首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The course of the cholinergic and adrenergic nerve fibers in the cervix of the ewe was investigated in nonpregnant and pregnant animals using an acetylcholinesterase method and fluorescence histochemistry. Both technics in nonpregnant animals revealed a rich network of acetylcholinesterase and norepinephrine positive nerves around the blood vessels while the muscular innervation was moderately positive. Acetylcholinesterase fibers were also concentrated beneath the surface epithelium forming a plexus-like arrangement where isolated ganglion cells could be seen. At mid pregnancy cholinergic and adrenergic fibers decreased in density. The intensity of fluorescence was weaker and nerve fiber morphology was modified. We endeavoured to relate our findings to the problem of the neural control of contractions and the opening of the cervix of the ewe which is poorly supplied in nerve fibers, particularly at mid pregnancy.  相似文献   

2.
Summary The course of the cholinergic and adrenergic nerve fibers in the cervix of the ewe was investigated in nonpregnant and pregnant animals using an acetylcholinesterase method and fluorescence histochemistry. Both technics in nonpregnant animals revealed a rich network of acetylcholinesterase and norepinephrin positive nerves around the blood vessels while the muscular innervation was moderately positive. Acetylcholinesterase fibers were also concentrated beneath the surface epithelium forming a plexuslike arrangement where isolated ganglion cells could be seen. At mid pregnancy cholinergic and adrenergic fibers decreased in density. The intensity of fluorescence was weaker and nerve fiber morphology was modified. We endeavoured to relate our findings to the problem of the neural control of contractions and the opening of the cervix of the ewe which is poorly supplied in nerve fibers, particularly at mid pregnancy.  相似文献   

3.
The innervation of the bovine tubouterine junction was studied in sexually mature heifers using antisera against various neuronal markers and a modified acetylcholinesterase method. The vast majority of the nerve fibres in the bovine tubouterine junction belongs to the sympathetic nervous system; peptidergic and cholinergic fibers are restricted to characteristic locations. The endosalpinx in the adovarian portion of the terminal tubal segment is poorly innervated. The mucosa of the aduterine portion and of the tubouterine transitinal region proper receives a strikingly dense innervation, which is observed mainly in combination with a strong vascularisation of specialised mucosal structures. In the endometrium, perivascular nerves accompany the ascending spiral arteries but sporadic contacts between nerve fibres and uterine glands are also observed. From the muscular coat the inner longitudinal layer of the terminal tubal segment is more richly supplied by nerve fibres than the intermediate circular and outer longitudinal layers of the tubouterine junction. No changes in the innervation pattern were seen during the different stages of the sexual cycle.  相似文献   

4.
Summary Dual innervation of snake cerebral blood vessels by adrenergic and cholinergic fibres was demonstrated with the use of histochemical methods. Although the nerve plexuses are somewhat less dense, the essential features of innervation of the blood vessels are similar to those of mammals with the exception that the adrenergic plexuses are more prominent than the cholinergic plexuses. The major arteries of the cerebral carotid system have a rich nerve supply. However, the innervation is less rich in the basilar and poor in the spinal (vertebral) arteries. Although the arteries supplying the right side of head are poorly developed, three pairs of arteries, cerebral carotids, ophthalmics and spinals, supply the snake brain. The carotids and ophthalmics are densely innervated and are accompanied by thick nerve bundles, suggesting that the nerves preferentially enter the skull along those arteries. Some parenchymal arterioles are also dually innervated. Connection between the brain parenchyma and intracerebral capillaries via both cholinergic and adrenergic fibres was observed. In addition cholinergic nerve fibres, connecting capillaries and the intramedullary nerve fibre bundles, were noticed. Capillary blood flow may be influenced by both adrenergic and cholinergic central neurons. The walls of capillaries also exhibit heavy acetylcholinesterase activity. This may indicate an important role for the capillary in the regulation of intracerebral blood flow.  相似文献   

5.
We study the cholinergic innervation of the Harderian gland in male and female golden hamsters. There is a clear sexual dimorphism in the cholinergic innervation between both sexes. The Harderian gland from male animals contain much more nervous fibers with acetylcholinesterase (AChE) positive reaction than in female. The nervous fibers containing AChE activity are surrounding the acini and blood vessels.  相似文献   

6.
Hepatic cirrhosis was induced in guinea pigs by ligation of the common bile duct and innervation of the liver was studied by fluorescence histochemistry (glyoxylic acid method), acetylcholinesterase (AChE) neurohistochemistry (modified Karnovsky and Roots method), and transmission electron microscopy. In control animals the adrenergic terminals showed connections with endothelial cells, hepatocytes and fat-storing cells, but no cholinergic terminals were evident. Cirrhosis was present 6 weeks after the bile duct ligation and marked fibrosis, accompanied by bile duct proliferation, was evident in the portal areas. Numerous AChE-positive nerve fibers traversed the collagenous bundles in the fibrotic areas, and cholinergic terminals formed close contacts with fibroblasts. Each axon terminal was found to contain numerous small coreless vesicles and AChE-reaction products were confirmed in the space between a nerve terminal and a fibroblast. In contrast, fluorescence adrenergic nerve fibers and their terminals remained unchanged. This study demonstrates that parasympathetic cholinergic innervation participates in some stages in the development of hepatic cirrhosis.  相似文献   

7.
Summary The autonomic innervation of rat jugular vein was studied using glyoxylic acid fluorescence and acetylcholinesterase histochemical methods. The rat jugular vein is provided with both adrenergic and cholinergic nerve fibers organized in plexuses located at the adventitial-medial border. The existence of these nerve plexuses does not seem to support biochemical findings that suggest a lack of innervation in the rat jugular vein and which propose this blood vessel as a model for the analysis of drug-smooth muscle cell interaction without the interference of neuronal uptake mechanisms.  相似文献   

8.
The inbuilt intrinsic cholinergic nervous apparatus of the gastric wall of the cat was studied by using two thiocholine methods for mapping the acetylcholinesterase-positive nerves and nerve cells. A rich distribution of acetylcholinesterase-positive nerves was observed in all layers of the gastric wall, except the superficial half of the lamina propria (with the epithelium), which was completely devoid of acetylcholinesterase activity, and the submucosa, in which a scarce distribution of large nerve fascicles and nerve trunks was observed. Acetylcholinesterase-positive ganglia were observed both in the subserous layer and in the myenteric plexus of Auerbach, whereas none were recognized in the submucous plexus of Meissner. This obviously fits well to the results of some electrophysiological experiments which indicate that the submucous plexus of Meissner includes an important intramural pathway from the extrinsic vagus nerves to the antrum region; so the submucous plexus of Meissner seems to be mainly involved in direct rapid conduction of nerve impulses without integrative activities, like a cable. Certain clear differences exist in the pattern of organization of the cholinergic intrinsic nervous apparatus within the different layers of the gastric wall in the fundic and pyloric regions. These differences seem to correspond quite logically to the different types of motor, secretory and neurohumoral activities of these main regions of the stomach. The activity of the non-specific cholinesterases was localized both in the neural elements and the smooth muscle, as well as in some epithelial cells.  相似文献   

9.
Summary Specific histochemical techniques for the demonstration of acetylcholinesterase and of norepinephrine have been used to study the distribution of cholinergic and adrenergic nerve fibers to arteries and arterioles in various organs of cats and dogs, including the male genital apparatus, tongue, skeletal muscle, heart and gastrointestinal tract. Arteries and arterioles in all of these organs showed both cholinergic and adrenergic nerve fibers, although the relative number of each of the types of fiber was variable. The findings provide morphologic evidence for a widespread and generalized dual adrenergic and cholinergic innervation of arteries and arterioles.Supported in part by Grant No. HE 10465 from the USPHS and by a grant from the Monroe County Heart Chapter.  相似文献   

10.
Previous studies have shown the existence of a sphincter in the efferent filament artery of the teleost gill and its constrictory response to acetylcholine (ACH) and vagal stimulation. This study deals with the muscular organization of this sphincter and the distribution of its innervation as elucidated by degeneration methods and cytochemistry. The sphincter innervation is supplied by the protrematic vagus nerves. Nerve endings filled with cholinergic-type vesicles are located in close association with the adventitial smooth muscle cells and display a strong acetylcholinesterase (ACHE) activity. Section of the protrematic vagus nerve induces a nearly complete degeneration of the sphincter innervation. ACHE-positive nerve cell bodies are present both in the sphincter area and in the protrematic vagus nerve. These results suggest that innervation of the sphincter in the efferent filament artery is cholinergic through the activity of postganglionic axons of the parasympathetic system.  相似文献   

11.
The innervation of the pial arteries as well as the activity of enzymes (phosphorylase I, II, III, succindehydrogenase, lactate dehydrogenase, ATPase, GTPase and CTPase) responsible for vascular smooth muscle function were studied histochemically on total microscopic preparations of rabbit pia matter. An especially rich adrenergic and cholinergic innervation was found around the active microvascular effectors - sphincters of pial and precortical arterial off-shoots. The nerve fibers followed the radial arteries entering the cerebral cortex. No differences were detected between the pial arteries and active microvascular effectors in the enzyme activity.  相似文献   

12.
BACKGROUND: Analysis of the innervation pattern of the thoracic duct in young and elderly human subjects has been performed. The subdivision of the vessels in cervical and lumbar region were taken in consideration. MeTHODS AND RESULTS: Immunostaining for general nerve fibers with a PGP 9.5 marker disclosed a diffuse innervation of the thoracic duct in young subjects, which was strongly reduced in elderly subjects. In young subjects, tyrosine hydroxylase (TH) and neuropeptide Y (NPY) immunoreactive fibers, markers of noradrenergic postganglionic sympathetic fibers, were frequent; choline acetyltransferase (ChAT) immunoreactive fibers, marker of cholinergic parasympathetic nerve fibers, were also well represented. Therefore, the influence of sympathetic and parasympathetic nerve systems on the thoracic duct can be confirmed. The immunoreactivity of vasoactive intestinal peptide (VIP), a neuropeptide frequently present in cholinergic parasympathetic nerve fibers, was scarcely present. Dopamine-positive fibers were observed in few short nerve fibers. Substance P (SP)-positive fibers were widely distributed in the medial and intimal smooth muscle layers, suggesting their involvement as contractile modulating fibers and sensitive fibers. In elderly subjects, an evident reduction of all specific nerve fibers analyzed was detected, the ChAT-positive fibers being the most affected. CONCLUSIONS: The lymphatic vessel thoracic duct is able to regulate hydrodynamic lymph flow by intrinsic contraction of its smooth muscle layer. Therefore, analysis of the thoracic duct innervation pattern may be important in assessing the regulation of vessel contraction. These findings called attention to the reduction of lymphatic drainage functionality affecting fluid balance in the elderly.  相似文献   

13.
Summary Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in developing and adult rats receives an abundant sympathetic catecholaminergic and sensory innervation, but not a cholinergic innervation.  相似文献   

14.
The sweat glands, a target of cholinergic sympathetic neurons, were replaced with parotid gland, a target of noradrenergic sympathetic neurons, in neonatal rats. This transplantation paradigm allowed sympathetic neurons that would normally innervate the sweat glands and develop a cholinergic phenotype to innervate the parotid gland instead. The innervation of the transplanted parotid gland did not develop a cholinergic phenotype, as assessed by choline acetyltransferase activity and acetylcholinesterase immunoreactivity, but continued to express intense catecholamine fluorescence. In addition, immunoreactivity for vasoactive intestinal peptide, normally expressed by the sympathetic innervation of the sweat glands but not the parotid, was observed in only a small percentage of the parotid-associated fibers. These results suggest that cellular interactions between neurons and their targets play an important role in the differentiation of mature neurotransmitter and neuropeptide phenotypes in vivo.  相似文献   

15.
Summary The cholinergic innervation of the thyroid gland has been studied in the human. AChE positive nerve fibers are localized in the wall of the thyroid artery, arranged in two plexuses, a superficial (adventitial) and a deep one (medial). The glandular tissue is provided with cholinergic nerve fibers, localized between and around thyroid follicles. The present results suggest that the endocrine activity of the thyroid gland is also under the control of the autonomic nervous system.  相似文献   

16.
Localization and development of chick heart peptidergic innervation (Substance P, VIP and Somatostatin) were investigated by means of immunofluorescence technique. The peptidergic component of the heart innervation was observed, for the first time, in older than 11 day chick embryos, i.e., subsequently to the appearance of the cholinergic component. The peptidergic structures achieve nearly full development in about 16-17 day embryos. Substance P is the most represented of the three peptides. It is localized both in nerve bundle fibers and in isolated fibers within the myocardium, the pericardium, the vessel walls; it is also present in fibers of some heart base ganglia. VIP is mostly contained in some thick single fibers travelling along the vessel walls of the heart base, the myocardium and the pericardium. Some VIP immunoreactive cells were also observed in the base ganglia. Somatostatin is mostly contained in some ganglia cells, whilst thin Somatostatin-immunoreactive fibers form a rich plexus among the atrial and ventricular myofibers, without contacting the vessel walls.  相似文献   

17.
Histochemical study of neuronally isolated area AI of the auditory cortex in cats by the reaction for acetylcholinesterase 3 days and 1, 2, and 3 weeks after undercutting showed that the cholinergic neuropil of this area is formed mainly by incoming fibers and to a lesser degree by processes from a few intrinsic cholinergic neurons. The intrinsic cholinergic neurons include, first, cholinergic long-axon association neurons responding to cortical isolation by retrograde changes and by hyperreaction to acetylcholinesterase (Cajal-Retzius cells of layer I and neurons of layer VI, whose axons run into the subcortical layer of association fibers), and, second, cholinergic short-axon association neurons of layers II–VI, preserving their normal cell structure and moderate acetylcholinesterase activity after isolation. Axon collaterals of similar cells terminate on neighboring neurons. Short-axon neurons are more numerous in the lower layers of the cortex, and exceed in number the long-axon association neurons. Choliniceptive neurons (pyramidal and stellate), on whose bodies and proximal dendrites are located terminals formed by axons of cholinergic association neurons, are found in the isolated cortex. Choliniceptive neurons are found more often in the lower layers of the cortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. I. I. Mechnikov State University, Odessa. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 81–87, January–February, 1984.  相似文献   

18.
The innervation of the uterus is remarkable in that it exhibits physiological changes in response to altered levels in the circulating levels of sex hormones. Previous studies by our group showed that chronic administration of estrogen to rats during the infantile/prepubertal period provoked, at 28 days of age, an almost complete loss of norepinephrine-labeled sympathetic nerves, similar to that observed in late pregnancy. It is not known, however, whether early exposure to estrogen affects uterine cholinergic nerves. Similarly, it is not known to what extent development and estrogen-induced responses in the uterine cholinergic innervation are affected by the absence of sympathetic nerves. To address this question, in this study we analyzed the effects of infantile/prepubertal chronic estrogen treatment, chronic chemical sympathectomy with guanethidine, and combined sympathectomy and chronic estrogen treatment on developing cholinergic nerves of the rat uterus. Cholinergic nerves were visualized using a combination of acetylcholinesterase histochemistry and the immunohistochemical demonstration of the vesicular acetylcholine transporter (VAChT). After chronic estrogen treatment, a well-developed plexus of cholinergic nerves was observed in the uterus. Quantitative studies showed that chronic exposure to estrogen induced contrasting responses in uterine cholinergic nerves, increasing the density of large and medium-sized nerve bundles and reducing the intercept density of fine fibers providing myometrial and perivascular innervation. Estrogen-induced changes in the uterine cholinergic innervation did not appear to result from the absence/impairment of sympathetic nerves, because sympathectomy did not mimic the effects produced by estrogen. Estrogen-induced responses in parasympathetic nerves are discussed, considering the direct effects of estrogen on neurons and on changes in neuron-target interactions.  相似文献   

19.
The autonomic innervation of the ovary of the dab was studied histologically and physiologically. The ovary receives a branch of nerve bundles that emerge into the abdominal cavity at the postero-ventral end of the kidney and can be traced back to the sympathetic chain in the vicinity of the 5th vertebra. Almost all the nerve fibers are AChE-positive, and some of them also emit adrenergic fluorescence. Electrical stimulation of the ovarian nerves caused ovarian contractions, and administration of ACh elicited contractions of the ovary preparations, supporting the hypothesis that the ovary is innervated by excitatory cholinergic fibers. In the ovarian nerve bundles, many AChE-positive and non-fluorescent ganglion cells are scattered. Ultrastructural studies suggest that nerve endings situated on the ovarian smooth muscle and on ganglion cells are cholinergic. These results also suggest that the cells are the post-ganglionic neurons of the cholinergic innervation and the axons of the cells reach to the muscle cells. On the other hand, the adrenergic fluoresecent fibers possibly participate in the inhibitory innervation, since the presence of inhibitory beta-adrenoceptors were demonstrated by pharmacological studies.  相似文献   

20.
Cholinergic innervation of the human pulmonary circulation   总被引:1,自引:0,他引:1  
The cholinergic innervation of the pulmonary circulation was studied in man. Both extra- and intrapulmonary branches of the pulmonary artery and vein are provided with a cholinergic of the vein. In the main branches of the pulmonary vessels, the existence of two nerve plexuses, a superficial and a deep one, was observed. The superficial plexus is localized in the outer adventitial layer while the deeper plexus is localized in the adventitial-medial transitional zone. In smaller arteries and veins, the existence of a single plexus (adventitial-medial) was observed. In some specimens, the presence of diffuse masses of acetylcholinesterase (AChE)-positive material or elbow-shaped AChE-positive formations was observed. The nature of these formations as well as the possible functional role of a cholinergic system in the pulmonary circulation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号