首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Impacts of naturally-occurring soil fungi on seeds of meadow plants   总被引:2,自引:0,他引:2  
Although soil fungi may represent an ecologically important cause of mortality of buried seeds, few studies have provided direct evidence of the pathogenicity of fungi colonizing seeds in natural habitats. In response, we conducted a series of experiments to investigate the impacts of soil fungi from a range of habitats on seeds of meadow plants. We compared the survival of seeds of four grasses in five habitats, and isolated fungi from these seeds. We then tested the pathogenicity of selected isolates against two standard sets of plant species: the original four grasses and a broad range of old field species. We found that the soil community contained a large variety of seed-colonizing fungi. Some, but not all, examples of these fungi caused seed mortality; others may be harmless commensals. Some of these isolates negatively affected a broad range of plant species, but others had a more restricted host range; as a result, pathogenicity varied depending upon the particular plant-fungus combination. Few between-habitat differences in seed survival were detected. Our results demonstrate that fungal seed pathogens are common, ubiquitous, and potentially lethal, but that their effects depend on the particular combination of fungus and plant species considered. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Evidence suggests that impacts of fungal pathogens on tree recruitment tend to be greater in the forest understory than in openings, and that shade-tolerant trees are less vulnerable than shade-intolerant species. To investigate the role that harmful soil fungi may have in reducing regeneration of temperate trees, we applied fungicide to buried seeds of matched pairs of species differing in their relative shade tolerance and/or successional status (Acer negundo versus Acer saccharum, Prunus virginiana versus Prunus serotina, and Pinus strobus versus Tsuga canadensis), in three habitats that differed in their degree of openness (old field, forest gap, and forest understory). Our results indicated that soil fungi reduced germination of A. negundo, P. virginiana, P. serotina. and T. canadensis, and reduced viability of ungerminated seeds of P. strobus; no significant effects of fungi on seeds of A. saccharum were detected. However, we found seeds were not less likely to survive following burial in forest understory than in gaps. As well, results for only one species pair (A. negundo versus A. saccharum) were consistent with the prediction that shade-intolerant or successional species should be more susceptible to fungal attack than mature forest species. These results contrast with other studies of temperate and especially tropical forest trees.  相似文献   

3.
The Present work reports the study of the distribution of keratinophilic fungi isolated from 39 samples of soil collected in Brittany, France. Keratinophilic fungi were isolated from 35 (92.3%) of the samples studied. The most frequently found species wereFusarium moniliforme, Penicillium viridicatum and an unidentified species ofAcremonium. The other fungi isolated were members of the generaChrysosporium, Gliocladium, Mucor, Trichoderma andTrichophyton.  相似文献   

4.
Evidence from tropical forests suggests understory habitats are associated with a high risk of disease, which may prevent the establishment of vulnerable tree species; in contrast, canopy gaps can act as refuges from these pathogens. However, few studies have investigated the impacts of pathogens on regeneration in temperate forests. To determine whether losses to fungi of seeds of Betula papyrifera, a light-loving species, varied between habitats that differed in their degree of openness, we applied fungicide to seeds buried in old fields, treefall gaps, and forest understory sites. We found that the application of fungicide significantly reduced losses in all habitats, relative to control values. This effect was habitat-dependent: the benefit of fungicide was greater in forest understory than in openings. This suggests that B. papyrifera is prevented from establishing in understory environments in part by its susceptibility to pathogen attack, and not solely because of a high light requirement.  相似文献   

5.
The effects of inoculation with arbuscular mycorrhizal (AM) fungi, organic fertilizer (F) applications, and soil sterilization on maize growth were evaluated in a pot experiment. The experiment was in a completely randomized factorial design (2 × 4 × 2) with six replicates for each treatment. There were two soil treatments (sterilized soil, SS and unsterilized soil, US), four organic fertilizer treatments (0.0, 0.5, 1.0 and 2.0 g kg?1 soil), and two AM fungi treatments (inoculation with Glomus mosseae, +AM and uninoculated control, ?AM). Inoculated plants generally had greater AM colonization, plant height, dry weight and phosphorus (P) uptake than uninoculated controls, and these parameters were significantly increased as the organic fertilizer application increased up to 0.5 g kg?1 but decreased or had no significant effect compared to the uninoculated plants at the highest fertilizer rate (2.0 g kg?1). Plant growth, P uptake and AM colonization of root system were significantly higher in sterilized soil compared to the unsterilized control. Our results indicated that the inoculation of AM fungi in field soil with optimal organic fertilizer application greatly improved maize growth and nutrient uptake, and the effect was greater under sterilized soil condition.  相似文献   

6.
土壤呼吸是植物固定的碳由陆地生态系统进入大气的主要途径之一; 凋落物分解是养分循环的重要环节。陆地植物的90%以上可同菌根真菌形成共生关系, 菌根真菌对于植物获取环境中的养分具有重要的作用。然而, 其对土壤呼吸和凋落物分解的影响却经常在生态系统对环境变化的响应研究中被忽视。本文系统地综述了国内外相关研究进展, 对菌根真菌如何影响土壤呼吸和凋落物分解这两个过程及这种影响如何受到环境变化的制约做了全面的分析, 并对以往研究中存在的问题以及未来的研究方向提出了展望。  相似文献   

7.
8.
The effects of inoculation with arbuscular mycorrhizal (AM) fungi, organic fertilizer (F) applications, and soil sterilization on maize growth were evaluated in a pot experiment. The experiment was in a completely randomized factorial design (2 × 4 × 2) with six replicates for each treatment. There were two soil treatments (sterilized soil, SS and unsterilized soil, US), four organic fertilizer treatments (0.0, 0.5, 1.0 and 2.0 g kg-1 soil), and two AM fungi treatments (inoculation with Glomus mosseae, +AM and uninoculated control, -AM). Inoculated plants generally had greater AM colonization, plant height, dry weight and phosphorus (P) uptake than uninoculated controls, and these parameters were significantly increased as the organic fertilizer application increased up to 0.5 g kg-1 but decreased or had no significant effect compared to the uninoculated plants at the highest fertilizer rate (2.0 g kg-1). Plant growth, P uptake and AM colonization of root system were significantly higher in sterilized soil compared to the unsterilized control. Our results indicated that the inoculation of AM fungi in field soil with optimal organic fertilizer application greatly improved maize growth and nutrient uptake, and the effect was greater under sterilized soil condition.  相似文献   

9.
10.
Jiao J Y  Zou H Y  Jia Y F  Wang N 《农业工程》2009,29(2):85-91
The relationship between vegetation and soil erosion deserves attention due to its scientific importance and practical applications. A great deal of information is available about the mechanisms and benefits of vegetation in the control of soil erosion, but the effects of soil erosion on vegetation development and succession is poorly documented. Research shows that soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil erosion interferes with the process of plant community development and vegetation succession, commencing with seed formation and impacting throughout the whole growth phase and affecting seed availability, dispersal, germination and establishment, plant community structure and spatial distribution. There have been almost no studies on the effects of soil erosion on seed development and availability, of surface flows on seed movement and redistribution, and their influences on soil seed bank and on vegetation establishment and distribution. However, these effects may be the main cause of low vegetation cover in regions of high soil erosion activity and these issues need to be investigated. Moreover, soil erosion is not only a negative influence on vegetation succession and restoration, but also a driving force of plant adaptation and evolution. Consequently, we need to study the effects of soil erosion on ecological processes and on development and regulation of vegetation succession from the points of view of pedology and vegetation, plant and seed ecology, and to establish an integrated theory and technology for deriving practical solutions to soil erosion problems.  相似文献   

11.
The relationship between vegetation and soil erosion deserves attention due to its scientific importance and practical applications. A great deal of information is available about the mechanisms and benefits of vegetation in the control of soil erosion, but the effects of soil erosion on vegetation development and succession is poorly documented. Research shows that soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil erosion interferes with the process of plant community development and vegetation succession, commencing with seed formation and impacting throughout the whole growth phase and affecting seed availability, dispersal, germination and establishment, plant community structure and spatial distribution. There have been almost no studies on the effects of soil erosion on seed development and availability, of surface flows on seed movement and redistribution, and their influences on soil seed bank and on vegetation establishment and distribution. However, these effects may be the main cause of low vegetation cover in regions of high soil erosion activity and these issues need to be investigated. Moreover, soil erosion is not only a negative influence on vegetation succession and restoration, but also a driving force of plant adaptation and evolution. Consequently, we need to study the effects of soil erosion on ecological processes and on development and regulation of vegetation succession from the points of view of pedology and vegetation, plant and seed ecology, and to establish an integrated theory and technology for deriving practical solutions to soil erosion problems.  相似文献   

12.
B型烟粉虱Bemisia tabaci是重大入侵害虫,发展生物防治技术控制其危害具有重要意义。本研究采用浸渍法测定了9种20株土壤真菌对B型烟粉虱的室内活性,结果表明,供试菌株对B型烟粉虱都有一定致病活性,1.0±10^8 孢子/mL的分生孢子悬浮液处理10 d后,烟粉虱2龄若虫的累计校正死亡率为53%~93%,其中淡紫紫孢菌Purpureocillium lilacinum PITS01、PlMS-12和PlMS-15菌株,以及刀孢蜡蚧菌Lecanicillium psalliotae LpTS01菌株引起B型烟粉虱91%以上的死亡率。进一步测定了PITS01和LpTS01菌株对烟粉虱的毒力,结果表明PITS01和LpTS01对烟粉虱2龄若虫在处理第4天的LC50分别为2.8×10^7 孢子/mL和3.6×10^7 孢子/mL,第6天分别为1.7×10^6 孢子/mL和3.6×10^5 孢子/mL;当孢子浓度为1.0×10^7 孢子/mL时,PITS01和LpTS01菌株LT50值分别为4.4 d和4.2 d。菌株PITS01和LpTS01对烟粉虱防治具有一定的应用潜力。  相似文献   

13.
The oil‐seed cakes of neem (Azadirachta indica), castor (Ricinus communis), linseed (Linum usitatissimum), groundnut (Arachis hypogaea), mustard (Brassica campestris) and duan (Eruca sativa) were tested for their efficacious nature against plant‐parasitic nematodes and soil‐inhabiting fungi infesting lentil and also on the subsequent crop, mungbean in field trials. The population of plant‐parasitic nematodes such as Meloidogyne incognita, Rotylenchulus reniformis, Tylenchorhynchus brassicae, Helicoty‐lenchus indicus etc., and the frequency of pathogenic fungi Macrophomina phaseolina, Fusarium oxysporum f. lentis, Rhizoctonia solarii, Septoria leguminum, Sclerotium rolfsii, etc., were significantly reduced by the incorporation of oil‐seed cakes, however, the frequency of saprophytic fungi Aspergillus niger, Trichoderma viridae, Penicillium degetatum, etc., was increased. A several‐fold improvement was observed in plant‐growth parameters such as plant weight, percent pollen fertility, pod numbers, chlorophyll content, nitrate reducíase activity in leaves and root‐nodulation. The residual effects of different oil‐seed cakes were also noted in the subsequent crop, mungbean, in the next growing season. The population of plant‐parasitic nematodes and frequency of soil‐inhabiting fungi also influenced by the depth of ploughing.  相似文献   

14.
Dodd  M. B.  Lauenroth  W. K. 《Plant Ecology》1997,133(1):13-28
We analyzed soil water data from three sites with different soil textures in the shortgrass steppe of northeastern Colorado, USA. Our objective was to evaluate the relationship between the occurrence of plant functional types and the effect of soil texture on soil water availability. Soil water availability was greatest in the upper soil layers at all three sites, but the loamy sand site had significantly greater soil water availability than the sandy clay loam and sandy clay sites in wetter years at depths below 60 cm. Calculations of proportional water availability by layer using both field data and fifty-year soil water model simulations, showed that the sandy clay loam and sandy clay soils on average had greater water availability in layers 30 cm and above, but that the loamy sand had the greatest water availability in layers beneath this, particularly at 105 cm. This observation can be linked to the occurrence of a fine textured subsoil at this site. The textural pattern in the loamy sand profile effectively creates two water resources: a shallow pool accessible to all plants; and a deep pool accessible only to deep-rooted plants. This is offered as an explanation for the co-dominance of the two main plant functional types at the loamy sand site. At the other two sites, shallow-rooted shortgrass vegetation dominated, being more consistent with the general pattern for the area. Thus the patterns of vegetation structure at the three sites were consistent with the hypothesis. Aboveground net primary production data for the three sites, along with transpiration estimates from the model simulations, indicated that the additional water availability in the coarse textured soil was associated with higher overall plant productivity.Nomenclature: Taxonomic nomenclature follows R. L. McGregor & T. M. Barkley (1986) Flora of the Great Plains. Great Plains Flora Association. University Press of Kansas, Lawrence.  相似文献   

15.
Summary The fungal composition of soils with an equivalent percentage of carbon levels 2%, 5%, 10% and 20% fromOlea europea,, Citrus sinensis andEucalyptus rostrato leaves was studied after 10, 45 and 120 days using the dilution-plate method. They all induced significant increases in the total count of fungi, but their effect on the individual fungi was selective. The best substrate for the total fungus flora wasCitrus sinensis and the poorest wasOlea europeae leaves. The best three colonisers (possessing the highest counts), at carbon levels 2%, 5%, 10% and 20% at the end of the experimental periods were, respectively, as follows: forOlea europeae leaves,Scopulariaopsis brevicaulis, Drechslera halodes andCylindrocarpon sp.;Aspergillus quadrilineatus, A. sydowi andCurvularia lunata; A. quadrilineatus, Alternaria alternata andC. lunata andA. quadrilineatus, A. egyptiacus andA. terreus; forCitrus sinensis leaves,A. quadrilineatus, A. fumigatus andS. brumptii; A. fumigatus, A. quadrilineatus andA. versicolor; A. quadrilineatus, A. terreus andS. brumptii; andA. quadrilineatus, A. flavus andA. sydowi; and forEucalyptus rostrata leaves,A. quadrilineatus, Rhizopus stolonifer andA. sydowi; A. quadrilineatus, A. niger andA. terreus; A. niger, A. quadrilineatus andS. brevicaulis; andA. terreus, A. niger andA. quadrilineatus.  相似文献   

16.
This paper deals with the influence of soil moisture on the fungal population, bacterial population, CO2-evolution and dehydrogenase activity. Correlation coefficients of various parameters of the soil with different moisture regimes are given. It is demonstrated that soil moisture significantly alters the microbial population, its activity and the relationships between various parameters.  相似文献   

17.
Dispersal by frugivorous birds facilitates invasion by many exotic plants. We measured the seed rain of ornithochorous native and exotic plants at three habitats of a fragmented landscape of the northeastern United States for 1 year. We studied maple-beech forests, old fields, and abandoned conifer plantations. Across all sites we collected 2,196 ornithochorous seeds, including seeds from six exotic species and 10 native species. The majority (90%) of collected seeds were from exotic species. Seed dispersal was broadly similar among habitats, though seed rain of exotic species was higher in old fields than forested habitats. Seed rain was not strongly influenced by artificial perches for most species. However, seeds of exotic species were more commonly found in traps under an artificial perch in old fields. Seed rains for the exotic Elaeagnus umbellata, Rhamnus cathartica, and Rosa multiflora were positively associated with local density of mature plants. Seed rain of R. cathartica was positively associated with abundance of seedlings but not saplings, suggesting that post-dispersal mortality was important. Seed dispersal of the exotic Lonicera spp. was high in all habitats, accounting for 66% of all seeds collected. With the exception of Lonicera spp., seed rain of common exotic invaders was affected by the abundance of seed sources, and these species might be effectively controlled by elimination of local fruiting plants. Fruits of Lonicera morrowii, which has extensively invaded our area, are apparently a common component in the diet of frugivores.  相似文献   

18.
A microcosm system is described which permits assessment of the progressive growth of filamentous fungi through soil. We report on its application to measure the effects of Coriolus versicolor and Phanerochaete chrysosporium upon the sorptivity and water repellence of a mineral soil, measured using a miniature infiltration device. Both fungal species caused moderate sub-critical repellence. Since the pore structure was unaffected, the repellence was probably due to hydrophobic substances of fungal origin. This is the first report of changes in soil repellence caused by the growth of potential xenobiotic bioremediating fungi. The potential consequences are discussed.  相似文献   

19.
A field study was done to assess the potential benefit of arbuscular mycorrhizal (AM) inoculation of elite strawberry plants on plant multiplication, under typical strawberry nursery conditions and, in particular, high soil P fertility (Mehlich-3 extractible P=498 mg kg−1). Commercially in vitro propagated elite plants of five cultivars (‘Chambly,’ ‘Glooscap,’ ‘Joliette,’ ‘Kent,’ and ‘Sweet Charlie’) were transplanted in noninoculated growth substrate or in substrate inoculated with Glomus intraradices or with a mixture of species (G. intraradices, Glomus mosseae, and Glomus etunicatum) at the acclimation stage and were grown for 6 weeks before transplantation in the field. We found that AM fungi can impact on plant productivity in a soil classified as excessively rich in P. Inoculated mother plants produced about 25% fewer daughter plants than the control in Chambly (P=0.03), and Glooscap produced about 50% more (P=0.008) daughter plants when inoculated with G. intraradices, while the productivity of other cultivars was not significantly decreased. Daughter plant shoot mass was not affected by treatments, but their roots had lower, higher, or similar mass, depending on the cultivar–inoculum combination. Root mass was unrelated to plant number. The average level of AM colonization of daughter plants produced by noninoculated mother plants did not exceed 2%, whereas plants produced from inoculated mothers had over 10% of their root length colonized 7 weeks after transplantation of mother plants and ∼6% after 14 weeks (harvest), suggesting that the AM fungi brought into the field by inoculated mother plants had established and spread up to the daughter plants. The host or nonhost nature of the crop species preceding strawberry plant production (barley or buckwheat) had no effect on soil mycorrhizal potential, on mother plant productivity, or on daughter plant mycorrhizal development. Thus, in soil excessively rich in P, inoculation may be the only option for management of the symbiosis.  相似文献   

20.
D. J. Lodge 《Plant and Soil》1989,117(2):243-253
Native mixtures of extomycorrhizal fungi were found to infect Populus and Salix roots primarily in very moist but well drained soils in both the field and in controlled experiments (0 to –0.2 MPa), whereas native mixtures of VA-endomycorrhizal fungi infected roots over a much wider range of soil moisture (flooded to –3.4 MPa). Although a moisture gradient experiment showed endomycorrhizal formation was greater in moist soil than in very dry or flooded soils, this pattern was reversed in field transects along drainage gradients. Infection by VA-endomycorrhizal fungi in the field was the lowest where infection by ectomycorrhizal fungi was high, which suggests possible antagonism among the fungal symbionts. The narrow moisture range for ectomycorrhizal formation, and antagonism among endo- and ectomycorrhizal fungi, apparently combine to produce the mycorrhizal distributions found in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号