首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
beta-catenin is a multifunctional protein involved in cell-cell adhesion and the Wnt signaling pathway. beta-Catenin is activated upon its dephosphorylation, an event triggered by Dishevelled (Dvl)-mediated phosphorylation and deactivation of glycogen synthase kinase-3beta (GSK-3beta). In skeletal muscle, both insulin and exercise decrease GSK-3beta activity, and we tested the hypothesis that these two stimuli regulate beta-catenin. Immunoblotting demonstrated that Dvl, Axin, GSK-3beta, and beta-catenin proteins are expressed in rat red and white gastrocnemius muscles. Treadmill running exercise in vivo significantly decreased beta-catenin phosphorylation in both muscle types, with complete dephosphorylation being elicited by maximal exercise. beta-Catenin dephosphorylation was intensity dependent, as dephosphorylation was highly correlated with muscle glycogen depletion during exercise (r(2) = 0.84, P < 0.001). beta-Catenin dephosphorylation was accompanied by increases in GSK-3beta Ser(9) phosphorylation and Dvl-GSK-3beta association. In contrast to exercise, maximal insulin treatment (1 U/kg body wt) had no effect on skeletal muscle beta-catenin phosphorylation or Dvl-GSK-3beta interaction. In conclusion, exercise in vivo, but not insulin, increases the association between Dvl and GSK-3beta in skeletal muscle, an event paralleled by beta-catenin dephosphorylation.  相似文献   

2.
3.
The contractility of airway smooth muscle cells is dependent on dynamic changes in the concentration of intracellular calcium. Signaling molecules such as inositol 1,4,5-trisphosphate and cyclic ADP-ribose play pivotal roles in the control of intracellular calcium concentration. Alterations in the processes involved in the regulation of intracellular calcium concentration contribute to the pathogenesis of airway diseases such as asthma. Recent studies have identified cyclic ADP-ribose as a calcium-mobilizing second messenger in airway smooth muscle cells, and modulation of the pathway involved in its metabolism results in altered calcium homeostasis and may contribute to airway hyperresponsiveness. In this review, we describe the basic mechanisms underlying the dynamics of calcium regulation and the role of CD38/cADPR, a novel pathway, in the context of airway smooth muscle function and its contribution to airway diseases such as asthma.  相似文献   

4.
Activation of the MAPK pathway mediates insulin-like growth factor-I (IGF-I)-dependent proliferation in vascular smooth muscle cells (SMC). Our previous studies have shown that IGF-I-induced Shc phosphorylation is necessary for sustained activation of MAPK and increased cell proliferation of SMCs, and both Shc and the tyrosine phosphatase SHP-2 must be recruited to the membrane protein SHPS-1 in order for Shc to be phosphorylated. These studies were undertaken to determine whether Src kinase activity is required to phosphorylate Shc in response to IGF-I in SMC and because SHP-2 binds to Src whether their interaction was also required for IGF-I-stimulated mitogenesis. Our results show that IGF-I induces activation of Src kinase and that is required for Shc phosphorylation and for optimal MAPK activation. We tested whether Shc is a substrate of c-Src in SMC by disrupting Src/Shc association using a peptide containing a YXXL (Tyr328) motif sequence derived from Src. The peptide blocked the binding of Src and Shc in vitro and in vivo. Cells expressing a mutant Src (Src-FF) that had Tyr328/Tyr358 substituted with phenylalanines (Src-FF) showed defective Src/Shc binding, impaired IGF-I-dependent Shc phorylation, and impaired mitogenesis. This supports the conclusion that Src phosphorylates Shc. IGF-I induced both Src/SHP-2 and Src/SHPS-1 association. SMCs expressing an SHP-2 mutant that had the polyproline-rich region of SH2 deleted (SHP-2Delta10) had disrupted SHP-2/Src association, impaired IGF-I-dependent Shc phosphorylation, and an attenuated mitogenic response. IGF-I-induced association of Src and SHPS-1 was also impaired in SHP-2Delata10-expressing cells, although SHP-2/SHPS-1 association was unaffected. Upon IGF-I stimulation, a complex assembles on SHPS-1 that contains SHP-2, c-Src, and Shc wherein Src phosphorylates Shc, a signaling step that is necessary for an optimal mitogenic response.  相似文献   

5.
Contractile agonists may stimulate mitogenic responses in airway smooth muscle by mechanisms that involve tyrosine kinases. The role of contractile agonist-evoked activation of tyrosine kinases in contractile signaling is not clear. We addressed this issue using cultured rat airway smooth muscle cells. In these cells, serotonin (5-HT, 1 microM) caused contraction (quantitated by a decrease in cell area), which was blocked by the tyrosine kinase inhibitor genistein (40 microM). Genistein and tyrphostin 23 (40 and 10 microM, respectively) significantly decreased 5-HT-evoked peak Ca(2+) responses, and the effect of genistein could be observed in the absence of extracellular Ca(2+). The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 (30 microM) had no significant effect on peak Ca(2+) levels. Western analysis of cell extracts revealed that 5-HT caused a significant increase in tyrosine phosphorylation of proteins with molecular masses of approximately 70 kDa within 10 s of stimulation but no measurable tyrosine phosphorylation of the gamma isoform of phospholipase C (PLC-gamma). Tyrosine phosphorylation was inhibited by genistein. Furthermore, genistein (40 microM) significantly attenuated 5-HT-induced inositol phosphate production. We conclude that in airway smooth muscle contractile agonists acting on G protein-coupled receptors may activate tyrosine kinase(s), which in turn modulate calcium signaling by affecting, directly or indirectly, PLC-beta activity. It is unlikely that PLC-gamma or the mitogen-activated protein kinase pathway is involved in Ca(2+) signaling to 5-HT.  相似文献   

6.
Accumulation of transglutaminase 2 (TG2) is often associated with mineral deposits in vasculature. Here, we demonstrate that purified TG2 stimulated a 3-fold increase in matrix mineralization and up-regulation of osteoblastic markers in cultured primary vascular smooth muscle cells (VSMCs). Extracellular TG2 interacts with the low density lipoprotein related-protein 5 receptor and activates beta-catenin signaling in VSMCs. These results suggest that TG2 may promote vascular calcification by activating the beta-catenin signaling pathway.  相似文献   

7.
Chronic airway inflammation is one of the main features of asthma. Release of mediators from infiltrating inflammatory cells in the airway mucosa has been proposed to contribute directly or indirectly to changes in airway structure and function. The airway smooth muscle, which has been regarded as a contractile component of the airways responding to various mediators and neurotransmitters, has recently been recognised as a rich source of pro-inflammatory cytokines, chemokines and growth factors. In this review, we discuss the role of airway smooth muscle cells in the regulation and perpetuation of airway inflammation that contribute to the pathogenesis of asthma.  相似文献   

8.
Chronic airway inflammation is one of the main features of asthma. Release of mediators from infiltrating inflammatory cells in the airway mucosa has been proposed to contribute directly or indirectly to changes in airway structure and function. The airway smooth muscle, which has been regarded as a contractile component of the airways responding to various mediators and neurotransmitters, has recently been recognised as a rich source of pro-inflammatory cytokines, chemokines and growth factors. In this review, we discuss the role of airway smooth muscle cells in the regulation and perpetuation of airway inflammation that contribute to the pathogenesis of asthma.  相似文献   

9.
10.
Tumor necrosis factor alpha (TNFalpha) interferes with insulin signaling in adipose tissue and may promote insulin resistance. Insulin binding to the insulin receptor (IR) triggers its autophosphorylation, resulting in phosphorylation of Shc and the downstream activation of p42/p44 extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2), which mediates insulin-induced proliferation in vascular smooth muscle cells (VSMC). Since insulin resistance is a risk factor for vascular disease, we examined the effects of TNFalpha on mitogenic signaling by insulin. In rat aortic VSMC, insulin induced rapid phosphorylation of the IR and Shc and caused a 5.3-fold increase in activated, phosphorylated ERK1/2 at 10 min. Insulin induced a biphasic ERK1/2 activation with a transient peak at 10 min and a sustained late phase after 2 h. Preincubation (30-120 min) with TNFalpha had no effect on insulin-induced IR phosphorylation. In contrast, TNFalpha transiently suppressed insulin-induced ERK1/2 activation. Insulin-induced phosphorylation of Shc was inhibited by TNFalpha in a similar pattern. Since mitogenic signaling by insulin in VSMC requires ERK1/2 activation, we examined the effect of TNFalpha on insulin-induced proliferation. Insulin alone induced a 3.4-fold increase in DNA synthesis, which TNFalpha inhibited by 48%. TNFalpha alone was not mitogenic. Inhibition of ERK1/2 activation with PD98059 also inhibited insulin-stimulated DNA synthesis by 57%. TNFalpha did not inhibit platelet-derived growth factor-induced ERK1/2 activation or DNA synthesis in VSMC. Thus, TNFalpha selectively interferes with insulin-induced mitogenic signaling by inhibiting the phosphorylation of Shc and the downstream activation of ERK1/2.  相似文献   

11.
Glycogen synthase kinase-3 (GSK-3) mediates epidermal growth factor, insulin and Wnt signals to various downstream events such as glycogen metabolism, gene expression, proliferation and differentiation. We have isolated here a GSK-3beta-interacting protein from a rat brain cDNA library using a yeast two-hybrid method. This protein consists of 832 amino acids and possesses Regulators of G protein Signaling (RGS) and dishevelled (Dsh) homologous domains in its N- and C-terminal regions, respectively. The predicted amino acid sequence of this GSK-3beta-interacting protein shows 94% identity with mouse Axin, which recently has been identified as a negative regulator of the Wnt signaling pathway; therefore, we termed this protein rAxin (rat Axin). rAxin interacted directly with, and was phosphorylated by, GSK-3beta. rAxin also interacted directly with the armadillo repeats of beta-catenin. The binding site of rAxin for GSK-3beta was distinct from the beta-catenin-binding site, and these three proteins formed a ternary complex. Furthermore, rAxin promoted GSK-3beta-dependent phosphorylation of beta-catenin. These results suggest that rAxin negatively regulates the Wnt signaling pathway by interacting with GSK-3beta and beta-catenin and mediating the signal from GSK-3beta to beta-catenin.  相似文献   

12.
13.
14.
The degree of airway smooth muscle contraction and shortening that occurs in vivo is modified by many factors, including those that influence the degree of muscle activation, the resting muscle length, and the loads against which the muscle contracts. Canine trachealis muscle will shorten up to 70% of starting length from optimal length in vitro but will only shorten by around 30% in vivo. This limitation of shortening may be a result of the muscle shortening against an elastic load such as could be applied by tracheal cartilage. Limitation of airway smooth muscle shortening in smaller airways may be the result of contraction against an elastic load, such as could be applied by lung parenchymal recoil. Measurement of the elastic loads applied by the tracheal cartilage to the trachealis muscle and by lung parenchymal recoil to smooth muscle of smaller airways were performed in canine preparations. In both experiments the calculated elastic loads applied by the cartilage and the parenchymal recoil explained in part the limitation of maximal active shortening and airway narrowing observed. We conclude that the elastic loads provided by surrounding structures are important in determining the degree of airway smooth muscle shortening and the resultant airway narrowing.  相似文献   

15.
Interleukin (IL)-9 is a pleiotropic cytokine that has been proposed as a candidate gene for asthma. As IL-9 expression is correlated with airway hyperresponsiveness in animals, we examined the effects of IL-9 on cultured human airway smooth muscle (HASM) cells. IL-9 alone had no effect on IL-8 release, but at concentrations of > or =30 ng/ml, IL-9 significantly increased IL-8 release induced by TNF-alpha. IL-9 increased phosphorylation of extracellular signal-regulated protein kinase (ERK, p42 and p44) in a concentration- and time-dependent fashion, and U-0126 (10 micro M), which inhibits ERK phosphorylation, abolished the synergism between TNF-alpha and IL-9 on IL-8 release. IL-9 alone had no effect on eotaxin release into HASM cell supernatants but at concentrations of > or =10 ng/ml caused an approximately 50% increase in release of eotaxin evoked by IL-13 (10 ng/ml). U-0126 blocked the synergism between IL-9 and IL-13 on eotaxin release. IL-9 had no effect on cyclooxygenase-2 (COX-2) expression or PGE(2) release and did not augment the COX-2 expression that was induced by IL-1beta. Our results indicate that airway smooth muscle is a target for IL-9 and that IL-9 amplifies the potential for these cells to recruit eosinophils and neutrophils into the airways by a mechanism involving ERK.  相似文献   

16.
Reactive oxygen species (ROS) increase the contractile response of airway smooth muscle (ASM). Heme oxygenase (HO) catabolizes heme to the powerful antioxidant bilirubin. Because HO is expressed in the airways, we investigated its effects on ASM contractility and ROS production in guinea pig trachea. HO expression was higher in the epithelium than in tracheal smooth muscle. Incubation of tracheal rings (TR) with the HO inhibitor tin protoporphyrin (SnPP IX) or the HO substrate hemin increased and decreased, respectively, ASM contractile response to carbamylcholine. The effect of hemin was reversed by SnPP and mimicked by the antioxidants superoxide dismutase (SOD) and catalase. Hemin significantly reduced the effect of carbamylcholine in rings treated with the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), compared with ODQ-treated rings without hemin incubation, suggesting that the CO-guanosine 3',5'-cyclic monophosphate pathway was not involved in the control of tracheal reactivity. SnPP and hemin increased and decreased ROS production by TR by 18 and 38%, respectively. Bilirubin (100 pM) significantly decreased TR contractility and ROS production. Hemin, bilirubin, and SOD/catalase decreased phosphorylation of the contractile protein myosin light chain, whereas SnPP significantly augmented it. These data suggest that modulation of the redox status by HO and, moreover, by bilirubin modulates ASM contractility by modulating levels of phosphorylated myosin light chain.  相似文献   

17.
18.
Drugs targeting the histamine H(3) receptor (H(3)R) are suggested to be beneficial for the treatment of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. The H(3)R activates G(i/o)-proteins to inhibit adenylyl cyclase activity and modulates phospholipase A(2) and MAPK activity. Herein we show that, in transfected SK-N-MC cells, the H(3)R modulates the activity of the Akt/Glycogen synthase kinase 3beta (GSK-3beta) axis both in a constitutive and agonist-dependent fashion. H(3)R stimulation with the H(3)R agonist immepip induces the phosphorylation of both Ser473 and Thr308 on Akt, a serine/threonine kinase that is important for neuronal development and function. The H(3)R-mediated activation of Akt can be inhibited by the H(3)R inverse agonist thioperamide, and by Wortmannin, LY294002 and PTX, suggesting the observed Akt activation occurs via a G(i/o)-mediated activation of phosphoinositide-3-kinase. H(3)R activation also results in the phosphorylation of Ser9 on GSK-3beta, which acts downstream of Akt and has a prominent role in brain function. In addition, we show the H(3)R-mediated phosphorylation of Akt at Ser473 to occur in primary rat cortical neurons and in rat brain slices. The discovery of this signaling property of the H(3)R adds new understanding to the roles of histamine and the H(3)R in brain function and pathology.  相似文献   

19.
20.
At a similar meeting 10 years ago, we proposed (i) that the long functional range of some smooth muscles is accommodated by plastic alterations that place more myofilaments in series at longer lengths, (ii) that this plasticity is facilitated by myosin filament evanescence, with filaments dissociating partially during relaxation and reforming upon activation, and (iii) that filament lengthening during the rise of activation would cause velocity to fall. Since that meeting, we have accumulated a substantial body of evidence to support these proposals, as follows: (i) muscles develop nearly the same force when adapted to a range of lengths that can vary by 3-fold; (ii) other physiological parameters including shortening velocity, maximum power, compliance, ATPase rate, and thick-filament mass increase by about 2/3 for a doubling of muscle length; (iii) thick-filament density increases substantially during the rise of activation; and (iv) velocity falls as force rises during the rise of tetanic force, and when correction is made for differences in activation, velocity and force vary exactly in inverse proportion. This review explains the rationale for the different experimental measurements and their interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号