首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
IL-12 and TNF-alpha are central proinflammatory cytokines produced by macrophages and dendritic cells. Disregulation of TNF-alpha is associated with sepsis and autoimmune diseases such as rheumatoid arthritis. However, new evidence suggests an anti-inflammatory role for TNF-alpha. TNF-alpha-treated murine macrophages produced less IL-12p70 and IL-23, after stimulation with IFN-gamma and LPS. Frequency of IL-12p40-producing macrophages correspondingly decreased as measured by intracellular cytokine staining. IL-12p40 production was also inhibited in dendritic cells. TNFR1 was established as the main receptor involved in IL-12p40 regulation, because IL-12p40 levels were not affected by TNF-alpha in TNFR1(-/-)-derived macrophages. Macrophages activated during Listeria monocytogenes infection were more susceptible to inhibition by TNF-alpha than cells from naive animals, which suggests a regulatory role for TNF-alpha in later stages of infection. This nonapoptotic anti-inflammatory regulation of IL-12 and IL-23 is an important addition to the multitude of TNF-alpha-induced responses determined by cell-specific receptor signaling.  相似文献   

2.
3.
TNF-alpha and IFN-gamma cooperate in the activation of macrophages. TNF-alpha-dependent activation of NF-kappaB is stronger in the presence of IFN-gamma. STAT-1alpha associates with TNFR1 in TNF-alpha-treated cells, and this association attenuates TNF-alpha-mediated NF-kappaB activation. We hypothesized that nuclear localization of STAT-1alpha due to IFN-gamma signaling would preclude it from being recruited to the TNFR1 and therefore enhance TNF-alpha-induced NF-kappaB activation. In the RAW264.7 macrophage cell line, TNF-alpha treatment indeed recruits STAT-1alpha to the TNFR1, and this association is abrogated when cells are exposed to IFN-gamma. TNF-alpha treatment induces a more robust activation of NF-kappaB in STAT-1alpha-deficient cells, and restoration of STAT-1alpha inhibits TNF-alpha-dependent NF-kappaB activation. Our results suggest that a receptor-proximal level of cross-talk exists between these two cytokine pathways: IFN-gamma limits STAT-1alpha availability to the TNFR1 by depleting STAT-1alpha from the cytoplasm, thus allowing for optimal NF-kappaB activation upon TNF-alpha ligation.  相似文献   

4.
Blood monocytes or tissue macrophages play a pivotal role in the pathogenesis of murine cytomegalovirus (MCMV) infection, providing functions beneficial to both the virus and the host. In vitro and in vivo studies have indicated that differentiated macrophages support MCMV replication, are target cells for MCMV infection within tissues, and harbor latent MCMV DNA. However, this cell type presumably initiates early, antiviral immune responses as well. In addressing this paradoxical role of macrophages, we provide evidence that the proficiency of MCMV replication in macrophages positively correlates with virulence in vivo. An MCMV mutant from which the open reading frames M139, M140, and M141 had been deleted (RV10) was defective in its ability to replicate in macrophages in vitro and was highly attenuated for growth in vivo. However, depletion of splenic macrophages significantly enhanced, rather than deterred, replication of both wild-type (WT) virus and RV10 in the spleen. The ability of RV10 to replicate in intact or macrophage-depleted spleens was independent of cytokine production, as this mutant virus was a poor inducer of cytokines compared to WT virus in both intact organs and macrophage-depleted organs. Macrophages were, however, a major contributor to the production of tumor necrosis factor alpha and gamma interferon in response to WT virus infection. Thus, the data indicate that tissue macrophages serve a net protective role and may function as "filters" in protecting other highly permissive cell types from MCMV infection. The magnitude of virus replication in tissue macrophages may dictate the amount of virus accessible to the other cells. Concomitantly, infection of this cell type initiates the production of antiviral immune responses to guarantee efficient clearance of acute MCMV infection.  相似文献   

5.
Murine cytomegalovirus (MCMV) gene products dispensable for growth in cell culture are likely to have important functions within the infected host, influencing tissue tropism, dissemination, or immunological responses against the virus. To identify such genes, our strategy was to delete large regions of the MCMV genome likely to contain genes nonessential for virus replication in NIH 3T3 cells. Mutant virus RV7 contained a deletion of 7.7 kb spanning portions of MCMV HindIII-J and -I. This virus grew comparably to wild-type (WT) virus in NIH 3T3 fibroblasts, primary embryo fibroblasts, and bone marrow macrophages. However, RV7 failed to replicate in target organs of immunocompetent BALB/c mice and severe combined immunodeficient mice, which are exquisitely sensitive to MCMV infection. This defect in vivo growth may be related to the observation that RV7 grew poorly in the peritoneal macrophage cell line IC-21, which is highly permissive for growth of WT MCMV. Two other mutant viruses with an insertion or smaller deletion in the region common to the RV7 deletion grew comparably to WT virus in the macrophage cell line and replicated in salivary gland tissue. The poor growth of RV7 in IC-21 cells was due to a block in immediate-early gene expression, as levels of RNA from immediate-early gene IE1 were reduced eightfold compared with levels for WT virus in macrophages infected with RV7. Consequently, levels of RNA from early and late genes were also reduced. The lower expression of IE1 in RV7-infected IC-21 macrophages was not due to defective entry of virus into the cells, as equal amounts of viral DNA were present in cells 3 h after infection with RV7 or WT MCMV. These studies demonstrate that deletion of sequences in HindIII-J and -I confer altered cell and tissue tropism.  相似文献   

6.
Jain N  Sudhakar Ch  Swarup G 《The FEBS journal》2007,274(17):4396-4407
Tumour necrosis factor-alpha (TNF-alpha) is a cytokine that is involved in many functions, including the inflammatory response, immunity and apoptosis. Some of the responses of TNF-alpha are mediated by caspase-1, which is involved in the production of the pro-inflammatory cytokines interleukin-1beta, interleukin-18 and interleukin-33. The molecular mechanisms involved in TNF-alpha-induced caspase-1 gene expression remain poorly defined, despite the fact that signaling by TNF-alpha has been well studied. The present study was undertaken to investigate the mechanisms involved in the induction of caspase-1 gene expression by TNF-alpha. Treatment of A549 cells with TNF-alpha resulted in an increase in caspase-1 mRNA and protein expression, which was preceded by an increase in interferon regulatory factor-1 and p73 protein levels. Caspase-1 promoter reporter was activated by the treatment of cells with TNF-alpha. Mutation of the interferon regulatory factor-1 binding site resulted in the almost complete loss of basal as well as of TNF-alpha-induced caspase-1 promoter activity. Mutation of the p53/p73 responsive site resulted in reduced TNF-alpha-induced promoter activity. Blocking of p73 function by a dominant negative mutant or by a p73-directed small hairpin RNA reduced basal as well as TNF-alpha-induced caspase-1 promoter activity. TNF-alpha-induced caspase-1 mRNA and protein levels were reduced when p73 mRNA was down-regulated by small hairpin RNA. Caspase-5 gene expression was induced by TNF-alpha, which was inhibited by the small hairpin RNA-mediated down-regulation of p73. Our results show that TNF-alpha induces p73 gene expression, which, together with interferon regulatory factor-1, plays an important role in mediating caspase-1 promoter activation by TNF-alpha.  相似文献   

7.
8.
9.
Tumor necrosis factor-alpha (TNF-alpha) is a multifunctional cytokine that induces a broad spectrum of responses including angiogenesis. Angiogenesis promoted by TNF-alpha is mediated, at least in part, by ephrin A1, a member of the ligand family for Eph receptor tyrosine kinases. Although TNF-alpha induces ephrin A1 expression in endothelial cells, the signaling pathways mediating ephrin A1 induction remain unknown. In this study, we investigated the signaling mechanisms of TNF-alpha-dependent induction of ephrin A1 in endothelial cells. Both TNFR1 and TNFR2 appear to be involved in regulating ephrin A1 expression in endothelial cells, because neutralizing antibodies to either TNFR1 or TNFR2 inhibited TNF-alpha-induced ephrin A1 expression. Inhibition of nuclear factor-kappaB (NF-kappaB) activation by a trans-dominant inhibitory isoform of mutant IkappaBalpha did not affect ephrin A1 induction, suggesting that NF-kappaB proteins are not major regulators of ephrin A1 expression. In contrast, ephrin A1 induction was blocked by inhibition of p38 mitogen-activated protein kinase (MAPK) or SAPK/JNK, but not p42/44 MAPK, using either selective chemical inhibitors or dominant-negative forms of p38 MAPK or TNF receptor-associated factor 2. These findings indicate that TNF-alpha-induced ephrin A1 expression is mediated through JNK and p38 MAPK signaling pathways. Taken together, the results of our study demonstrated that induction of ephrin A1 in endothelial cells by TNF-alpha is mediated through both p38 MAPK and SAPK/JNK, but not p42/44 MAPK or NF-kappaB, pathways.  相似文献   

10.
Herpesviruses utilize many strategies for weakening the host immune response. For CMV, this includes avoidance of NK clearance and inhibition of MHC class I and class II presentation pathways. In this study, we report that mouse CMV (MCMV) specifically causes a premature and transient activation of host IL-10 very early in the course of infection, resulting in a dramatic and selective reduction in MHC class II surface expression. The expression of IL-10 is normally late in the immune response to a pathogen, serving to dampen the response by suppression of the production of inflammatory cytokines. In infection of macrophages, we show that MCMV induces the production of IL-10, leading to an early and selective reduction in the expression of MHC class II on the surface of the cells. Inhibition of MHC class II expression was not observed in the presence of neutralizing Abs to IL-10 or in macrophages from IL-10-deficient mice. Moreover, MCMV-infected IL-10-deficient mice developed an early and significantly more robust macrophage MHC class II induction than normal mice. Altogether, our results demonstrate that viral induction of an IL-10 autocrine pathway plays an essential early role in selectively reducing MHC class II expression on the surface of APC prior to stimulation by IFN-gamma.  相似文献   

11.
CD40 is a type I membrane-bound molecule belonging to the TNFR superfamily that is expressed on various immune cells including macrophages and microglia. The aberrant expression of CD40 is involved in the initiation and maintenance of various human diseases including multiple sclerosis, arthritis, atherosclerosis, and Alzheimer's disease. Inhibition of CD40 signaling has been shown to provide a significant beneficial effect in a number of animal models of human diseases including the aforementioned examples. We have previously shown that IFN-gamma induces CD40 expression in macrophages and microglia. IFN-gamma leads to STAT-1alpha activation directly and up-regulation of NF-kappaB activity due to the secretion and subsequent autocrine signaling of TNF-alpha. However, TNF-alpha alone is not capable of inducing CD40 expression in these cells. Suppressor of cytokine signaling 1 protein (SOCS-1) is a cytokine-inducible Src homology 2-containing protein that regulates cytokine receptor signaling by inhibiting STAT-1alpha activation via a specific interaction with activated Janus kinase 2. Given the important role of CD40 in inflammatory events in the CNS as well as other organ systems, it is imperative to understand the molecular mechanisms contributing to both CD40 induction and repression. We show that ectopic expression of SOCS-1 abrogates IFN-gamma-induced CD40 protein expression, mRNA levels, and promoter activity. Additionally, IFN-gamma-induced TNF-alpha secretion, as well as STAT-1alpha and NF-kappaB activation, are inhibited in the presence of SOCS-1. We conclude that SOCS-1 inhibits cytokine-induced CD40 expression by blocking IFN-gamma-mediated STAT-1alpha activation, which also then results in suppression of IFN-gamma-induced TNF-alpha secretion and subsequent NF-kappaB activation.  相似文献   

12.
Melioidosis is caused by the facultative intracellular bacterium, Burkholderia pseudomallei. Using C57BL/6 mice, we investigated the role of macrophages, TNF-alpha, TNF receptor-1 (TNFR1) and TNF receptor-2 (TNFR2) in host defense against B. pseudomallei using an experimental model of melioidosis. This study has demonstrated that in vivo depletion of macrophages renders C57BL/6 mice highly susceptible to intranasal infection with B. pseudomallei, with significant mortality occurring within 5 days of infection. Using knockout mice, we have also shown that TNF-alpha and both TNFR1 and TNFR2 are required for optimal control of B. pseudomallei infection. Compared with control mice, increased bacterial loads were demonstrated in spleen and liver of knockout mice at day 2 postinfection, correlating with increased inflammatory infiltrates comprised predominantly of neutrophils and widespread necrosis. Following infection with B. pseudomallei, mortality rates of 85.7%, 70% and 91.7% were observed for mice deficient in TNF-alpha, TNFR1 and TNFR2, respectively. Comparison of survival, bacterial loads and histology indicate that macrophages, TNF-alpha, TNFR1 or TNFR2 play a role in controlling rapid dissemination of B. pseudomallei.  相似文献   

13.
14.
Ye M  Morello CS  Spector DH 《Journal of virology》2004,78(20):11233-11245
We previously demonstrated that after vaccination of BALB/c mice with DNA encoding murine cytomegalovirus (MCMV) IE1 or M84, a similar level of protection against MCMV infection was achieved. However, the percentage of antigen-specific CD8(+) T cells elicited by IE1 was higher than that by M84 as measured by intracellular cytokine staining when splenocytes were stimulated with an epitope peptide (M. Ye at al., J. Virol. 76:2100-2112, 2002). We show here that after DNA vaccination with M84, a higher percentage of M84-specific CD8(+) T cells was detected when splenocytes were stimulated with J774 cells expressing full-length M84. When the defined M84 epitope 297-305 was deleted, the mutant DNA vaccine was still protective against MCMV replication and induced strong M84-specific CD8(+)-T-cell responses. The M84 gene was subsequently subcloned into three fragments encoding overlapping protein fragments. When mice were immunized with each of the M84 subfragment DNAs, at least two additional protective CD8(+)-T-cell epitopes were detected. In contrast to strong responses after DNA vaccination, M84-specific CD8(+)-T-cell responses were poorly induced during MCMV infection. The weak M84-specific response after MCMV infection was not due to poor antigen presentation in antigen-presenting cells, since both J774 macrophages and primary peritoneal macrophages infected with MCMV in vitro were able to efficiently and constitutively present M84-specific epitopes starting at the early phase of infection. These results indicate that antigen presentation by macrophages is not sufficient for M84-specific CD8(+)-T-cell responses during MCMV infection.  相似文献   

15.
The roles of Toll-like receptor (TLR) 2 and TLR4 in the host inflammatory response to infection caused by Chlamydia trachomatis have not been elucidated. We examined production of TNF-alpha and IL-6 in wild-type TLR2 knockout (KO), and TLR4 KO murine peritoneal macrophages infected with the mouse pneumonitis strain of C. trachomatis. Furthermore, we compared the outcomes of genital tract infection in control, TLR2 KO, and TLR4 KO mice. Macrophages lacking TLR2 produced significantly less TNF-alpha and IL6 in response to active infection. In contrast, macrophages from TLR4 KO mice consistently produced higher TNF-alpha and IL-6 responses than those from normal mice on in vitro infection. Infected TLR2-deficient fibroblasts had less mRNA for IL-1, IL-6, and macrophage-inflammatory protein-2, but TLR4-deficient cells had increased mRNA levels for these cytokines compared with controls, suggesting that ligation of TLR4 by whole chlamydiae may down-modulate signaling by other TLRs. In TLR2 KO mice, although the course of genital tract infection was not different from that of controls, significantly lower levels of TNF-alpha and macrophage-inflammatory protein-2 were detected in genital tract secretions during the first week of infection, and there was a significant reduction in oviduct and mesosalpinx pathology at late time points. TLR4 KO mice responded to in vivo infection similarly to wild-type controls and developed similar pathology. TLR2 is an important mediator in the innate immune response to C. trachomatis infection and appears to play a role in both early production of inflammatory mediators and development of chronic inflammatory pathology.  相似文献   

16.
The obligate intracellular human pathogenic bacterium Chlamydia trachomatis has evolved multiple mechanisms to circumvent the host immune system. Infected cells exhibit a profound resistance to the induction of apoptosis and down-regulate the expression of major histocompatibility complex class I and class II molecules to evade the cytotoxic effect of effector immune cells. Here we demonstrate the down-regulation of tumor necrosis factor receptor 1 (TNFR1) on the surface of infected cells. Interestingly, other members of the TNFR family such as TNFR2 and CD95 (Fas/Apo-1) were not modulated during infection, suggesting a selective mechanism underlying surface reduction of TNFR1. The observed effect was not due to reduced expression since the overall amount of TNFR1 protein was increased in infected cells. TNFR1 accumulated at the chlamydial inclusion and was shed by the infected cell into the culture supernatant. Receptor shedding depended on the infection-induced activation of the MEK-ERK pathway and the metalloproteinase TACE (TNFalpha converting enzyme). Our results point to a new function of TNFR1 modulation by C. trachomatis in controlling inflammatory signals during infection.  相似文献   

17.
Tumor necrosis factor alpha (TNF-alpha) is a key mediator of host immune and inflammatory responses and inhibits herpesvirus replication by cytolytic and noncytolytic mechanisms. TNF-alpha effects are primarily mediated through the major TNF-alpha receptor, TNF-R1, which is constitutively expressed in most cell types. Here we show that the Epstein-Barr virus (EBV) immediate-early protein BZLF1 prevents TNF-alpha activation of target genes and TNF-alpha-induced cell death. These effects are mediated by down-regulation of the promoter for TNF-R1. Additionally, we demonstrate that expression of TNF-R1 is downregulated during the EBV lytic replication cycle. Thus, EBV has developed a novel mechanism for evading TNF-alpha antiviral effects during lytic reactivation or primary infection.  相似文献   

18.
Macrophages play an important role in murine cytomegalovirus (MCMV) infection in vivo, both in disseminating infection and in harboring latent virus. MCMV encodes three immune evasion genes (m4, m6, and m152) that interfere with the ability of cytotoxic T cells (CTL) to detect virus-infected fibroblasts, but the efficacy of immune evasion in macrophages has been controversial. Here we show that MCMV immune evasion genes function in H-2(b) primary bone marrow macrophages (BMMphi) in the same way that they do in fibroblasts. Metabolic labeling experiments showed that class I is retained in the endoplasmic reticulum by MCMV infection and associates with m4/gp34 to a similar extent in fibroblasts and BMMphi. We tested a series of K(b)- and D(b)-restricted CTL clones specific for MCMV early genes against a panel of MCMV wild-type virus and mutants lacking m152, m4, or m6. MCMV immune evasion genes effectively inhibited antigen presentation. m152 appeared sufficient to abolish D(b)-restricted presentation in infected macrophages, as has been previously observed in infected fibroblasts. However, for inhibition of recognition of infected macrophages by K(b)-restricted CTL, m4, m6, and m152 were all required. The contribution of m4 to inhibition of recognition appeared much more important in macrophages than in fibroblasts. Thus, MCMV immune evasion genes function effectively in primary macrophages to prevent CTL recognition of early antigens and show the same pattern of major histocompatibility complex class I allele discrimination as is seen in fibroblasts. Furthermore, for inhibition of K(b)-restricted presentation, a strong synergistic effect was noted among m152, m4, and m6.  相似文献   

19.
Cyclooxygenase (COX)-2 is increased in human chronic pancreatitis. We recently demonstrated in a model of chronic pancreatitis (WBN/Kob rat) that inhibition of COX-2 activity reduces and delays pancreatic inflammation and fibrosis. Monocyte chemoattractant protein (MCP)-1 mRNA and PGE(2) were significantly reduced, correlating with a decreased infiltration of macrophages. MCP-1 plays an important role in the recruitment of macrophages to the site of tissue injury. The aim of our study is to identify mechanisms by which macrophages and acinar cells maintain an inflammatory reaction. The expression profile of E prostanoid receptors EP(1-4) and MCP-1 was analyzed by RT-PCR from pancreatic specimens and AR42J cells. MCP-1 secretion was detected by ELISA from rat pancreatic lobuli. We determined EP(1-4) mRNA levels in WBN/Kob rats with chronic pancreatic inflammation. Individual isoforms were highly increased in rat pancreas, concurrent with MCP-1 mRNA expression. In supernatants of pancreatic lobuli and AR42J cells, MCP-1 was detectable by ELISA. In the presence of TNF-alpha, MCP-1 was upregulated. Coincubation with PGE(2) enhanced the TNF-alpha-induced MCP-1 synthesis significantly. Similarly, TNF-alpha mRNA was synergistically upregulated by TNF-alpha and PGE(2). Furthermore, the synergistic effect of TNF-alpha and PGE(2) was abolished by inhibition of PKA but not of PKC. We conclude that EP receptors are upregulated during chronic pancreatic inflammation. PGE(2) modulates the TNF-alpha-induced MCP-1 synthesis and secretion from acinar cells. This synergistic effect is controlled by PKA. This mechanism might explain the COX-2-dependent propagation of pancreatic inflammation.  相似文献   

20.
This work aims to study the influence of H-2 locus in the control of Leishmania infantum infection by evaluating whether cytokine responses by host macrophages of different H-2 haplotype are differentially regulated, either induced or actively impaired during parasite growth and replication. This study shows that macrophages of "non-cure" phenotype (H-2(d)) are more susceptible to infection with virulent L. infantum promastigotes. Virulent parasites lead to impaired IL-12 and inhibited TNF-alpha expression. The degree of parasite virulence is an important contributing factor to differences detected in cytokine expression. Virulent parasites also induced TGF-beta, a deactivating cytokine that is known to suppress Th-1 type responses, thus allowing the parasite to subvert antimicrobial activity and increase its chances of survival. Depending on specific host haplotype, cells differentially respond to infection since TNF-alpha expression is inhibited and TGF-beta is enhanced by macrophages of "non-cure" phenotype, thus perhaps determining their degree of susceptibility in this strain of mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号