首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
流感病毒的M2蛋白在流感病毒复制中起着重要作用,是抗流感病毒的靶标分子。本研究以提取的病毒基因组RNA作为模板,RT-PCR扩增H3N2亚型猪流感病毒M2基因,分别构建了重组原核表达载体和重组真核表达载体,建立了M2蛋白的原核和真核表达系统。通过大肠杆菌表达系统,制备了M2重组蛋白,并免疫大鼠制备了多克隆抗体。Western blotting和间接免疫荧光方法检测表明所制备的抗体能识别真核表达的M2蛋白和病毒感染细胞后表达M2蛋白,具有良好的特异性。重组M2真核表达载体转染Vero细胞,表达的重组M2蛋白大小为20kDa,定位于细胞浆中,与病毒感染细胞中的M2蛋白定位相同。Western blotting检测表明M2蛋白在病毒感染细胞12h后才能检出,晚于NS1、NP和M1,属于病毒复制的晚期蛋白,可作为病毒复制晚期的指示分子。本研究为弄清M2蛋白在病毒复制过程中的生物学功能奠定了基础。  相似文献   

8.
9.
10.
11.
12.
13.
Noncoding RNAs play essential roles in genetic regulation in all organisms. In eukaryotic cells, many small non-coding RNAs act in complex with Argonaute proteins and regulate gene expression by recognizing complementary RNA targets. The complexes of Argonaute proteins with small RNAs also play a key role in silencing of mobile genetic elements and, in some cases, viruses. These processes are collectively called RNA interference. RNA interference is a powerful tool for specific gene silencing in both basic research and therapeutic applications. Argonaute proteins are also found in prokaryotic organisms. Recent studies have shown that prokaryotic Argonautes can also cleave their target nucleic acids, in particular DNA. This activity of prokaryotic Argonautes might potentially be used to edit eukaryotic genomes. However, the molecular mechanisms of small nucleic acid biogenesis and the functions of Argonaute proteins, in particular in bacteria and archaea, remain largely unknown. Here we briefly review available data on the RNA interference processes and Argonaute proteins in eukaryotes and prokaryotes.  相似文献   

14.
15.
Acyl-peptide hydrolase catalyzes the removal of an N alpha-acetylated amino acid residue from an N alpha-acetylated peptide. Two overlapping degenerate oligonucleotide probes based on the sequence of a CNBr tryptic peptide, derived from purified rat acyl-peptide hydrolase, were synthesized and used to screen a rat liver lambda gt11 cDNA library. A 2.5-kilobase cDNA was cloned and sequenced. This clone contained 2364 base pairs of rat acyl-peptide hydrolase sequence but lacked a translational initiation codon. Using a 220-base pair probe derived from near the 5'-end of this almost full-length cDNA to rescreen the library, full-length clones were isolated, which contained an in-frame ATG codon at nucleotides 6-8 and encoded the NH2-terminal sequence, Met-Glu-Arg-Gln.... The DNA sequence encoded a protein of 732 amino acid residues, 40% of which were confirmed by protein sequence data from 19 CNBr or CNBr tryptic peptides. The isolated enzyme is NH2-terminally blocked (Kobayashi, K., and Smith, J. A. (1987) J. Biol. Chem. 262, 11435-11445), and based on the NH2-terminal protein sequence deduced from the DNA sequence and the sequence of the most NH2-terminal CNBr peptide, it is likely that the NH2-terminal residue is an acetylated methionine residue, since such residues are frequently juxtaposed to glutamyl residues (Persson, B., Flinta, C., von Heijne, G., and Jornvall, H. (1985) Eur. J. Biochem. 152, 523-527). The RNA blot analysis revealed a single message of 2.7 kilobases in various rat tissues examined. Although this enzyme is known to be inhibited by diisopropyl fluorophosphate and acetylalanine chloromethyl ketone (Kobayashi, K., and Smith, J. A. (1987) J. Biol. Chem. 262, 11435-11445), no strong similarity in protein sequence has been found with other serine proteases. This result suggests that acyl-peptide hydrolase may be a unique serine protease.  相似文献   

16.
17.
T7启动子在哺乳类动物细胞中启动外源基因表达的研究   总被引:2,自引:0,他引:2  
人低密度脂蛋白(LDL)受体基因cDNA和氯霉素已酞转移酶基因(CAT)及PolyA信号序列被克隆进pGEM4载体的T7噬茵体启动子下游,构建成质粒pT7LDLR和pT7CAT.两个重组质粒转化CHO细胞.PCR和CAT酶实验显示:两个基因被T7噬菌体启动子所启动.结果证实真核生物RNA聚合酶能够识别T7启动子,转录外源基因.常用的含有T7启动子的质粒可同时作为原核生物和真核生物的表达载体.  相似文献   

18.
19.
The development of new strategies for the in vivo modification of eukaryotic genomes has become an important objective of current research. Site-specific recombination has proven useful, as it allows controlled manipulation of murine, plant, and yeast genomes. Here we provide the first evidence that the prokaryotic site-specific recombinase (beta-recombinase), which catalyzes only intramolecular recombination, is active in eukaryotic environments. beta-Recombinase, encoded by the beta gene of the Gram-positive broad host range plasmid pSM19035, has been functionally expressed in eukaryotic cell lines, demonstrating high avidity for the nuclear compartment and forming a clear speckled pattern when assayed by indirect immunofluorescence. In simian COS-1 cells, transient beta-recombinase expression promoted deletion of a DNA fragment lying between two directly oriented specific recognition/crossing over sequences (six sites) located as an extrachromosomal DNA substrate. The same result was obtained in a recombination-dependent lacZ activation system tested in a cell line that stably expresses the beta-recombinase protein. In stable NIH/3T3 clones bearing different number of copies of the target sequences integrated at distinct chromosomal locations, transient beta-recombinase expression also promoted deletion of the intervening DNA, independently of the insertion position of the target sequences. The utility of this new recombination tool for the manipulation of eukaryotic genomes, used either alone or in combination with the other recombination systems currently in use, is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号