5' and 3' cis-acting elements in the genomic RNA by chaperoning the maturation of P200. CP's ability to properly target the otherwise aggregated plasmid-expressed P200 provides support for this hypothesis.  相似文献   

13.
14.
A cDNA encoding human nucleophosmin (protein B23) was obtained by screening a human placental cDNA library in lambda gtll first with monoclonal antibody to rat nucleophosmin and then with confirmed partial cDNA of human nucleophosmin as probes. The cDNA had 1311 bp with a coding sequence encoding a protein of 294 amino acids. The identity of the cDNA was confirmed by the presence of encoded amino acid sequences identical with those determined by sequencing pure rat nucleophosmin (a total of 138 amino acids). The most striking feature of the sequence is an acidic cluster located in the middle of the molecule. The cluster consists of 26 Asp/Glu and 1 Phe and Ala. Comparison of human nucleophosmin and Xenopus nucleolar protein NO38 shows 64.3% sequence identity. The N-terminal 130 amino acids of human nucleophosmin also bear 50% identity with that of Xenopus nucleoplasmin. Northern blot analysis of rat liver total RNA with a partial nucleophosmin cDNA as probe demonstrated a homogeneous mRNA band of about 1.6 kb. Similar observations were made in hypertrophic rat liver and Novikoff hepatoma. However, the quantity of nucleophosmin mRNA is 50- and 5-fold higher in Novikoff hepatoma and hypertrophic rat liver, respectively, when compared with normal rat liver. Dot blot analysis also showed a nucleophosmin mRNA ratio of 64:5:1 in the three types of rat liver. When the protein levels were compared with Western blot immunoassays, Novikoff hepatoma showed 20 times more nucleophosmin, while only about 5 times more nucleophosmin was observed in hypertrophic rat liver than in unstimulated normal liver.  相似文献   

15.
Intact human erythrocytes incubated with L-[methyl-3H]methionine incorporated radioactivity into base-labile linkages with membrane and cytosolic proteins which are characteristic of protein methyl esters. Kinetic analysis of the methylation reactions in intact cells shows that individual erythrocytes contain approximately 38,000 and 115,000 protein methyl esters with biological half-lives of 150 min or less in the membrane and cytosolic protein fractions, respectively. Fractionation of the methylated cytosolic species by gel filtration chromatography at pH 6.5 followed by sodium dodecyl sulfate-gel electrophoresis at pH 2.4 reveals that many different cytosolic proteins serve as methyl acceptors and that the degree of modification varies widely for individual proteins. For example, hemoglobin is modified to the extent of 3 methyl groups/10(6) polypeptide chains, while carbonic anhydrase contains 1 methyl group/approximately 16,500 polypeptide chains at steady state. Aspartic acid beta-[3H]methyl ester (Asp beta-[3H]Me) can be isolated from carboxypeptidase Y digests of cytosol proteins. By synthesizing and separating diastereomeric L-Leu-L-Asp beta Me and L-Leu-D-Asp beta Me dipeptides, we show that all of the Asp beta-[3H]Me recovered from cytosolic proteins is in the D-stereoconfiguration. Based on these data and on previous observations that erythrocytes contain a single methyltransferase which also methylates red cell membrane proteins at D-aspartyl residues both in vivo (McFadden, P. N., and Clarke, S. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 2460-2464) and in vitro (O'Connor, C. M., and Clarke, S. (1983) J. Biol. Chem. 258, 8485-8492), we propose that protein carboxyl methylation is part of a generalized mechanism for metabolizing damaged proteins. The infrequent and spontaneous occurrence of D-aspartyl residues in proteins adequately explains the broad substrate specificity and limited stoichiometries of protein carboxyl methylation reactions.  相似文献   

16.
Cornely R  Rentero C  Enrich C  Grewal T  Gaus K 《IUBMB life》2011,63(11):1009-1017
Annexin A6 (AnxA6) belongs to the conserved annexin protein family--a group of Ca(2+) -dependent membrane binding proteins. It is the largest of all annexin proteins and upon activation, binds to negatively charged phospholipids in the plasma membrane and endosomes. In addition, AnxA6 associates with cholesterol-rich membrane microdomains termed lipid rafts. Membrane cholesterol triggers Ca(2+) -independent translocation of AnxA6 to membranes and AnxA6 levels determine the number of caveolae, a form of specialized rafts at the cell surface. AnxA6 also has an F-actin binding domain and interacts with cytoskeleton components. Taken together, this suggests that AnxA6 has a scaffold function to link membrane microdomains with the organization of the cytoskeleton. Such a link facilitates AnxA6 to participate in plasma membrane repair and it would also impact on receptor signalling at the cell surface, growth factor, and lipoprotein receptor trafficking, Ca(2+) -channel activity and T cell activation. Hence, the regulation of cell surface receptors by AnxA6 may be facilitated by its unique structure that allows recruitment of interaction partners and simultaneously bridging specialized membrane domains with cortical actin surrounding activated receptors.  相似文献   

17.
18.
Optimizing the amounts of proteins required to separate and characterize both abundant and less abundant proteins by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is critical for conducting proteomic research. In this study, we tested five different levels of soybean seed proteins (75, 100, 125, 150, and 200 μg) by 2D-PAGE. Following 2D-PAGE and spot excision, proteins were identified by mass spectrometry analysis. The number of visible protein spots was increased with an increase in the amount of protein loaded. The intensity of highly abundant proteins [β-conglycinin β-homotrimer and glycinin G4 (A5A4B3) precursors] increased linearly between 75 and 125 μg, whereas the proglycinin G3 (A1ab1b) homotrimer showed linearity between 75 and 150 μg. The spot intensity of less abundant proteins, glycinin G2 (A2b1a) precursor and proglycinin G3 (A1ab1b) homotrimer, increased linearly with an increase in the amount of protein through 200 μg, whereas spot intensity of β-conglycinin β-homotrimer and the allergen Gly m bd 28K increased linearly until 150 μg and did not increase further at 200 μg. These results suggest that 150 μg protein was a suitable amount for the separation of abundant proteins, and 200 μg protein was suitable for the separation of less abundant proteins prepared from soybean seeds. Mention of trade name, proprietary product or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture or imply its approval to the exclusion of other products or vendors that also may be suitable.  相似文献   

19.
The failure of most non-ionic detergents to release patches of DRM (detergent-resistant membrane) at 37 degrees C undermines the claim that DRMs consist of lipid nanodomains that exist in an L(o) (liquid ordered) phase on the living cell surface. In the present study, we have shown that inclusion of cations (Mg(2+), K(+)) to mimic the intracellular environment stabilizes membranes during solubilization sufficiently to allow the isolation of DRMs at 37 degrees C, using either Triton X-100 or Brij 96. These DRMs are sensitive to chelation of cholesterol, maintain outside-out orientation of membrane glycoproteins, have prolonged (18 h) stability at 37 degrees C, and are vesicles or sheets up to 150-200 nm diameter. DRMs containing GPI (glycosylphosphatidylinositol)-anchored proteins PrP (prion protein) and Thy-1 can be separated by immunoaffinity isolation, in keeping with their separate organization and trafficking on the neuronal surface. Thy-1, but not PrP, DRMs are associated with actin. EM (electron microscopy) immunohistochemistry shows most PrP, and some Thy-1, to be clustered on DRMs, again maintaining their organization on the neuronal surface. For DRMs labelled for either protein, the bulk of the surface of the DRM is not labelled, indicating that the GPI-anchored protein is a minor component of its lipid domain. These 37 degrees C DRMs thus have properties expected of raft membrane, yet pose more questions about how proteins are organized within these nanodomains.  相似文献   

20.
In this work, we analyzed at high resolution the sugar-binding mode of the recombinant N-terminal ricin-B domain of the hemolytic protein LSLa (LSL(150)) from the mushroom Laetiporus sulphureus and also provide functional in vitro evidence suggesting that, together with its putative receptor-binding role, this module may also increase the solubility of its membrane pore-forming partner. We first demonstrate that recombinant LSL(150) behaves as an autonomous folding unit and an active lectin. We have determined its crystal structure at 1.47?? resolution and also that of the [LSL(150):(lactose)β, γ)] binary complex at 1.67?? resolution. This complex reveals two lactose molecules bound to the β and γ sites of LSL(150), respectively. Isothermal titration calorimetry indicates that LSL(150) binds two lactoses in solution with highly different affinities. Also, we test the working hypothesis that LSL(150) exhibits in vivo properties typical of solubility tags. With this aim, we have fused an engineered version of LSL(150) (LSL(t)) to the N-terminal end of various recombinant proteins. All the designed LSL(150)-tagged fusion proteins were successfully produced at high yield, and furthermore, the target proteins were purified by a straightforward affinity procedure on agarose-based matrices due to the excellent properties of LSL(150) as an affinity tag. An optimized protocol for target protein purification was devised, which involved removal of the LSL(150) tag through in-column cleavage of the fusion proteins with His(6)-tagged TEV endoprotease. These results permitted to set up a novel, lectin-based system for production and purification of recombinant proteins in E. coli cells with attractive biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号