首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a highly evolved human pathogen characterized by its formidable cell wall. Many unique lipids and glycolipids from the Mtb cell wall are thought to be virulence factors that mediate host-pathogen interactions. An intriguing example is Sulfolipid-1 (SL-1), a sulfated glycolipid that has been implicated in Mtb pathogenesis, although no direct role for SL-1 in virulence has been established. Previously, we described the biochemical activity of the sulfotransferase Stf0 that initiates SL-1 biosynthesis. Here we show that a stf0-deletion mutant exhibits augmented survival in human but not murine macrophages, suggesting that SL-1 negatively regulates the intracellular growth of Mtb in a species-specific manner. Furthermore, we demonstrate that SL-1 plays a role in mediating the susceptibility of Mtb to a human cationic antimicrobial peptide in vitro, despite being dispensable for maintaining overall cell envelope integrity. Thus, we hypothesize that the species-specific phenotype of the stf0 mutant is reflective of differences in antimycobacterial effector mechanisms of macrophages.  相似文献   

2.
Lim YJ  Choi JA  Choi HH  Cho SN  Kim HJ  Jo EK  Park JK  Song CH 《PloS one》2011,6(12):e28531

Background

Apoptosis is thought to play a role in host defenses against intracellular pathogens, including Mycobacterium tuberculosis (Mtb), by preventing the release of intracellular components and the spread of mycobacterial infection. This study aims to investigate the role of endoplasmic reticulum (ER) stress mediated apoptosis in mycobacteria infected macrophages.

Methodology/Principal Findings

Here, we demonstrate that ER stress-induced apoptosis is associated with Mtb H37Rv-induced cell death of Raw264.7 murine macrophages. We have shown that Mtb H37Rv induced apoptosis are involved in activation of caspase-12, which resides on the cytoplasmic district of the ER. Mtb infection increase levels of other ER stress indicators in a time-dependent manner. Phosphorylation of eIF2α was decreased gradually after Mtb H37Rv infection signifying that Mtb H37Rv infection may affect eIF2α phosphorylation in an attempt to survive within macrophages. Interestingly, the survival of mycobacteria in macrophages was enhanced by silencing CHOP expression. In contrast, survival rate of mycobacteria was reduced by phosphorylation of the eIF2α. Futhermore, the levels of ROS, NO or CHOP expression were significantly increased by live Mtb H37Rv compared to heat-killed Mtb H37Rv indicating that live Mtb H37Rv could induce ER stress response.

Conclusion/Significance

These findings indicate that eIF2α/CHOP pathway may influence intracellular survival of Mtb H37Rv in macrophages and only live Mtb H37Rv can induce ER stress response. The data support the ER stress pathway plays an important role in the pathogenesis and persistence of mycobacteria.  相似文献   

3.
Abstract Intracellular growth of Mycobacterium avium and M. tuberculosis H37Rv was compared both in human peripheral blood monocytes and in cultured macrophages. The cells were treated with 300 U of human recombinant interferon-gamma (IFNγ) either 48 h prior to phagocytosis or after infection. In some cases, indomethacin (IND, a potent inhibitor of prostaglandin-E2 synthesis), was added immediately after infection of macrophages. IFNγ pretreatment of monocytes resulted in about 50% lesser uptake of both pathogens, but had no effect in macrophages. Macrophages, as compared to monocytes, were more permissive to M. avium growth suggesting that monocytes may be innately more efficient in controlling the intracellular growth of this pathogen. About ten-fold higher growth of M. avium as compared to M. tuberculosis was observed in both culture systems. IFNγ-treatment alone did not confer any anti- M. avium activity to monocytes and macrophages alike and addition of IND did not change this unresponsiveness. In the case of M. tuberculosis , the IFNγ treatment alone endowed both monocytes and macrophages with significant bacteriostatic activity which was further potentiated by the addition of IND. These observations show innate differences in the ability of human monocytes and macrophages to control the growth of two major mycobacterial pathogens and the immunoregulatory mechanisms involved.  相似文献   

4.
Sinorhizobium meliloti uses proline betaine (PB) as an osmoprotectant when osmotically stressed and as an energy source in low-osmolarity environments. To fulfill this dual function, two separate PB transporters, BetS and Hut, that contribute to PB uptake at high and low osmolarity, respectively, have been previously identified. Here, we characterized a novel transport system that mediates the uptake of PB at both high and low osmolarities. Sequence analysis of Tn5-luxAB chromosomal insertions from several PB-inducible mutants has revealed the presence of a four-gene locus encoding the components of an ABC transporter, Prb, which belongs to the oligopeptide permease (Opp) family. Surprisingly, prb mutants were impaired in their ability to transport PB, and oligopeptides were not shown to be competitors for PB uptake. Further analysis of Prb specificity has shown its ability to take up other quaternary ammonium compounds such as choline and, to a lesser extent, glycine betaine. Interestingly, salt stress and PB were found to control prb expression in a positive and synergistic way and to increase Prb transport activity. At low osmolarity, Prb is largely implicated in PB uptake by stationary-phase cells, likely to provide PB as a source of carbon and nitrogen. Furthermore, at high osmolarity, the analysis of prb and betS single and double mutants demonstrated that Prb, together with BetS, is a key system for protection by PB.  相似文献   

5.
Growth of Lactococcus lactis in milk depends on the utilization of extracellular peptides. Up to now, oligopeptide uptake was thought to be due only to the ABC transporter Opp. Nevertheless, analysis of several Opp-deficient L. lactis strains revealed the implication of a second oligopeptide ABC transporter, the so-called Opt system. Both transporters are expressed in wild-type strains such as L. lactis SK11 and Wg2, whereas the plasmid-free strains MG1363 and IL-1403 synthesize only Opp and Opt, respectively. The Opt system displays significant differences from the lactococcal Opp system, which made Opt much more closely related to the oligopeptide transporters of streptococci than to the lactococcal Opp system: (i) genetic organization, (ii) peptide uptake specificity, and (iii) presence of two oligopeptide-binding proteins, OptS and OptA. The fact that only OptA is required for nutrition calls into question the function of the second oligopeptide binding protein (Opts). Sequence analysis of oligopeptide-binding proteins from different bacteria prompted us to propose a classification of these proteins in three distinct groups, differentiated by the presence (or not) of precisely located extensions.  相似文献   

6.
Elicitation of drug resistance and various survival strategies inside host macrophages have been the hallmarks of Mycobacterium tuberculosis as a successful pathogen. ATP Binding Cassette (ABC) transporter type proteins are known to be involved in the efflux of drugs in bacterial and mammalian systems. FtsE, an ABC transporter type protein, in association with the integral membrane protein FtsX, is involved in the assembly of potassium ion transport proteins and probably of cell division proteins as well, both of which being relevant to tubercle bacillus. In this study, we cloned ftsE gene of M. tuberculosis, overexpressed and purified. The recombinant MtFtsE-6xHis protein and the native MtFtsE protein were found localized on the membrane of E. coli and M. tuberculosis cells, respectively. MtFtsE-6xHis protein showed ATP binding in vitro, for which the K42 residue in the Walker A motif was found essential. While MtFtsE-6xHis protein could partially complement growth defect of E. coli ftsE temperature-sensitive strain MFT1181, co-expression of MtFtsE and MtFtsX efficiently complemented the growth defect, indicating that the MtFtsE and MtFtsX proteins might be performing an associated function. MtFtsE and MtFtsX-6xHis proteins were found to exist as a complex on the membrane of E. coli cells co-expressing the two proteins.  相似文献   

7.
Iron availability affects the course of tuberculosis infection, and the ability to acquire this metal is known to be essential for replication of Mycobacterium tuberculosis in human macrophages. M. tuberculosis overcomes iron deficiency by producing siderophores. The relevance of siderophore synthesis for iron acquisition by M. tuberculosis has been demonstrated, but the molecules involved in iron uptake are currently unknown. We have identified two genes (irtA and irtB) encoding an ABC transporter similar to the YbtPQ system involved in iron transport in Yersinia pestis. Inactivation of the irtAB system decreases the ability of M. tuberculosis to survive iron-deficient conditions. IrtA and -B do not participate in siderophore synthesis or secretion but are required for efficient utilization of iron from Fe-carboxymycobactin, as well as replication of M. tuberculosis in human macrophages and in mouse lungs. We postulate that IrtAB is a transporter of Fe-carboxymycobactin. The irtAB genes are located in a chromosomal region previously shown to contain genes regulated by iron and the major iron regulator IdeR. Taken together, our results and previous observations made by other groups regarding two other genes in this region indicate that this gene cluster is dedicated to siderophore synthesis and transport in M. tuberculosis.  相似文献   

8.
BacA is an inner membrane protein associated with maintenance of chronic infections in several diverse host-pathogen interactions. To understand the function of the bacA gene in Mycobacterium tuberculosis (Rv1819c), we insertionally inactivated this gene and analyzed the resulting mutant for a variety of phenotypes. BacA deficiency in M. tuberculosis did not affect sensitivity to detergents, acidic pH, and zinc, indicating that there was no global compromise in membrane integrity, and a comprehensive evaluation of the major lipid constituents of the cell envelope failed to reveal any significant differences. Infection of mice with this mutant revealed no impact on establishment of infection but a profound effect on maintenance of extended chronic infection and ultimate outcome. As in alphaproteobacteria, deletion of BacA in M. tuberculosis led to increased bleomycin resistance, and heterologous expression of the M. tuberculosis BacA homolog in Escherichia coli conferred sensitivity to antimicrobial peptides. These results suggest a striking conservation of function for BacA-related proteins in transport of a critical molecule that determines the outcome of the host-pathogen interaction.  相似文献   

9.
We developed a metabolism-based systems biology framework to model drug-induced growth inhibition of Mycobacterium tuberculosis in murine macrophage cells. We used it to simulate ex vivo bacterial growth inhibition due to 3-nitropropionate (3-NP) and calculated the corresponding time- and drug concentration-dependent dose-response curves. 3-NP targets the isocitrate lyase 1 (ICL1) and ICL2 enzymes in the glyoxylate shunt, an essential component in carbon metabolism of many important prokaryotic organisms. We used the framework to in silico mimic drugging additional enzymes in combination with 3-NP to understand how synergy can arise among metabolic enzyme targets. In particular, we focused on exploring additional targets among the central carbon metabolism pathways and ascertaining the impact of jointly inhibiting these targets and the ICL1/ICL2 enzymes. Thus, additionally inhibiting the malate synthase (MS) enzyme in the glyoxylate shunt did not produce synergistic effects, whereas additional inhibition of the glycerol-3-phosphate dehydrogenase (G3PD) enzyme showed a reduction in bacterial growth beyond what each single inhibition could achieve. Whereas the ICL1/ICL2-MS pair essentially works on the same branch of the metabolic pathway processing lipids as carbon sources (the glyoxylate shunt), the ICL1/ICL2-G3PD pair inhibition targets different branches among the lipid utilization pathways. This allowed the ICL1/ICL2-G3PD drug combination to synergistically inhibit carbon processing and ultimately affect cellular growth. Our previously developed model for in vitro conditions failed to capture these effects, highlighting the importance of constructing accurate representations of the experimental ex vivo macrophage system.  相似文献   

10.
11.

Background

Mycobacterium tuberculosis phoP mutant SO2 derived from a clinical isolate was shown to be attenuated in mouse bone marrow-derived macrophages and in vivo mouse infection model and has demonstrated a high potential as attenuated vaccine candidate against tuberculosis.

Methodology/Principal Findings

In this study, we analyze the adhesion and the intracellular growth and trafficking of SO2 in human macrophages. Our results indicate an enhanced adhesion to phagocitic cells and impaired intracellular replication of SO2 in both monocyte-derived macrophages and human cell line THP-1 in comparison with the wild type strain, consistent with murine model. Intracellular trafficking analysis in human THP-1 cells suggest that attenuation of SO2 within macrophages could be due to an impaired ability to block phagosome-lysosome fusion compared with the parental M. tuberculosis strain. No differences were found between SO2 and the wild-type strains in the release and mycobacterial susceptibility to nitric oxide (NO) produced by infected macrophages.

Conclusions/Significance

SO2 has enhanced ability to bind human macrophages and differs in intracellular trafficking as to wild-type M. tuberculosis. The altered lipid profile expression of the phoP mutant SO2 and its inability to secrete ESAT-6 is discussed.  相似文献   

12.

Background  

The ability of Mycobacterium tuberculosis to survive and replicate in macrophages is crucial for the mycobacterium's ability to infect the host and cause tuberculosis. To identify Mycobacterium tuberculosis genes involved in survival in macrophages, a library of non-pathogenic Mycobacterium smegmatis bacteria, each carrying an individual integrated cosmid containing M. tuberculosis H37Rv genomic DNA, was passed through THP-1 human macrophages three times.  相似文献   

13.
14.
杨瑞丽  孙佳楠  陆伟 《生命科学》2013,(11):1084-1088
结核分枝杆菌(Mycobacterium tuberculosis,Mtb)感染后能抑制宿主巨噬细胞(M西)的免疫反应,并在其中生存、复制。研究表明Mtb减毒株感染主要诱导宿主Mφ凋亡,凋亡能抑制胞内Mtb的活力;而Mtb毒力株感染能抑制凋亡的完成,诱导Mφ坏死,最终导致Mtb扩散、感染临近细胞。通过对Mtb感染诱导宿主Mφ不同死亡方式的讨论,进一步认识Mtb的致病机制。  相似文献   

15.
Sohn H  Kim JS  Shin SJ  Kim K  Won CJ  Kim WS  Min KN  Choi HG  Lee JC  Park JK  Kim HJ 《PLoS pathogens》2011,7(12):e1002435
Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA), a virulence factor involved in extrapulmonary dissemination and a strong diagnostic antigen against tuberculosis, is both surface-associated and secreted. The role of HBHA in macrophages during M. tuberculosis infection, however, is less well known. Here, we show that recombinant HBHA produced by Mycobacterium smegmatis effectively induces apoptosis in murine macrophages. DNA fragmentation, nuclear condensation, caspase activation, and poly (ADP-ribose) polymerase cleavage were observed in apoptotic macrophages treated with HBHA. Enhanced reactive oxygen species (ROS) production and Bax activation were essential for HBHA-induced apoptosis, as evidenced by a restoration of the viability of macrophages pretreated with N-acetylcysteine, a potent ROS scavenger, or transfected with Bax siRNA. HBHA is targeted to the mitochondrial compartment of HBHA-treated and M. tuberculosis-infected macrophages. Dissipation of the mitochondrial transmembrane potential (ΔΨ(m)) and depletion of cytochrome c also occurred in both macrophages and isolated mitochondria treated with HBHA. Disruption of HBHA gene led to the restoration of ΔΨ(m) impairment in infected macrophages, resulting in reduced apoptosis. Taken together, our data suggest that HBHA may act as a strong pathogenic factor to cause apoptosis of professional phagocytes infected with M. tuberculosis.  相似文献   

16.
Infections caused by biofilms are abundant and highly persistent, displaying phenotypic resistance to high concentrations of antimicrobials and modulating host immune systems. Tuberculosis (TB), caused by Mycobacterium tuberculosis, shares these qualities with biofilm infections. To identify genetic determinants of biofilm formation in M. tuberculosis, we performed a small-scale transposon screen using an in vitro pellicle biofilm assay. We identified five M. tuberculosis mutants that were reproducibly attenuated for biofilm production relative to that of the parent strain H37Rv. One of the most attenuated mutants is interrupted in pks1, a polyketide synthase gene. When fused with pks15, as in some M. tuberculosis isolates, pks1 contributes to synthesis of the immunomodulatory phenolic glycolipids (PGLs). However, in strains such as H37Rv with split pks15 and pks1 loci, PGL is not produced and pks1 has no previously defined role. We showed that pks1 complementation restores biofilm production independently of the known role of pks1 in PGL synthesis. We also assessed the relationship among biofilm formation, the pks15/1 genotype, and M. tuberculosis phylogeography. A global survey of M. tuberculosis clinical isolates revealed surprising sequence variability in the pks15/1 locus and substantial variation in biofilm phenotypes. Our studies identify novel M. tuberculosis genes that contribute to biofilm production, including pks1. In addition, we find that the ability to make pellicle biofilms is common among M. tuberculosis isolates from throughout the world, suggesting that this trait is relevant to TB propagation or persistence.  相似文献   

17.
Phenotypically distinct clinical isolates of Mycobacterium tuberculosis are capable of altering the balance that exists between the pathogen and human host and ultimately the outcome of infection. This study has identified two M. tuberculosis strains (i.e. HN885 and HN1554) among a bank of clinical isolates with a striking defect in phagocytosis by primary human macrophages when compared with strain Erdman, a commonly used laboratory strain for studies of pathogenesis. Mass spectrometry in conjunction with NMR studies unequivocally confirmed that both HN885 and HN1554 contain truncated and more branched forms of mannose-capped lipoarabinomannan (ManLAM) with a marked reduction of their linear arabinan (corresponding mainly to the inner Araf-alpha(1-->5)-Araf unit) and mannan (with fewer 6-Manp residues and more substitutions in the linear Manp-alpha(1-->6)-Manp unit) domains. The truncation in the ManLAM molecules produced by strains HN885 and HN1554 led to a significant reduction in their surface availability. In addition, there was a marked reduction of higher order phosphatidyl-myo-inositol mannosides and the presence of dimycocerosates, triglycerides, and phenolic glycolipid in their cell envelope. Less exposed ManLAM and reduced higher order phosphatidyl-myo-inositol mannosides in strains HN885 and HN1554 resulted in their low association with the macrophage mannose receptor. Despite reduced phagocytosis, ingested bacilli replicated at a fast rate following serum opsonization. Our results provide evidence that the clinical spectrum of tuberculosis may be dictated not only by the host but also by the amounts and ratios of surface exposed mycobacterial adherence factors defined by strain genotype.  相似文献   

18.
This study investigated the hypothesis that serum antibodies against Mycobacterium tuberculosis present in naturally infected healthy subjects of a tuberculosis (TB) endemic area could create and/or sustain the latent form of infection. All five apparently healthy Indian donors showed high titres of serum antibodies against M. tuberculosis cell membrane antigens, including lipoarabinomannan and alpha crystallin. Uptake and killing of bacilli by the donor macrophages was significantly enhanced following their opsonization with antibody-rich, heat-inactivated autologous sera. However, the capability to opsonize was apparent for antibodies against some and not other antigens. High-content cell imaging of infected macrophages revealed significantly enhanced colocalization of the phagosome maturation marker LAMP-1, though not of calmodulin, with antibody-opsonized compared with unopsonized M. tuberculosis. Key enablers of macrophage microbicidal action—proinflammatory cytokines (IFN-γ and IL-6), phagosome acidification, inducible NO synthase and nitric oxide—were also significantly enhanced following antibody opsonization. Interestingly, heat-killed M. tuberculosis also elevated these mediators to the levels comparable to, if not higher than, opsonized M. tuberculosis. Results of the study support the emerging view that an efficacious vaccine against TB should, apart from targeting cell-mediated immunity, also generate ‘protective’ antibodies.  相似文献   

19.
One major signaling method employed by Mycobacterium tuberculosis, the causative agent of tuberculosis, is through reversible phosphorylation of proteins mediated by protein kinases and phosphatases. This study concerns one of these enzymes, the serine/threonine protein kinase PknF, that is encoded in an operon with Rv1747, an ABC transporter that is necessary for growth of M. tuberculosis in vivo and contains two forkhead-associated (FHA) domains. FHA domains are phosphopeptide recognition motifs that specifically recognize phosphothreonine-containing epitopes. Experiments to determine how PknF regulates the function of Rv1747 demonstrated that phosphorylation occurs on two specific threonine residues, Thr-150 and Thr-208. To determine the in vivo consequences of phosphorylation, infection experiments were performed in bone marrow-derived macrophages and in mice using threonine-to-alanine mutants of Rv1747 that prevent specific phosphorylation and revealed that phosphorylation positively modulates Rv1747 function in vivo. The role of the FHA domains in this regulation was further demonstrated by isothermal titration calorimetry, using peptides containing both phosphothreonine residues. FHA-1 domain mutation resulted in attenuation in macrophages highlighting the critical role of this domain in Rv1747 function. A mutant deleted for pknF did not, however, have a growth phenotype in an infection, suggesting that other kinases can fulfill its role when it is absent. This study provides the first information on the molecular mechanism(s) regulating Rv1747 through PknF-dependent phosphorylation but also indicates that phosphorylation activates Rv1747, which may have important consequences in regulating growth of M. tuberculosis.  相似文献   

20.
The mechanisms through which granuloma formation helps control mycobacterial infection are poorly understood, but it is possible that the accumulation of macrophages at high density at sites of infection promotes the differentiation of macrophages into cells with improved mycobactericidal activity. To test this possibility, varying numbers of monocytes were cultured in 96-well plates for 3 days, infected with Mycobacterium bovis bacillus Calmette-Guérin, and mycobacterial number was assessed 7 days after infection based on the measurement of luciferase activity expressed by a mycobacterial reporter strain or by counting CFU. Mycobacterial growth was optimal in cultures containing 5 x 10(4) cells/well, but increasing the number of cells to 2 x 10(5) cells/well resulted in complete inhibition of mycobacterial growth. This effect could not be explained by differences in mycobacterial uptake, multiplicity of infection, acidification of the extracellular medium in high density cultures, enhanced NO production, or paracrine stimulation resulting from secretion of cytokines or other proteins. The morphology of cells cultured at high density was strikingly different from that of monocytes cultured at 5 x 10(4) cells/well, including the appearance of numerous giant cells. The bacteriostatic activity of monocyte-derived macrophages was also dependent on cell number, but fewer of these more mature cells were required to control mycobacterial growth. Thus, the ability of human macrophages to control mycobacterial infection in vitro is influenced by the density of cells present, findings that may help explain why the formation of granulomas in vivo appears to be a key event in the control of mycobacterial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号