首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Class B scavenger receptors (SR-Bs) interact with native, acetylated and oxidized low-density lipoprotein (LDL, AcLDL and OxLDL), high-density lipoprotein (HDL3) and maleylated BSA (M-BSA). The aim of this study was to analyze the catabolism of CD36- and LIMPII-analogous-1 (CLA-1), the human orthologue for the scavenger receptor class B type I (SR-BI), and CD36 ligands in HepG2 (human hepatoma) cells. Saturation binding experiments revealed moderate-affinity binding sites for all the SR-B ligands tested with dissociation constants ranging from 20 to 30 microg.mL-1. Competition binding studies at 4 degrees C showed that HDL and modified and native LDL share common binding site(s), as OxLDL competed for the binding of 125I-LDL and 125I-HDL3 and vice versa, and that only M-BSA and LDL may have distinct binding sites. Degradation/association ratios for SR-B ligands show that LDL is very efficiently degraded, while M-BSA and HDL3 are poorly degraded. The modified LDL degradation/association ratio is equivalent to 60% of the LDL degradation ratio, but is three times higher than that of HDL3. All lipoproteins were good cholesteryl ester (CE) donors to HepG2 cells, as a 3.6-4.7-fold CE-selective uptake ([3H]CE association/125I-protein association) was measured. M-BSA efficiently competed for the CE-selective uptake of LDL-, OxLDL-, AcLDL- and HDL3-CE. All other lipoproteins tested were also good competitors with some minor variations. Hydrolysis of [3H]CE-lipoproteins in the presence of chloroquine demonstrated that modified and native LDL-CE were mainly hydrolyzed in lysosomes, whereas HDL3-CE was hydrolyzed in both lysosomal and extralysosomal compartments. Inhibition of the selective uptake of CE from HDL and native modified LDL by SR-B ligands clearly suggests that CLA-1 and/or CD36 are involved at least partially in this process in HepG2 cells.  相似文献   

2.
Binding of plasma low density lipoproteins to erythrocytes   总被引:2,自引:0,他引:2  
Low density lipoproteins (LDL) containing apolipoprotein B bind to intact, freshly isolated erythrocytes. The LDL-erythrocyte interaction is of low affinity, with a Kd of 1.1 x 10(-6) M. Binding is noncooperative. There are about 200 binding sites per cell and, within the limits of experimental uncertainty, these sites comprise a homogeneous class. Binding of LDL is a temperature-independent process. The maximum amount of LDL blood increases following proteolytic digestion of the cells with trypsin or chymotrypsin. The specificity of the binding sites for LDL is not absolute: high density lipoproteins and lipid vesicles composed of phosphatidylcholine or phosphatidylcholine/cholesterol (equimolar) complete with LDL for occupancy of 60% of the binding sites. Modification of 5--6 of the 9 apolipoprotein B arginine residues with 1,2-cyclohexanedione/borate or of 10--15 of the 20 lysine residues by reductive methylation does not alter the ability of LDL to bind to erythrocytes. Native LDL and methylated-LDL alter erythrocyte morphology. However, LDL in which the arginine residues are derivatized with 1,2-cyclohexanedione/borate do not induce the discocyte leads to echinocyte transformation. Chemically modified and native LDL exchange cholesterol with erythrocytes at equal rates and to nearly equal extents. Taken together, the data suggest that the binding sites for LDL on the erythrocyte membrane are distinct from the LDL receptors at the surface of other cells--e.g., fibroblasts and lymphocytes--which do not bind HDL and which do not recognize LDL with derivatized arginine or lysine residues. It is proposed that the biological function of the erythrocyte binding sites is to mediate the exchange of cholesterol between the cell membrane and lipoproteins.  相似文献   

3.
In blood circulation, low density lipoproteins (LDL) can undergo modification, such as oxidation, and become key factors in the development of atherosclerosis. Although the liver is the major organ involved in the elimination of oxidized LDL (oxLDL), the identity of the receptor(s) involved remains to be defined. Our work aims to clarify the role of the scavenger receptor class B type I (SR-BI) in the hepatic metabolism of mildly and standardly oxLDL as well as the relative contribution of parenchymal (hepatocytes) and nonparenchymal liver cells with a special emphasis on CE-selective uptake. The association of native LDL and mildly or standardly oxLDL labeled either in proteins or in cholesteryl esters (CE) was measured on primary cultures of mouse hepatocytes from normal and SR-BI knock-out (KO) mice. These in vitro assays demonstrated that hepatocytes are able to mediate CE-selective uptake from both LDL and oxLDL and that SR-BI KO hepatocytes have a 60% reduced ability to selectively take CE from LDL but not towards mildly or standardly oxLDL. When lipoproteins were injected in the mouse inferior vena cava, parenchymal and nonparenchymal liver cells accumulated more CE than proteins from native, mildly and standardly oxLDL, indicating that selective uptake of CE from these lipoproteins occurs in vivo in these two cell types. The parenchymal cells contribute near 90% of the LDL-CE selective uptake and SR-BI for 60% of this pathway. Nonparenchymal cells capture mainly standardly oxLDL while parenchymal and nonparenchymal cells equally take up mildly oxLDL. An 82% reduction of standardly oxLDL-CE selective uptake by the nonparenchymal cells of SR-BI KO mice allowed emphasizing the contribution of SR-BI in hepatic metabolism of standardly oxLDL. However, SR-BI is not responsible for mildly oxLDL metabolism. Thus, SR-BI is involved in LDL- and standardly oxLDL-CE selective uptake in parenchymal and nonparenchymal cells, respectively.  相似文献   

4.
Serum lipoproteins control cell cholesterol content by regulating its uptake, biosynthesis, and excretion. Monolayers of cultured fibroblasts were used to study interactions with human high density (HDL) and low density (LDL) lipoproteins doubly labeled with [(3)H]cholesterol and (125)I in the apoprotein moiety. In the binding assay for LDL, the absence of specific LDL receptors in type II hypercholesterolemic fibroblasts was confirmed, whereas monolayers of virus-transformed human lung fibroblasts (VA-4) exhibited LDL binding characteristics essentially the same as normal lung fibroblasts. In the studies of HDL binding, specific HDL binding sites were demonstrated in normal and virus-transformed fibroblasts. In addition, type II hypercholesterolemic cells, despite the loss of LDL receptors, retained normal HDL binding sites. No significant competition was displayed between the two lipoprotein classes for their respective binding sites over a 5-fold concentration range. In VA-4 cells, the amount of lipoprotein required to saturate half the receptor sites was 3.5 micro g/ml (9 x 10(-9) M) for LDL and 9.1 micro g/ml (9 x 10(-8) M) for HDL. Pronase treatment reduced LDL binding by more than half but had no effect on HDL binding. Chloroquine, a lysomal enzyme inhibitor, stimulated net LDL uptake 3.5-fold by increasing internalized LDL but had essentially no effect on HDL uptake. Further experiments were conducted using doubly labeled lipoproteins to characterize the interaction of LDL and HDL with cells. While the cholesterol and protein moieties of LDL were incorporated into cells at similar rates, the uptake of the cholesterol moiety of HDL was 5 to 10 times more rapid than that of the protein component. Furthermore, the apoprotein component of LDL is extensively degraded following exposure, whereas the apoprotein moiety of HDL retains its macromolecular chromatographic characteristics. These results indicate that HDL and LDL bind to cultured cells at separate sites and that further processing of the two lipoprotein classes appears to take place by fundamentally different mechanisms.-Wu, J-D., J. Butler, and J. M. Bailey. Lipid metabolism in cultured cells XVIII. Comparative uptake of low density and high density lipoproteins by normal, hypercholesterolemic, and tumor virus-transformed human fibroblasts.  相似文献   

5.
Binding of human lipoproteins to cultured mouse Ob17 preadipose and adipose cells was studied, using labeled VLDL, LDL and apoprotein E-free HDL. In each case, saturation curves were obtained, yielding linear Scatchard plots. The Kd values were found to be respectively 6.4, 31 and 24 micrograms/ml for VLDL, LDL and apoprotein E-free HDL, whereas the maximal numbers of binding sites per cell were 4.2 X 10(4), 1.5 X 10(4) and 2.5 X 10(5). The binding of 125I-LDL was competitively inhibited by LDL greater than VLDL greater than total HDL; human LDL and mouse LDL were equipotent in competition assays. Methylated LDL and apoprotein E-free HDL were not competitors. In contrast, the binding of 125I-apoprotein E-free HDL was competitively inhibited by apoprotein E-free HDL greater than total HDL and the binding of 125I-HDL3 by mouse HDL. Thus, mouse adipose cells possess distinct apoprotein B, E and apoprotein E-free HDL binding sites which can recognize heterologous or homologous lipoproteins. The cell surface receptor of LDL in mouse preadipose cells shows similarities with that described for human fibroblasts, since: (1) the LDL binding initiated the process of internalization and degradation of the apoprotein B and apoprotein E-containing lipoproteins; (2) receptor-mediated uptake of cholesterol LDL led to a parallel but incomplete decrease in the [14C]acetate incorporation into cholesterol and in the activity of HMG-CoA reductase. Growing (undifferentiated) or growth-arrested cells (differentiated or not) showed no significant changes in the Kd values for lipoprotein binding. In contrast, the maximal number of binding sites correlated with the proliferative state of the cells and was independent of cell differentiation. The results are discussed with respect to cholesterol accumulation in adipose cells.  相似文献   

6.
Receptor-mediated uptake of low density lipoprotein (LDL) has been shown to provide a major source of cholesterol for a variety of cell types, particularly steroidogenic cells. In this study, the functional significance of lipoproteins in porcine ovarian granulosa cells and their mechanism of uptake by the cell was examined. Porcine LDL and high density lipoprotein (HDL) were isolated using a KBr density gradient, and the purity of both lipoproteins was confirmed by single corresponding bands on agarose gel stained for lipid and protein. Purified LDL and HDL were radioiodinated and labelled with colloidal gold for binding and tracer studies respectively. Both lipoproteins bind to cell surface and are internalized within 30 min at 37 degrees C. The cultured granulosa cells possess more HDL binding sites than LDL binding sites and are more responsive in progesterone production when supplemented with HDL. These results suggest that granulosa cells may preferentially utilize HDL over LDL as a source of cholesterol for steroidogenesis.  相似文献   

7.
The uptake and internalization of a triglyceride emulsion by rat hepatocytes in culture less than 24 hr was either inhibited or uninfluenced by apoE. ApoE significantly increased the uptake of these emulsions in later cultures. Specific low density lipoprotein (LDL) binding was similar for hepatocyte monolayers prior to and after 24 hr. Rat hepatocytes in culture for 2 days, which were treated with collagenase, detached and then replated within 1 hr and were apoE-responsive in 2 hr. Heparin inhibited the apoE stimulation in both hepatocytes and hepatoma monolayers. Heparin wash of hepatocytes or hepatoma cells incubated with apoE-[14C]triolein emulsions at 4 degrees C resulted in a considerable loss in radiolabeled cell lipid. A similar wash after 37 degrees C incubations produced little loss suggesting internalization. Hepatocytes had lower affinity but similar apoE-emulsion binding capacity compared to hepatoma cells. Triolein emulsions with apoE were significantly more rapidly metabolized by the hepatocyte than unsupplemented emulsions. The apoE-mediated hepatocyte lipid uptake was inhibited by apoC proteins. High molar ratios of free fatty acid/albumin also suppressed hepatocyte apoE-mediated lipid uptake. Both rat high density lipoprotein (HDL) and LDL inhibited with a potency directly related to their content of apoE. Human LDL and HDL without apoE also inhibited the interaction with less potency than the rat lipoproteins. Human HDL inhibition was diminished after removal of apoC proteins.  相似文献   

8.
Arterial wall lipid retention is believed to be due primarily to ionic interactions between lipoproteins and proteoglycans. Thus, oxidized low density lipoproteins (LDL), with decreased positive charge relative to native LDL, should have decreased interaction with negatively charged proteoglycans. However, oxidized LDL does accumulate within arterial lesions. Therefore, this study investigated the binding of native and oxidized LDL to a complex smooth muscle extracellular matrix and the role of ionic charge interactions in their binding. LDL was modified with 2,2-azo-bis(2-amidinopropane)-2HCl, hypochlorite, soybean lipoxygenase, and phospholipase or copper sulfate. The extracellular matrix had 15- to 45-fold greater binding capacity for the different forms of oxidized LDL than for native LDL. However, the affinity of binding for all forms of oxidized LDL was high (K(a) = approximately 10(-9) M) and was similar to that for native LDL. Preincubation of the lipoproteins with chondroitin sulfate decreased the binding of native LDL, but had no effect on the binding of oxidized LDL. Digestion of matrices with chondroitin ABC lyase and heparinase decreased the binding of native LDL, but increased the binding of oxidized LDL; matrix digestion with pronase or trypsin markedly reduced the binding of both native and oxidized LDL.Thus, the binding of native LDL involves matrix proteoglycans, whereas the binding of oxidized LDL involves a nonproteoglycan component(s) of the matrix. The markedly enhanced retention of oxidized LDL compared with native LDL may play an important role in the progression of atherosclerosis.  相似文献   

9.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

10.
Studies of low density lipoprotein (LDL) metabolism in nonhuman model systems have indicated that the mammalian liver has dual mechanisms for the uptake and regulation of the concentration of plasma LDL. Heretofore, direct evaluation of lipoprotein uptake mechanisms in human hepatocytes has not been possible. In order to compare hepatocyte LDL uptake with fibroblast LDL metabolism, human hepatocytes were isolated and cultured from small biopsy specimens obtained from normolipidemic and homozygous familial hypercholesterolemic patients. Cells cultured in serum-free culture medium retained the morphological and biochemical characteristics of hepatocytes for at least 7 days. The uptake and degradation of LDL by hepatocytes was compared to that of the cultured human fibroblasts. Like fibroblasts, hepatocytes bound, internalized, and degraded LDL. In both cell types, uptake approached saturation at a concentration of 50 micrograms of LDL protein/ml. Competition for LDL binding by LDL, high density lipoprotein, and modified LD revealed that the hepatocyte binding was specific for LDL. Cellular cholesterol loading by incubation in LDL-enriched culture medium resulted in diminished LDL uptake in both cell types. Chemical modification of LDL by acetoacetylation, acetylation, and reductive methylation abolished LDL uptake and degradation by fibroblasts. However, hepatocytes bound and degraded the modified LDL at 30-50% the level of native LDL. Homozygous familial hypercholesterolemic hepatocytes were devoid of the LDL receptor pathway but metabolized native LDL to the extent observed with modified LDL uptake by normal hepatocytes. In contrast to the classic LDL receptor pathway, the second or alternate pathway does not lead to regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity. These findings indicate the presence of two separate pathways of LDL uptake in human hepatocytes which have different effects on hepatocytic cholesterol metabolism.  相似文献   

11.
Rabbit 125I-labelled low density lipoproteins (LDL) were incubated with primary monolayer cultures of rabbit hepatocytes in studies designed to assess the role of liver in LDL catabolism at the cellular level. After hepatocytes were preincubated for 20 h in lipoprotein-free medium, they exhibited time- and concentration-dependent interaction with 125I-labelled DLD at concentrations to 1 mg LDL protein/ml and times to 24 h. After a 3 h (37 degrees C) incubation with 50 microgram LDL protein/ml, hepatocytes bound 400 ng (LDL protein)/mg (cell protein), internalized 280 ng/mg, and degraded 660 ng/mg. Internalization and degradation may be greater than indicated by these values since pulse studies suggested the presence of a deiodinase which attacks cell associated 125I-labelled LDL. The amounts of LDL bound to hepatocytes after 3 h (37 degrees C) were similar to amounts for fibroblasts, but DLD internalization and degradation were considerably less. Rabbit hyperlipidemic 125I-labelled DLD showed the same amount of binding but 1.39 times more internalization and degradation than normolipidemic 125I-labelled LDL. Binding of both control and hyperlipidemic LDL was 3-fold greater at 24 and 42 h than at O or 3 h but addition of a 50-fold molar excess of high density lipoproteins (HDL) prevented increased LDL binding with time. Induction of specific high affinity receptors for binding LDL was shown to occur by preincubation of hepatocytes for increasing periods in lipoprotein-free medium and then measuring 125I-labelled LDL binding at 4 degrees C in the presence and absence of excess unlabelled LDL. Finally, hepatocytes took up 40 times more LDL than sucrose or dextran over a 24-h period, an indication that the uptake of LDL occurs via some mechanism other than simple bulk fluid endocytosis.  相似文献   

12.
Freshly isolated rat hepatocytes bind the solely apolipoprotein B-containing human low density lipoprotein (LDL) with a high-affinity component. After 1 h of incubation less than 30% of the cell-associated human LDL is internalized and no evidence for any subsequent high-affinity degradation was obtained. Scatchard analysis of the binding data for human 125I-labeled LDL indicates that the high-affinity receptor for human LDL on rat hepatocytes possesses a Kd of 2.6 x 10(-8)M, while the binding is dependent on the extracellular Ca2+ concentration. Competition experiments indicate that both the apolipoprotein B-containing lipoproteins (human LDL and rat LDL) as well as the apolipoprotein E-containing lipoproteins (human HDL and rat HDL) do compete for the same surface receptor. It is concluded that hepatocytes freshly isolated from untreated rats do contain, in addition to the earlier described rat lipoprotein receptor which does not interact with human apolipoprotein B-containing LDL, a high-affinity receptor which interacts both with solely apolipoprotein B-containing human LDL and apolipoprotein E-containing lipoproteins.  相似文献   

13.
Low-density lipoproteins (LDL) are taken up by LDL receptor (LDLr)-dependent and -independent pathways; the role and importance of the latest being less well defined. We analyzed the importance of these pathways in the mouse by comparing LDL binding to primary cultures of hepatocytes from LDLr knockout (LDLr KO) and normal C57BL/6J mice. Saturation curve analysis shows that (125)I-LDL bind specifically to normal and LDLr KO mouse hepatocytes with similar dissociation constants (K(d)) (31.2 and 22.9 microg LDL-protein/ml, respectively). The maximal binding capacity (B(max)) is, however, reduced by 48% in LDLr KO mouse hepatocytes in comparison to normal hepatocytes. Conducting the assay in the presence of a 200-fold excess of high-density lipoprotein-3 (HDL3) reduced by 39% the binding of (125)I-LDL to normal hepatocytes and abolished the binding to the LDLr KO mouse hepatocytes. These data indicate that in normal mouse hepatocytes, the LDLr is responsible for approximately half of the LDL binding while a lipoprotein binding site (LBS), interacting with both LDL and HDL3, is responsible for the other half. It can also be deduced that both receptors/sites have a similar affinity for LDL. The metabolism of LDL-protein and cholesteryl esters (CE) was analyzed in both types of cells. (125)I-LDL-protein degradation was reduced by 95% in LDLr KO hepatocytes compared to normal hepatocytes. Comparing the association of (125)I-LDL and (3)H-CE-LDL revealed a CE-selective uptake of 35.6- and 22-fold for normal and LDLr KO mouse hepatocytes, respectively. Adding a 200-fold excess of HDL3 in the assay reduced by 71% the CE-selective uptake in LDLr KO hepatocytes and by 96% in normal hepatocytes. This indicates that mouse hepatocytes are able to selectively take up CE from LDL by the LBS. The comparison of LDL-CE association also showed that the LBS pathway provides 5-fold more LDL-CE to the cell than the LDLr. Overall, our results indicate that in mouse hepatocytes, LDLr is almost completely responsible for LDL-protein degradation while the LBS is responsible for the major part of LDL-CE entry by a CE-selective uptake pathway.  相似文献   

14.
Like all other peripheral cells types thus far studied in culture, endothelial cells derived from the rabbit aorta bind, internalize and degrade low density lipoprotein (LDL) at a significant rate. At any given LDL concentration, the metabolism by rabbit endothelial cells was slower than that by fibroblasts or smooth muscle cells. Thus, longer incubations were required to achieve a net increment in cell cholesterol content or to suppress endogenous sterol synthesis; after 18-24 h incubation in the presence of LDL at 100 microgram LDL protein/ml inhibition was greater than 80% relative to the rate in cells incubated in the absence of lipoproteins. High density lipoproteins (HDL) were also taken up and degraded but did not inhibit sterol synthesis. Studies of LDL binding to the cell surface suggested the presence of at least two classes of binding sites; the high-affinity binding sites were fully saturated at very low LDL concentrations (about 5 microgram LDL protein/ml). However, the degree of inhibition of endogenous sterol synthesis increased progressively with increasing LDL concentrations from 5 to 100 microgram LDL/ml, suggesting that uptake from the low affinity sites in this cell line contributes to the suppression of endogenous sterol synthesis. The internalization and degradation of LDL also increased with concentrations as high as 700 microgram/ml. Thus, in vivo, where the cells are exposed to LDL concentrations far above that needed to saturate the high affinity sites, most of the LDL degradation would be attributable to LDL taken up from low affinity sites. As noted previously in swine arterial smooth muscle cells and in human skin fibroblasts, unlabeled HDL reduced the binding, internalization and degradation of labeled LDL. Cells incubated for 24 h in the presence of high concentrations of LDL alone showed a net increment in cell cholesterol content; the simultaneous presence of HDL in the medium significantly reduced this LDL-induced increment in cell cholesterol content. The possible relationship between LDL uptake and degradation by these cells in vitro is discussed in relationship to their transport function in vivo.  相似文献   

15.
The binding of human 125I-labeled 'anionic polypeptidic fraction' (APF) to purified rat liver plasma membranes was studied. The dissociation constant for this binding was 3.0 micrograms protein/mg membrane protein. Binding was competitively inhibited by unlabeled human APF, but not by human LDL (low density lipoproteins). When unlabeled HDL3 was added, binding of labeled APF was competitively reduced to a level between that of unlabeled APF and unlabeled LDL. Experiments with cultured rat hepatocytes confirmed those obtained with liver membranes and suggested the presence in rat liver of saturable APF-binding sites which seem to be specific for APF. The physiologic significance of these APF binding sites is discussed in relation to the fate of cholesterol in the liver.  相似文献   

16.
Fibroblasts cultured from the skin of subjects with homozygous familial hyperlipoproteinemia (HFH) internalize and degrade low density lipoproteins at a much lower rate than do fibroblasts from normal subjects. Evidence has been presented that this reflects the absence from such mutant cells of specialized binding sites with high affinity for low density lipoproteins. The specificity of this membrane defect in familial hypercholesterolemia is further supported by the present studies comparing the metabolism of low density lipoproteins (LDL) and high density lipoproteins (HDL) in normal fibroblasts and in fibroblasts from HFH patients. The surface binding (trypsin-releasable (125)I) of (125)I-labeled LDL by HFH cells was approximately 30% of that by normal cells at a concentration of 5 micro g LDL protein per ml. At the same concentration the internalization (cell-associated (125)I after trypsinization) and degradation (trichloroacetic acid-soluble non-iodide (125)I) of (125)I-labeled LDL were less than 10% of the values obtained with normal cells. In contrast, the binding of (125)I-labeled HDL to HFH cells was actually somewhat greater than that to normal cells. Despite this, the internalization and degradation of (125)I-labeled HDL by HFH cells averaged only 70% of that by normal cells. [(3)H]- or [(14)C]Sucrose uptake, a measure of fluid uptake by pinocytosis, was similar in normal and HFH fibroblasts. These findings are consistent with the proposal that fibroblasts from subjects with HFH lack high-affinity receptors for LDL. These receptors do not play a significant role in HDL binding and uptake. Instead, as previously proposed, HDL appears to bind randomly on the cell surface and its internalization is not facilitated by the specific mechanism that internalizes LDL. The small but significant abnormalities in HDL binding and internalization, however, suggest that there may be additional primary or secondary abnormalities of membrane structure and function in HFH cells. Finally, the observed overall rate of uptake of LDL (that internalized plus that degraded) by HFH fibroblasts was considerably greater than that expected from fluid endocytosis alone. This implies that adsorptive endocytosis, associated with binding to low-affinity sites on the cell surface, may play a significant role in LDL degradation by HFH cells, even though it does not regulate endogenous cholesterol synthesis in these cells.  相似文献   

17.
The role of the low density lipoprotein (LDL) receptor in the binding of chylomicron remnants to liver membranes and in their uptake by hepatocytes was assessed using a monospecific polyclonal antibody to the LDL receptor of the rat liver. The anti-LDL receptor antibody inhibited the binding and uptake of chylomicron remnants and LDL by the poorly differentiated rat hepatoma cell HTC 7288C as completely as did unlabeled lipoproteins. The antireceptor antibody, however, decreased binding of chylomicron remnants to liver membranes from normal rats by only about 10%. This was true for intact membranes and for solubilized reconstituted membranes and with both a crude membrane fraction as well as with purified sinusoidal membranes. Further, complete removal of the LDL receptor from solubilized membranes by immunoprecipitation with antireceptor antibody only decreased remnant binding to the reconstituted supernatant by 10% compared to solubilized, nonimmunoprecipitated membranes. Treatment of rats with ethinyl estradiol induced an increase in remnant binding by liver membranes. All of the increased binding could be inhibited by the antireceptor antibody. The LDL receptor-independent remnant binding site was not EDTA sensitive and was not affected by ethinyl estradiol treatment. LDL receptor-independent remnant binding was competed for by beta-VLDL = HDLc greater than rat LDL greater than human LDL (where VLDL is very low density lipoprotein, and HDL is high density lipoprotein). There was weak and incomplete competition by apoE-free HDL, probably due to removal of apoE from the remnant. The LDL receptor-independent remnant-binding site was also present in membranes prepared from isolated hepatocytes and had the same characteristics as the site on membranes prepared from whole liver. In contrast, when chylomicron remnants were incubated with a primary culture of rat hepatocytes, the anti-LDL receptor antibody prevented specific cell association by 84% and degradation of chylomicron remnants completely. Based on these studies, we conclude that although binding of chylomicron remnants to liver cell membranes is not dependent on the LDL receptor, their intact uptake by hepatocytes is.  相似文献   

18.
Binding of low density lipoproteins (LDL) and acetyl-LDL to the plasma membrane of cultured swine monocytes was investigated by immunofluorescent and immunoelectron microscopy. Binding sites for native LDL, visualized on both the light microscopical and the ultrastructural level, were found to be comparable to those of cultured human fibroblasts. These techniques, however, failed to reveal binding of acetyl-LDL to the cell surface. Biochemical experiments showed that both LDL and acetyl-LDL have specific receptors, the acetyl-LDL receptor being distinctly different from the LDL receptor. It is concluded that there are morphological differences in the binding of LDL and acetyl-LDL to cultured monocytes. These differences are supported by biochemical data.  相似文献   

19.
Oxidatively modified low-density lipoproteins (Ox-LDL) and complement anaphylatoxins C3a and C5a are colocalized in atherosclerotic lesions. Anaphylatoxin C3a also binds and breaks bacterial lipid membranes and phosphatidylcholine liposomes. The role of oxidized lipid adducts in C3a binding to Ox-LDL and apoptotic cells was investigated. Recombinant human C3a bound specifically to low-density lipoprotein and bovine serum albumin modified with malondialdehyde (MDA) and malondialdehyde acetaldehyde (MAA) in chemiluminescence immunoassays. No binding was observed to native proteins, LDL oxidized with copper ions (CuOx-LDL), or phosphocholine. C3a binding to MAA-LDL was inhibited by two monoclonal antibodies specific for MAA-LDL. On agarose gel electrophoresis, C3a comigrated with MDA-LDL and MAA-LDL, but not with native LDL or CuOx-LDL. C3a bound to apoptotic cells in flow cytometry. C3a opsonized MAA-LDL and was taken up by J774A.1 macrophages in immunofluorescence analysis. Complement-activated human serum samples (n=30) showed increased C3a binding to MAA-LDL (P<0.001) and MDA-LDL (P<0.001) compared to nonactivated samples. The amount of C3a bound to MAA-LDL was associated with total complement activity, C3a desArg concentration, and IgG antibody levels to MAA-LDL. Proteins containing MDA adducts or MAA adducts may bind C3a in vivo and contribute to inflammatory processes involving activation of the complement system in atherosclerosis.  相似文献   

20.
Elevated levels of low-density-lipoprotein cholesterol (LDL-C) in the plasma are a well-established risk factor for the development of coronary heart disease. Plasma LDL-C levels are in part determined by the rate at which LDL particles are removed from the bloodstream by hepatic uptake. The uptake of LDL by mammalian liver cells occurs mainly via receptor-mediated endocytosis, a process which entails the binding of these particles to specific receptors in specialised areas of the cell surface, the subsequent internalization of the receptor–lipoprotein complex, and ultimately the degradation and release of the ingested lipoproteins’ constituent parts. We formulate a mathematical model to study the binding and internalization (endocytosis) of LDL and VLDL particles by hepatocytes in culture. The system of ordinary differential equations, which includes a cholesterol-dependent pit production term representing feedback regulation of surface receptors in response to intracellular cholesterol levels, is analysed using numerical simulations and steady-state analysis. Our numerical results show good agreement with in vitro experimental data describing LDL uptake by cultured hepatocytes following delivery of a single bolus of lipoprotein. Our model is adapted in order to reflect the in vivo situation, in which lipoproteins are continuously delivered to the hepatocyte. In this case, our model suggests that the competition between the LDL and VLDL particles for binding to the pits on the cell surface affects the intracellular cholesterol concentration. In particular, we predict that when there is continuous delivery of low levels of lipoproteins to the cell surface, more VLDL than LDL occupies the pit, since VLDL are better competitors for receptor binding. VLDL have a cholesterol content comparable to LDL particles; however, due to the larger size of VLDL, one pit-bound VLDL particle blocks binding of several LDLs, and there is a resultant drop in the intracellular cholesterol level. When there is continuous delivery of lipoprotein at high levels to the hepatocytes, VLDL particles still out-compete LDL particles for receptor binding, and consequently more VLDL than LDL particles occupy the pit. Although the maximum intracellular cholesterol level is similar for high and low levels of lipoprotein delivery, the maximum is reached more rapidly when the lipoprotein delivery rates are high. The implications of these results for the design of in vitro experiments is discussed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号