首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photoregulation of pigmentation during complementary chromatic acclimation (CCA) is well studied in Fremyella diplosiphon; however, mechanistic insights into the CCA‐associated morphological changes are still emerging. F. diplosiphon cells are rectangular under green light (GL), whereas cells are smaller and spherical under red light (RL). Here, we investigate the role of morphogenes bolA and mreB during CCA using gene expression and gene function analyses. The F. diplosiphon bolA gene is essential as its complete removal from the genome was unsuccessful. Depletion of bolA resulted in slow growth, morphological defects and the accumulation of high levels of reactive oxygen species in a partially segregated ΔbolA strain. Higher expression of bolA was observed under RL and was correlated with lower expression of mreB and mreC genes in wild type. In a ΔrcaE strain that lacks the red‐/green‐responsive RcaE photoreceptor, the expression of bolA and mre genes was altered under both RL and GL. Observed gene expression relationships suggest that mreB and mreC expression is controlled by RcaE‐dependent photoregulation of bolA expression. Expression of F. diplosiphon bolA and mreB homologues in Escherichia coli demonstrated functional conservation of the encoded proteins. Together, these studies establish roles for bolA and mreB in RcaE‐dependent regulation of cellular morphology.  相似文献   

2.
The dramatic modifications of photosynthetic light harvesting antennae called phycobilisomes that occur during complementary chromatic adaptation in cyanobacteria are controlled by two separate photosensory systems. The first system involves the signal transduction components RcaE, RcaF and RcaC, which appear to make up a complex multistep phosphorelay. This system controls the light responsive expression of the cpcB2A2H2I2D2, cpeBA and cpeCDE operons, which encode phycobilisome proteins. The second system, which is not yet characterized, acts in concert with the first but only regulates the light responses of cpeBA and cpeCDE. We have generated and characterized a new mutant class, named the Tan mutants. In at least one member of this class, light-regulated RNA accumulation patterns are altered for cpeBA and cpeCDE, but not for cpcB2A2H2I2D2. Thus this mutant contains a lesion that may impair the operation of the second system. We demonstrate that several Tan mutants are the result of improper expression of the gene cotB. CotB has limited similarity to lyase class proteins, particularly those related to NblB, which is required for degradation of phycobilisomes in other cyanobacteria. Possible roles of CotB in the biogenesis of phycobilisomes are discussed.  相似文献   

3.
4.
Action spectra for chromatic adaptation in Fremyella diplosiphon Drouet have been determined using techniques previously described. Action maxima are at 540 nm, with a half-band width of 80 nm, for induction of phycoerythrin synthesis (green action) and at 650 nm, with a half-band width of 90 nm, for reversal of induction of phycoerythrin synthesis (red action). The red-action spectrum includes a secondary action band centered at ca. 360 nm. Red and green action overlap from 570 to 590 nm with an isosbestic point in the vicinity of 580 nm. Shoulders are present at 520 and 630 nm. Red light is more active than green light. The 540:650-nm quantum effectiveness ratio is 1:7. There is relatively little action of either kind in the blue. The 387:540 nm and 460:650-nm quantum effectiveness ratios are zero. These results contrast strongly with previous determinations in the same organism, with major activity indicated in the blue; they are consistent with the control of photomorphogenesis in the Cyanophyta by a master pigment, analogous to phytochrome.Abbreviations APC allophycocyanin - PC physocyanin - PE phycoerythrin  相似文献   

5.
Fremyella diplosiphon alters the phycobiliprotein composition of its light-harvesting complexes, i.e., phycobilisomes, and its cellular morphology in response to changes in the prevalent wavelengths of light in the external environment in a phenomenon known as complementary chromatic acclimation (CCA). The organism primarily responds to red light (RL) and green light (GL) during CCA to maximize light absorption for supporting optimal photosynthetic efficiency. Recently, we found that RL-characteristic spherical cell morphology is associated with higher levels of reactive oxygen species (ROS) compared to growth under GL where lower ROS levels and rectangular cell shape are observed. The RL-dependent association of increased ROS levels with cellular morphology was demonstrated by treating cells with a ROS-scavenging antioxidant which resulted in the observation of GL-characteristic rectangular morphology under RL. To gain additional insights into the involvement of ROS in impacting cellular morphology changes during CCA, we conducted experiments to study the temporal dynamics of changes in ROS levels and cellular morphology during transition to growth under RL or GL. Alterations in ROS levels and cell morphology were found to be correlated with each other at early stages of acclimation of low white light-grown cells to growth under high RL or cells transitioned between growth in RL and GL. These results provide further general evidence that significant RL-dependent increases in ROS levels are temporally correlated with changes in morphology toward spherical. Future studies will explore the light-dependent mechanisms by which ROS levels may be regulated and the direct impacts of ROS on the observed morphology changes.  相似文献   

6.
7.
8.
Photosynthetic pigment accumulation and cellular and filament morphology are regulated reversibly by green light (GL) and red light (RL) in the cyanobacterium Fremyella diplosiphon during complementary chromatic adaptation (CCA). The photoreceptor RcaE (regulator of chromatic adaptation), which appears to function as a light-responsive sensor kinase, controls both of these responses. Recent findings indicate that downstream of RcaE, the signaling pathways leading to light-dependent changes in morphology or pigment synthesis and/or accumulation branch, and utilize distinct molecular components. We recently reported that the regulation of the accumulation of the GL-absorbing photosynthetic accessory protein phycoerythrin (PE) and photoregulation of cellular morphology are largely independent, as many mutants with severe PE accumulation defects do not have major disruptions in the regulation of cellular morphology. Furthermore, morphology can be disrupted under GL without impacting GL-dependent PE accumulation. Most recently, however, we determined that the disruption of the cpeR gene, which encodes a protein that is known to function as an activator of PE synthesis under GL, results in disruption of cellular morphology under GL and RL. Thus, apart from RcaE, CpeR is only the second known regulator to impact morphology under both light conditions in F. diplosiphon.  相似文献   

9.
10.
A mutant of the chromatically adapting cyanobacterium Fremyella diplosiphon, incapable of phycoerythrin synthesis but responding to wavelength modulation of its biliprotein content, was isolated. The biliprotein composition of the mutant and of the wild type were identical after growth in red light, but green light induced, in the mutant, the synthesis of a biliviolin-type chromophore bound to some of the alpha subunits of its phycocyanin. Implications of the results on the regulation and possible pathways of biliprotein biosynthesis are discussed.  相似文献   

11.
12.
For some cyanobacteria, the spectral distribution of light in the environment regulates the synthesis of specific polypeptides of the phycobilisome or light harvesting antenna complex. This process, called complementary chromatic adaptation, is controlled by a complex type of two component regulatory system. In such pathways, phosphorelay typically occurs through two histidine and two aspartate residues. Generation and complementation of mutants in CCA have uncovered three elements of this pathway, a putative sensor, RcaE, and two response regulators, RcaC and RcaF. RcaC, a large response regulator, contains two input domains, a DNA binding motif and a putative histidine phosphoacceptor domain. RcaF is a small response regulator and apparently lacks an output domain. Ordering of the pathway components has placed RcaE before RcaF, and RcaF before RcaC. This phosphorelay circuitry is novel because it has, instead of four, at least five potential phosphoacceptor domains for signal transduction.  相似文献   

13.
14.
15.
Photosynthetic activity and the composition of the photosynthetic apparatus are strongly regulated by environmental conditions. Some visually dramatic changes in pigmentation of cyanobacterial cells that occur during changing nutrient and light conditions reflect marked alterations in components of the major light-harvesting complex in these organisms, the phycobilisome. As noted well over 100 years ago, the pigment composition of some cyanobacteria is very sensitive to ambient wavelengths of light; this sensitivity reflects molecular changes in polypeptide constituents of the phycobilisome. The levels of different pigmented polypeptides or phycobiliproteins that become associated with the phycobilisome are adjusted to optimize absorption of excitation energy present in the environment. This process, called complementary chromatic adaptation, is controlled by a bilin-binding photoreceptor related to phytochrome of vascular plants; however, many other regulatory elements also play a role in chromatic adaptation. My perspectives and biases on the history and significance of this process are presented in this essay. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Photosynthetic organisms display adaptations to changes in light and nutrient availability. Iron, which is required for the function of photosynthetic photosystems and other important biochemical processes, is an essential mineral that consequently impacts not only overall photosynthetic efficiency, but also the physiology of organisms in general. Our recent study represents the first functional characterization of a cyanobacterial TonB protein. TonB proteins classically are membrane proteins that support the transport of iron and vitamin B12 into cells. TonB proteins thus generally serve a critical role in organismal iron acclimation. We recently identified FdTonB, a TonB-family protein, in the filamentous freshwater cyanobacterium Fremyella diplosiphon. FdTonB contains conserved TonB residues and domains, as well as novel protein domains. Our recent study, however, supports a novel function for this protein in the photoregulation of morphology, rather than iron acclimation, in F. diplosiphon. Our detailed investigations into the responses of SF33 wild-type and ΔtonB mutant strains did not support a role for FdTonB in organismal responses to iron limitation. However, close examination of our recent results did highlight a novel interaction between light and iron acclimation in F. diplosiphon.Key words: cellular morphology, complementary chromatic adaptation, cyanobacteria, iron, phycobiliprotein, photomorphogenesis, photoregulation, siderophores  相似文献   

17.
18.
Complementary chromatic adaptation (CCA) is a light-dependent acclimation process that occurs in cyanobacteria and likely is related to increased fitness of these organisms in natural environments. Although CCA has been studied for over 40 years, significant advances in our understanding of the molecular foundations of CCA are still emerging. In this minireview, I explore recently reported developments that include novel insights into the molecular mechanisms utilized in the photoregulation of pigmentation and the molecular basis of light-dependent changes in cellular morphology, which are central elements of the process of CCA. I also discuss future avenues of study that are expected to lead to additional progress in our understanding of CCA and our general appreciation of light sensing and photomorphogenesis in cyanobacteria.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号