共查询到20条相似文献,搜索用时 0 毫秒
1.
Wojciech Pulawski Slawomir Filipek Anna Zwolinska Aleksander Debinski Krystiana Krzysko Ramón Garduño-Juárez Sowmya Viswanathan Venkatesan Renugopalakrishnan 《European biophysics journal : EBJ》2013,42(4):291-300
Molecular dynamics (MD) simulation combined with inelastic neutron scattering can provide information about the thermal dynamics of proteins, especially the low-frequency vibrational modes responsible for large movement of some parts of protein molecules. We performed several 30-ns MD simulations of cytochrome c (Cyt c) in a water box for temperatures ranging from 110 to 300 K and compared the results with those from experimental inelastic neutron scattering. The low-frequency vibrational modes were obtained via dynamic structure factors, S(Q, ω), obtained both from inelastic neutron scattering experiments and calculated from MD simulations for Cyt c in the same range of temperatures. The well known thermal transition in structural movements of Cyt c is clearly seen in MD simulations; it is, however, confined to unstructured fragments of loops Ω1 and Ω2; movement of structured loop Ω3 and both helical ends of the protein is resistant to thermal disturbance. Calculated and experimental S(Q, ω) plots are in qualitative agreement for low temperatures whereas above 200 K a boson peak vanishes from the calculated plots. This may be a result of loss of crystal structure by the protein–water system compared with the protein crystal. 相似文献
2.
Partial compressibilities of globular proteins in water are reviewed. Contribution of hydrational and of intrinsic compressibilities to experimental partial quantity have been evaluated from ultrasonic data using two independent methods: (a) additive calculation of the hydrational contributions of the surface atomic groups and (b) an analysis of correlation between partial compressibility and molecular surface area. The value (14 ± 3) × 10?6 bar ?1 for the isothermal compressibility coefficient of the protein interior at 25°C was obtained as an average value for variety of globular proteins. This value is similar to that of solid organic polymers. Possible relaxation contribution to partial compressibility is roughly estimated from comparison of thermodynamic with x-ray data on protein compressibility. The average compressibility of water in the hydration shell of proteins was found to be 35 × 10?6 bar ?1, which is 20% less than that of pure water. © 1993 John Wiley & Sons, Inc. 相似文献
3.
Single-molecule force spectroscopy with optical tweezers has emerged as a powerful tool for dissecting protein folding. The requirement to stably attach “molecular handles” to specific points in the protein of interest by preparative biochemical techniques is a limiting factor in applying this methodology, especially for large or unstable proteins that are difficult to produce and isolate. Here, we present a streamlined approach for creating stable and specific attachments using autocatalytic covalent tethering. The high specificity of coupling allowed us to tether ribosome-nascent chain complexes, demonstrating its suitability for investigating complex macromolecular assemblies. We combined this approach with cell-free protein synthesis, providing a facile means of preparing samples for single-molecule force spectroscopy. The workflow eliminates the need for biochemical protein purification during sample preparation for single-molecule measurements, making structurally unstable proteins amenable to investigation by this powerful single-molecule technique. We demonstrate the capabilities of this approach by carrying out pulling experiments with an unstructured domain of elongation factor G that had previously been refractory to analysis. Our approach expands the pool of proteins amenable to folding studies, which should help to reduce existing biases in the currently available set of protein folding models. 相似文献
4.
Darquenne Chantal; Brand Peter; Heyder Joachim; Paiva Manuel 《Journal of applied physiology》1997,83(3):966-974
Darquenne, Chantal, Peter Brand, Joachim Heyder, and ManuelPaiva. Aerosol dispersion in human lung: comparison between numerical simulations and experiments for bolus tests.J. Appl. Physiol. 83(3): 966-974, 1997.Bolus inhalations of 0.87-µm-diameter particles wereadministered to 10 healthy subjects, and data were compared withnumerical simulations based on a one-dimensional model of aerosoltransport and deposition in the human lung (J. Appl.Physiol. 77: 2889-2898, 1994). Aerosol boluseswere inhaled at a constant flow rate into various volumetric lungdepths up to 1,500 ml. Parameters such as bolus half-width, mode shift, skewness, and deposition were used to characterize the bolus and todisplay convective mixing. The simulations described the experimental results reasonably well. The sensitivity of the simulations to different parameters was tested. Simulated half-width appeared to beinsensitive to altered values of the deposition term, whereas it wasgreatly affected by modified values of the apparent diffusion in thealveolar zone of the lung. Finally, further simulations were comparedin experiments with a fixed penetration volume and various flow rates.Comparison showed good agreement, which may be explained by the factthat half-width, mode shift, and skewness were little affected by theflow rate. 相似文献
5.
Protein dynamics: comparison of simulations with inelastic neutron scattering experiments. 总被引:7,自引:0,他引:7
J C Smith 《Quarterly reviews of biophysics》1991,24(3):227-291
6.
Massively parallel all-atom, explicit solvent molecular dynamics simulations were used to explore the formation and existence of local structure in two small alpha-helical proteins, the villin headpiece and the helical fragment B of protein A. We report on the existence of transient helices and combinations of helices in the unfolded ensemble, and on the order of formation of helices, which appears to largely agree with previous experimental results. Transient local structure is observed even in the absence of overall native structure. We also calculate sets of residue-residue pairs that are statistically predictive of the formation of given local structures in our simulations. 相似文献
7.
G.R. Kneller V. Calandrini 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(1):56-62
Different experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that this type of dynamics is already established on the much shorter nanosecond time scale, which is also covered by quasielastic neutron scattering experiments. The autosimilarity of protein dynamics is reflected in long-time memory effects in the underlying diffusion processes, which lead to a non-exponential decay of the observed time correlation functions. Fractional Brownian dynamics is an empirical model which is able to capture the essential aspects of internal protein dynamics. Here we give a brief introduction into the theory and show how the model can be used to interpret neutron scattering experiments and molecular dynamics simulation of proteins in solution under hydrostatic pressure. 相似文献
8.
Multiple molecular dynamics (MD) simulations of fully solvated rat intestinal fatty acid binding protein (I-FABP) were conducted to investigate the dynamics of internal water molecules. Although the long time average of the number of internal water molecules in I-FABP is 22 as shown by the X-ray crystal structure, MD simulations predict large variations in the instantaneous number of internal water molecules on the nanosecond time scale. The computational model employed predicts that w135 (internal) and w217 (located on the protein surface) may be the water molecules with long residence times observed in previously reported magnetic relaxation dispersion studies. The average residence time of approximately 20 internal water molecules occupying the fatty acid binding cavity is estimated to be between 0.6 and 2.0 nanoseconds. Exchange of internal water in I-FABP appears to occur almost exclusively through the interface of beta-strands EF with the rest of the protein, which has significant implications for the pathways of the fatty acid entry and exit from the binding cavity. Proteins 2001;43:65-72. 相似文献
9.
The local false discovery rate (LFDR) estimates the probability of falsely identifying specific genes with changes in expression. In computer simulations, LFDR <10% successfully identified genes with changes in expression, while LFDR >90% identified genes without changes. We used LFDR to compare different microarray experiments quantitatively: (i) Venn diagrams of genes with and without changes in expression, (ii) scatter plots of the genes, (iii) correlation coefficients in the scatter plots and (iv) distributions of gene function. To illustrate, we compared three methods for pre-processing microarray data. Correlations between methods were high (r = 0.84–0.92). However, responses were often different in magnitude, and sometimes discordant, even though the methods used the same raw data. LFDR complements functional assessments like gene set enrichment analysis. To illustrate, we compared responses to ultraviolet radiation (UV), ionizing radiation (IR) and tobacco smoke. Compared to unresponsive genes, genes responsive to both UV and IR were enriched for cell cycle, mitosis, and DNA repair functions. Genes responsive to UV but not IR were depleted for cell adhesion functions. Genes responsive to tobacco smoke were enriched for detoxification functions. Thus, LFDR reveals differences and similarities among experiments. 相似文献
10.
W. E. Bolch James E. Turner Hiroko Yoshida K. Bruce Jacobson Robert N. Hamm Oakley H. Crawford 《Radiation and environmental biophysics》1998,37(3):157-166
The radiation chemistry of photon-irradiated aqueous solutions of biological molecules may be considered under four distinct
time regimes: physical transport (≤10–15 s); prechemical conversion of H2O+, H2O*, and subexcitation electrons into free radicals and molecular products (10–15 s to 10–12 s); chemical reactions within individual electron tracks (10–12 s to 10–6 s); and chemical reactions within overlapping tracks (>10–6 s). We have previously reported of the use of the Monte Carlo radiation transport/chemistry codes OREC and RADLYS to model
the radiolysis of glycylglycine in oxygen-free solution to a time of 1 μs. These simulations successfully predicted the yields
of free ammonia, an end product created solely in the reaction of the hydrated electron with the solute within individual
tracks. Other measurable products are only partially created during intratrack reactions, and thus one must additionally consider
the late, intertrack chemistry of this system. In this paper, we extend our simulations of glycylglycine radiolysis to model
for the first time the events which occur during this late chemistry stage. The model considers the product rates of the reactants
in bulk solution by using previously available microsecond intratrack yields given by single-track OREC/RADLYS simulations
and an x-ray dose rate of 2.80 Gy min–1 as used in a companion experimental program. These rates are then applied in a series of coupled, differential rate equations
that describe the solution chemistry of glycylglycine radiolysis. Product yields are reported as a function of time over a
total irradiation period of 104 s. Excellent overall agreement is seen between the theoretical predictions and measurements of five radiolysis end products:
free ammonia, acetylglycine, diaminosuccinic acid, aspartic acid, and succinic acid. The model also gives the explicit contributions
of intratrack and intertrack reactions to the various end products. For example, the model predicts that ∼56% and 93% of succinic
acid and aspartic acid, respectively, are produced during intertrack reactions at a solute concentration of 0.05 M; these
contributions drop to 0.07% and 11%, respectively, at 1.2 M.
Received: 22 May 1998 / Accepted in revised form: 27 August 1998 相似文献
11.
The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments 下载免费PDF全文
We present results from an extensive molecular dynamics simulation study of water hydrating the protein Ribonuclease A, at a series of temperatures in cluster, crystal, and powder environments. The dynamics of protein hydration water appear to be very similar in crystal and powder environments at moderate to high hydration levels. Thus, we contend that experiments performed on powder samples are appropriate for discussing hydration water dynamics in native protein environments. Our analysis reveals that simulations performed on cluster models consisting of proteins surrounded by a finite water shell with free boundaries are not appropriate for the study of the solvent dynamics. Detailed comparison to available x-ray diffraction and inelastic neutron-scattering data shows that current generation force fields are capable of accurately reproducing the structural and dynamical observables. On the time scale of tens of picoseconds, at room temperature and high hydration, significant water translational diffusion and rotational motion occur. At low hydration, the water molecules are translationally confined but display appreciable rotational motion. Below the protein dynamical transition temperature, both translational and rotational motions of the water molecules are essentially arrested. Taken together, these results suggest that water translational motion is necessary for the structural relaxation that permits anharmonic and diffusive motions in proteins. Furthermore, it appears that the exchange of protein-water hydrogen bonds by water rotational/librational motion is not sufficient to permit protein structural relaxation. Rather, the complete exchange of protein-bound water molecules by translational displacement seems to be required. 相似文献
12.
Cytochrome-c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) forms a noncovalent 1:1 complex with horse cytochrome c in low ionic strength solution that is detectable by proton NMR spectroscopy. When the entire proton hyperfine-shifted spectrum is considered only five hyperfine resonances exhibit unambiguously detectable shifts: the heme 8-CH3 and 3-CH3 resonances, single proton resonances near 19 ppm and -4 ppm and the methionine-80 methyl group. These shifts are very similar to those observed for the covalently crosslinked complex of cytochrome-c peroxidase and horse cytochrome c, but different from those reported for cytochrome c complexes with flavodoxin and cytochrome b5. By comparison with the shifts reported for lysine-13-modified cytochrome c we conclude that the results reported here support the Poulos-Kraut proposed structure for the molecular redox complex between cytochrome-c peroxidase and cytochrome c. These results indicate that the principal site of interaction with cytochrome-c peroxidase is the exposed heme edge of horse cytochrome c, in proximity to lysine-13 and the heme pyrrole II. The noncovalent cytochrome-c peroxidase-cytochrome c complex exists in the rapid-exchange time limit even at 500 mHz proton frequency. Our data provide an improved estimate of the minimum off-rate for exchanging cytochrome c as 1133 (+/- 120) s-1 at 23 degrees C. 相似文献
13.
The results of inelastic neutron scattering experiments on water in the temperature interval 300–623 K along the coexistence curve are compared with data obtained from molecular dynamics simulations. In general, a good agreement between experiments and calculations is observed and it serves as a satisfactory test of the potential models employed. The temperature dependence of the generalized frequency distribution of water molecules obtained by both experiment and computer simulation demonstrates the accordance with the temperature evolution of the water structure, extracted from neutron and X-ray diffraction measurements. 相似文献
14.
Selective excitation of native fluctuations during thermal unfolding simulations: horse heart cytochrome c as a case study 总被引:2,自引:0,他引:2 下载免费PDF全文
The effect of temperature on the activation of native fluctuation motions during molecular dynamics unfolding simulations of horse heart cytochrome c has been studied. Essential dynamics analysis has been used to analyze the preferred directions of motion along the unfolding trajectories obtained by high temperature simulations. The results of this study have evidenced a clear correlation between the directions of the deformation motions that occur in the first stage of the unfolding process and few specific essential motions characterizing the 300 K dynamics of the protein. In particular, one of those collective motions, involved in the fluctuation of a loop region, is specifically excited in the thermal denaturation process, becoming progressively dominant during the first 500 ps of the unfolding simulations. As further evidence, the essential dynamics sampling performed along this collective motion has shown a tendency of the protein to promptly unfold. According to these results, the mechanism of thermal induced denaturation process involves the selective excitation of one or few specific equilibrium collective motions. 相似文献
15.
This study presents a comparison of two models of the random-coil state, one based on statistical distributions from the structural database and the other based on molecular dynamics simulations. The database model relies on the assumption that the random- or statistical-coil state of a particular residue can be described by its conformational distribution in a sufficiently diverse subset of protein structures. The molecular dynamics model is based on distributions from molecular simulations carried out on "dipeptide" models (single residues with N-terminal acetyl and C-terminal N'-methyl amide blocking groups). A comparison of the two models for the residues Ala, Asn, Asp, Gly, and Val indicates that the database distributions are greatly influenced by long-range interactions and dominated by specific recognizable elements of protein structure. In contrast, the limited structural scope of the dipeptide models presents the extreme case of a peptide under the influence of only short-range interactions. The models were evaluated by a comparison of scalar coupling constants calculated from the conformational distributions and compared with experimentally values determined for unstructured peptides. Although the models gave different distributions, there was similar agreement with experiment. This comparison emphasizes the differences and limitations in each model and highlights the difficulty in presenting an accurate picture of the random-coil state. Proteins 1999;36:407- 418. 相似文献
16.
Hydration layer water molecules play important structural and functional roles in proteins. Despite being a critical component in biomolecular systems, characterizing the properties of hydration water poses a challenge for both experiments and simulations. In this context we investigate the local structure of hydration water molecules as a function of the distance from the protein and water molecules respectively in 188 high resolution protein structures and compare it with those obtained from molecular dynamics simulations. Tetrahedral order parameter of water in proteins calculated from previous and present simulation studies show that the potential of bulk water overestimates the average tetrahedral order parameter compared to those calculated from crystal structures. Hydration waters are found to be more ordered at a distance between the first and second solvation shell from the protein surface. The values of the order parameter decrease sharply when the water molecules are located very near or far away from the protein surface. At small water-water distance, the values of order parameter of water are very low. The average order parameter records a maximum value at a distance equivalent to the first solvation layer with respect to the water-water radial distribution and asymptotically approaches a constant value at large distances. Results from present analysis will help to get a better insight into structure of hydration water around proteins. The analysis will also help to improve the accuracy of water models on the protein surface. 相似文献
17.
Plastic microfluidic chip for continuous-flow polymerase chain reaction: simulations and experiments
A continuous flow polymerase chain reaction (CF-PCR) device comprises a single fluidic channel that is heated differentially to create spatial temperature variations such that a sample flowing through it experiences the thermal cycling required to induce amplification. This type of device can provide an effective means to detect the presence of a small amount of nucleic acid in very small sample volumes. CF-PCR is attractive for global health applications due to its less stringent requirements for temperature control than for other designs. For mass production of inexpensive CF-PCR devices, fabrication via thermoplastic molding will likely be necessary. Here we study the optimization of a PCR assay in a polymeric CF-PCR device. Three channel designs, with varying residence time ratios for the three PCR steps (denaturation, annealing, and extension), were modeled, built, and tested. A standardized assay was run on the three different chips, and the PCR yields were compared. The temperature gradient profiles of the three designs and the residence times of simulated DNA molecules flowing through each temperature zone were predicted using computational methods. PCR performance predicted by simulation corresponded to experimental results. The effects of DNA template size and cycle time on PCR yield were also studied. The experiments and simulations presented here guided the CF-PCR chip design and provide a model for predicting the performance of new CF-PCR designs prior to actual chip manufacture, resulting in faster turn around time for new device and assay design. Taken together, this framework of combined simulation and experimental development has greatly reduced assay development time for CF-PCR in our lab. 相似文献
18.
Impact of dilution on microbial community structure and functional potential: comparison of numerical simulations and batch culture experiments 总被引:1,自引:0,他引:1
Franklin RB Garland JL Bolster CH Mills AL 《Applied and environmental microbiology》2001,67(2):702-712
A series of microcosm experiments was performed using serial dilutions of a sewage microbial community to inoculate a set of batch cultures in sterile sewage. After inoculation, the dilution-defined communities were allowed to regrow for several days and a number of community attributes were measured in the regrown assemblages. Based upon a set of numerical simulations, community structure was expected to differ along the dilution gradient; the greatest differences in structure were anticipated between the undiluted-low-dilution communities and the communities regrown from the very dilute (more than 10(-4)) inocula. Furthermore, some differences were expected among the lower-dilution treatments (e.g., between undiluted and 10(-1)) depending upon the evenness of the original community. In general, each of the procedures used to examine the experimental community structures separated the communities into at least two, often three, distinct groups. The groupings were consistent with the simulated dilution of a mixture of organisms with a very uneven distribution. Significant differences in community structure were detected with genetic (amplified fragment length polymorphism and terminal restriction fragment length polymorphism), physiological (community level physiological profiling), and culture-based (colony morphology on R2A agar) measurements. Along with differences in community structure, differences in community size (acridine orange direct counting), composition (ratio of sewage medium counts to R2A counts, monitoring of each colony morphology across the treatments), and metabolic redundancy (i.e., generalist versus specialist) were also observed, suggesting that the differences in structure and diversity of communities maintained in the same environment can be manifested as differences in community organization and function. 相似文献
19.
20.
The activation energy for the formation of the first red compound, ES, for cytochrome-c peroxidase (ferrocytochrome-c: hydrogen-peroxide oxidoreductase, EC 1.11.1.5) by i-propyl hydroperoxide and the rate constants for the formation of ES with various hydroperoxides have been determined. Multivariate data analysis by the partial least-squares model in latent variables has been used to compare the rate constants with the corresponding rate constants for the formation of compound I from lactoperoxidase and two isoenzymes of horseradish peroxidase. The results show that the rate of formation of ES from cytochrome-c peroxidase is highly correlated with the pKa of the hydroperoxides. The activation energy for the formation of ES with i-propyl hydroperoxide is close to the corresponding value for hydrogen peroxide. 相似文献