首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to construct a human chromosome 4-specific YAC library, we have utilized pYAC4 and a mouse/human hybrid cell line HA(4)A in which the only human chromosome present is chromosome 4. From this cell line, approximately 8Mb of chromosome 4 have been cloned. The library includes 65 human-specific clones that range in size from 30kb to 290kb, the average size being 108kb. In order to optimize the manipulation of YAC libraries, we have begun to investigate the stability of YACs containing human DNA in yeast cells; these studies will also determine if there are intrinsic differences in the properties of chromosomes containing higher eukaryotic DNAs. We are examining two kinds of stability: 1] mitotic stability, the ability of the YAC to replicate and segregate properly during mitosis, and 2] structural stability, the tendency of the YAC to rearrange. We have found that the majority of YACs examined are one to two orders of magnitude less stable than authentic yeast chromosomes. Interestingly, the largest YAC analyzed displayed a loss rate typical for natural yeast chromosomes. Our results also suggest that increasing the length of an artificial chromosome improves its mitotic stability. One YAC that showed a very high frequency of rearrangement by mitotic recombination proved to be a mouse/human chimera. In contrast to studies using total human DNA, the frequency of chimeras (i.e., mouse/human) in the YAC pool appeared to be low.  相似文献   

2.
A linear mammalian artificial chromosome vector will require at least three functional elements: a centromere, two telomeres and replication origins. One route to generate such a vector is by the fragmentation of an existing chromosome. We have previously described the use of cloned telomeric DNA to generate and stably rescue truncated derivatives of a human X chromosome in a somatic cell hybrid. Further rounds of telomere-associated chromosome fragmentation have now been used to engineer a human X-derived minichromosome. This minichromosome is estimated to be < 10 Mb in size. In situ hybridization and molecular analysis reveal that the minichromosome has a linear structure, with two introduced telomere constructs flanking a 2.5 Mb alpha-satellite array. The highly truncated chromosome also retains some chromosome-specific DNA, originating from Xp11.21. There is no significant change in the mitotic stability of the minichromosome as compared with the X chromosome from which it was derived.  相似文献   

3.
P Hieter  C Mann  M Snyder  R W Davis 《Cell》1985,40(2):381-392
A colony color assay that measures chromosome stability is described and is used to study several parameters affecting the mitotic maintenance of yeast chromosomes, including ARS function, CEN function, and chromosome size. A cloned ochre-suppressing form of a tRNA gene, SUP11, serves as a marker on natural and in vitro-constructed chromosomes. In diploid strains homozygous for an ochre mutation in ade2, cells carrying no copies of the SUP11 gene are red, those carrying one copy are pink, and those carrying two or more copies are white. Thus, the degree of red sectoring in colonies reflects the frequency of mitotic chromosome loss. The assay also distinguishes between chromosome loss (1:0 segregation) and nondisjunction (2:0 segregation). The most dramatic effect on improving mitotic stability is caused by increasing chromosome size. Circular chromosomes increase in stability through a size range up to approximately 100 kb, but do not continue to be stabilized above this value. However, linear chromosomes continue to increase in mitotic stability throughout the size range tested (up to 137 kb). It is possible that the mitotic stability of linear chromosomes is proportional to chromosome length, up to a plateau value that has not yet been reached in our synthetic constructions.  相似文献   

4.
Practical applications of minichromosomes, generated by de novo composition or by truncation of natural chromosomes, rely on stable transmission of these chromosomes. Functional centromeres, telomeres and replication origins are recognized as prerequisites for minichromosome stability. However, it is not yet clear whether, and if yes, to what degree the chromatin content has a qualitative or quantitative impact on stable chromosome transmission. A small translocation chromosome, which arose after X-irradiation of a reconstructed field bean karyotype, comprised approximately 5% of the haploid metaphase complement and was found to consist of three pieces of duplicated chromatin and a wild-type centromere. This chromosome was stably transmitted through all meristematic and pollen grain mitoses but was frequently lost during meiosis (66% loss in hemizygous and 33% in homozygous condition). This minichromosome was only a little smaller than stably segregating translocation chromosomes (comprising approximately 6% of the genome) of a euploid field bean karyotype. The duplications specific for this minichromosome did not influence meiotic segregation when associated with non-duplicated chromatin of other chromosomes. In comparison with minichromosomes of other species, the possibility of a lower size limit for a stable chromosome transmission must therefore be considered which might be based, for instance, on insufficient lateral support of centromeres or on insufficient bivalent stability due to the incapability of chiasma formation.  相似文献   

5.
Efficiency of de novo centromere formation in human artificial chromosomes   总被引:5,自引:0,他引:5  
In a comparative study, we show that human artificial chromosome (HAC) vectors based on alpha-satellite (alphoid) DNA from chromosome 17 but not the Y chromosome regularly form HACs in HT1080 human cells. We constructed four structurally similar HAC vectors, two with chromosome 17 or Y alphoid DNA (17alpha, Yalpha) and two with 17alpha or Yalpha and the hypoxanthine guanine phosphoribosyltransferase locus (HPRT1). The 17alpha HAC vectors generated artificial minichromosomes in 32-79% of the HT1080 clones screened, compared with only approximately 4% for the Yalpha HAC vectors, indicating that Yalpha is inefficient at forming a de novo centromere. The 17alpha HAC vectors produced megabase-sized, circular HACs containing multiple copies of alphoid fragments (60-250 kb) interspersed with either vector or HPRT1 DNA.The 17alpha-HPRT1 HACs were less stable than those with 17alpha only, and these results may influence the design of new HAC gene transfer vectors.  相似文献   

6.
The genome of the protozoan Trypanosoma brucei contains a set of about 100 minichromosomes of about 50 to 150 kb in size. The small size of these chromosomes, their involvement in antigenic variation, and their mitotic stability make them ideal candidates for a structural analysis of protozoan chromosomes and their telomeres. We show that a subset of the minichromosomes is composed predominantly of simple-sequence DNA, with over 90% of the length of the minichromosome consisting of a tandem array of 177-bp repeats, indicating that these molecules have limited protein-coding capacity. Proceeding from the tip of the telomere to a chromosome internal position, a subset of the minichromosomes contained the GGGTTA telomere repeat, a 29-bp telomere-derived repeat, a region containing 74-bp G + C-rich direct repeats separated by approximately 155 bp of A + T-rich DNA that has a bent character, and 50 to 150 kb of the 177-bp repeat. Several of the minichromosome-derived telomeres did not encode protein-coding genes, indicating that the repertoire of telomeric variant cell surface glycoprotein genes is restricted to some telomeres only. The telomere organization in trypanosomes shares striking similarities to the organization of telomeres and subtelomeres in humans, yeasts, and plasmodia. An electron microscopic analysis of the minichromosomes showed that they are linear molecules without abnormal structures in the main body of the chromosome. The structure of replicating molecules indicated that minichromosomes probably have a single bidirectional origin of replication located in the body of the chromosome. We propose a model for the structure of the trypanosome minichromosomes.  相似文献   

7.
We have constructed circular minichromosomes, ranging in size from 36 to 110 kb, containing the centromeric repeats of Schizosaccharomyces pombe cen3. Comparison of their mitotic stability showed that the circular minichromosomes became more unstable with increasing in size, however, a linear cen3 minichromosome, which is almost the same size as the largest circular one tested, does not show such instability. High levels of expression of the top2 + (type II DNA topoisomerase; topo II) but not top1 + gene (type I DNA topoisomerase) suppressed the instability of the largest circular minichromosome, whereas partial inactivation of topo II dramatically destabilized the minichromosome. A mutant topo II, defective in nuclear localization but still retaining its in vitro relaxation activity, did not stabilize the circular minichromosome. These results indicate that endogenous type II DNA topoisomerase is insufficient for accurate segregation of the circular minichromosome. In addition, the replication of the minichromosomal DNA appears to proceed normally, because the presence of the unstable minichromosome did not cause G2 delay. A likely cause of the instability is intertwining of the minichromosome DNA possibly occuring after DNA replication. An interaction between topo II and the centromeric repeats is implied by the finding that multiple copies of the centromeric repeat, dg-dh, affect stability of the minichromosome similarly to top2 + gene dosage.  相似文献   

8.
We have constructed circular minichromosomes, ranging in size from 36 to 110 kb, containing the centromeric repeats of Schizosaccharomyces pombe cen3. Comparison of their mitotic stability showed that the circular minichromosomes became more unstable with increasing in size, however, a linear cen3 minichromosome, which is almost the same size as the largest circular one tested, does not show such instability. High levels of expression of the top2 + (type II DNA topoisomerase; topo II) but not top1 + gene (type I DNA topoisomerase) suppressed the instability of the largest circular minichromosome, whereas partial inactivation of topo II dramatically destabilized the minichromosome. A mutant topo II, defective in nuclear localization but still retaining its in vitro relaxation activity, did not stabilize the circular minichromosome. These results indicate that endogenous type II DNA topoisomerase is insufficient for accurate segregation of the circular minichromosome. In addition, the replication of the minichromosomal DNA appears to proceed normally, because the presence of the unstable minichromosome did not cause G2 delay. A likely cause of the instability is intertwining of the minichromosome DNA possibly occuring after DNA replication. An interaction between topo II and the centromeric repeats is implied by the finding that multiple copies of the centromeric repeat, dg-dh, affect stability of the minichromosome similarly to top2 + gene dosage.  相似文献   

9.
A 530 kb long Schizosaccharomyces pombe linear minichromosome, Ch16, containing a centric region of chromosome III, has previously been made. In the present study, we constructed a number of deletions in the right and/or left arms of Ch16, and compared their structure and behaviour with Ch16. The functional centromere, cen3, is allocated within a 120 kb long region which is covered by the shortest derivative, Ch10, and is comprised mostly of centromeric repeating sequences. The shortest minichromosome is stable in mitosis and the copy number control is apparently precise. In monosomic meiosis it segregates normally. In disomic meioses, however, the frequency of non-disjunction is very high, suggesting that it may not form a pair. The mitotic loss rate of one of the left-arm deletions, ChR32, which lacks a part of the centromeric repeating sequence, is the highest of all the deletions. This deletion also exhibits the highest precocious sister chromatid separation in meiosis I, suggesting that sister chromatid association might become weakened in ChR32. Our results indicate that the proper meiotic segregation of S.pombe minichromosomes is dependent upon the formation of a bivalent. S.pombe may not have the 'distributive segregation' found with Saccharomyces cerevisiae minichromosomes.  相似文献   

10.
Tange Y  Niwa O 《Genetics》2007,175(4):1571-1584
A previously isolated fission yeast gamma-tubulin mutant containing apparently stabilized microtubules proliferated at an approximately identical rate as wild type, yet the mutant mitosis spindle dynamics were aberrant, particularly the kinetochore microtubule dynamics. Progression through mitosis in the mutant, however, resulted in mostly accurate chromosome segregation. In the absence of the spindle assembly checkpoint gene, mad2+, the spindle dynamics in the gamma-tubulin mutant were greatly compromised, leading to a high incidence of chromosome missegregation. Unlike in wild-type cells, green fluorescent protein (GFP)-tagged Mad2 protein often accumulated near one of the poles of an elongating spindle in the gamma-tubulin mutant. We isolated novel mad2 mutants that were defective in arresting mitotic progression upon gross perturbation of the spindle formation but remained functional for the viability of the gamma-tubulin mutant. Further, the mad2 mutations did not appreciably destabilize minichromosomes in unperturbed mitoses. When overexpressed ectopically, these mutant Mad2 proteins sequestered wild-type Mad2, preventing its function in mitotic checkpoint arrest, but not in minichromosome stability. These results indicated that the Mad2 functions required for checkpoint arrest and chromosome stability in unperturbed mitosis are genetically discernible. Immunoprecipitation studies demonstrated that GFP-fused mutant Mad2 proteins formed a Mad1-containing complex with altered stability compared to that formed with wild-type Mad2, providing clues to the novel mad2 mutant phenotype.  相似文献   

11.
12.
We constructed stable mammalian cell lines in which human heterochromatin protein HP1alpha and kinetochore protein CENP-A were differentially expressed as fusions to red (RFP-HP1) and green fluorescent proteins (GFP-CENP-A). Heterochromatin localization of RFP-HP1 was clearly shown in mouse and Indian muntjac cells. By preparing mitotic chromosome spreads, the inner centromere localization of RFP-HP1 was observed in human and Indian muntjac cells. To characterize its molecular behavior in living mitotic cells, time-lapse images of RFP-HP1 were obtained by computer-assisted image analyzing system, mainly with mouse cells. In G2 phase, a significant portion of RFP-HP1 diffused homogeneously in the nucleus and further dispersed into the cytoplasm soon after the nuclear membrane breakdown, while some remained in the centromeric region. Simultaneous observations with GFP-CENP-A in human cells showed that RFP-HP1 was located just between the sister kinetochores and then aligned to the spindle midzone. With the onset of anaphase, once it was released from there, it moved to the centromeres of segregating chromosomes or returned to the spindle equator. As cytokinesis proceeded, HP1alpha was predominantly found in the newly formed daughter nuclei and again displayed a heterochromatin-like distribution. These results suggested that, although the majority of HP1alpha diffuses into the cytoplasm, some populations are retained in the centromeric region and involved in the association and segregation of sister kinetochores during mitosis.  相似文献   

13.
Alpha thalassemia/mental retardation X linked (ATRX) is a switch/sucrose nonfermenting-type ATPase localized at pericentromeric heterochromatin in mouse and human cells. Human ATRX mutations give rise to mental retardation syndromes characterized by developmental delay, facial dysmorphisms, cognitive deficits, and microcephaly and the loss of ATRX in the mouse brain leads to reduced cortical size. We find that ATRX is required for normal mitotic progression in human cultured cells and in neuroprogenitors. Using live cell imaging, we show that the transition from prometaphase to metaphase is prolonged in ATRX-depleted cells and is accompanied by defective sister chromatid cohesion and congression at the metaphase plate. We also demonstrate that loss of ATRX in the embryonic mouse brain induces mitotic defects in neuroprogenitors in vivo with evidence of abnormal chromosome congression and segregation. These findings reveal that ATRX contributes to chromosome dynamics during mitosis and provide a possible cellular explanation for reduced cortical size and abnormal brain development associated with ATRX deficiency.  相似文献   

14.
Mechanism for chromosome and minichromosome segregation in Escherichia coli   总被引:5,自引:0,他引:5  
A mechanism for the segregation of chromosomes and minichromosomes into daughter cells during division of Escherichia coli is presented. It is based on the idea that the cell envelope contains a large number of sites capable of binding to the chromosomal replication origin, oriC, and that a polymerizing DNA strand becomes attached to one of the sites at initiation of a round of replication. The attachment sites are distributed throughout the actively growing cell envelope, i.e. lateral envelope and septum, but not in the existing cell poles. This asymmetric distribution of oriC attachment sites accounts for the experimentally observed non-random chromosome and minichromosome segregation, and for the variation in the degree of non-random segregation with cell strain and growth rate. The multi-site attachment concept also accounts for the unstable maintenance of minichromosomes.  相似文献   

15.
16.
Chromosome engineering is playing an increasingly important role in the functional analysis of genomes. A simple and efficient technology for manipulating large chromosomal segments is key to advancing these analyses. Here we describe a simple but innovative method to split chromosomes in Saccharomyces cerevisiae, which we call PCR-mediated chromosome splitting (PCS). The PCS method combines a streamlined procedure (two-step PCR and one transformation per splitting event) with the CreAoxP system for marker rescue. Using this novel method, chromosomes I (230 kb) and XV (1091 kb) of a haploid cell were split collectively into 10 minichromosomes ranging in size from 29-631 kb with high efficiency (routinely 80%) that were occasionally lost during mitotic growth in various combinations. These observations indicate that the PCS method provides an efficient tool to engineer the yeast genome and may offer a possible approach to identify minimal genome constitutions as a function of culture conditions through further splitting, followed by combinatorial loss of minichromosomes.  相似文献   

17.
Faithful chromosome inheritance is a fundamental biological activity and errors contribute to birth defects and cancer progression. We have performed a P-element screen in Drosophila melanogaster with the aim of identifying novel candidate genes involved in inheritance. We used a "sensitized" minichromosome substrate (J21A) to screen approximately 3,000 new P-element lines for dominant effects on chromosome inheritance and recovered 78 Sensitized chromosome inheritance modifiers (Scim). Of these, 69 decreased minichromosome inheritance while 9 increased minichromosome inheritance. Fourteen mutations are lethal or semilethal when homozygous and all exhibit dramatic mitotic defects. Inverse PCR combined with genomic analyses identified P insertions within or close to genes with previously described inheritance functions, including wings apart-like (wapl), centrosomin (cnn), and pavarotti (pav). Further, lethal insertions in replication factor complex 4 (rfc4) and GTPase-activating protein 1 (Gap1) exhibit specific mitotic chromosome defects, discovering previously unknown roles for these proteins in chromosome inheritance. The majority of the lines represent mutations in previously uncharacterized loci, many of which have human homologs, and we anticipate that this collection will provide a rich source of mutations in new genes required for chromosome inheritance in metazoans.  相似文献   

18.
Deletions in the Drosophila minichromosome Dp1187 were used to investigate the genetic interactions of trans-acting genes with the centromere. Mutations in several genes known to have a role in chromosome inheritance were shown to have dominant effects on the stability of minichromosomes with partially defective centromeres. Heterozygous mutations in the ncd and klp3A kinesin-like protein genes strongly reduced the transmission of minichromosomes missing portions of the genetically defined centromere, but had little effect on the transmission of minichromosomes with intact centromeres. Using this approach, ncd and klp3A were shown to require only the centromeric region of the chromosome for their roles in chromosome segregation. Increased gene dosage also affected minichromosome transmission and was used to demonstrate that the nod kinesin-like protein gene interacts genetically with the centromere, in addition to interacting with extracentromeric regions as demonstrated previously. The results presented in this study strongly suggest that dominant genetic interactions between mutations and centromere-defective minichromosomes could be used effectively to identify novel genes necessary for centromere function.  相似文献   

19.
Proper chromatin compaction in mitosis (condensation) is required for equal chromosome distribution and the precise inheritance of genetic information. A protein complex called condensin is responsible for mitotic chromosome condensation, chromosome individualization, the timely separation of sister chromatids in mitosis, and proper tension in the mitotic spindle. The mitotic function of condensin depends on the recognition of specific binding sites in the chromosome. The mechanism for binding condensin to individual sites of mitotic chromosomes, as well as the molecular anatomy of these sites, remains to be elucidated. Even less is known about the process that translates condensin binding to individual sites into the segregation of chromosomes in anaphase. In the present work, by using minichromosome assay, we analyze seven individual condensin-binding sites in S. cerevisiae identified in the whole-genome ChIP-on-chip screening. This approach allowed us to estimate the individual contribution of condensin-binding sites to the segregation fidelity of minichromosomes.  相似文献   

20.
The physical and genetic characterization of a stable human minichromosome in a Chinese hamster hybrid cell is described. The minichromosome is 2-3 Mb in size, is linear, and contains a complementing SDHC gene. It is derived from a human chromosome 1, including the centromere, some pericentric heterochromatin from 1q12, and 1-2 Mb of 1q21. Genomic DNA surrounding the SDHC gene was used to construct a targeting vector with a selectable drug resistance marker (neo(R)); the marker was then successfully integrated into the minichromosome. With the new selectable marker, the 8.2.3 minichromosome could be transferred into mouse LMTK(-) and 3T3 TK(-) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号