首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Summary Continuous leaching of a pyritic flotation concentrate by mixed cultures of acidophilic bacteria was studied in a laboratory scale airlift reactor. Enrichment cultures adapted to the flotation concentrate contained Thiobacillus ferrooxidans and Thiobacillus thiooxidans. During the late stationary growth phase of these thiobacilli growth of Leptospirillum-like bacteria was observed, too. In discontinuous cultivation no significant influence of Leptospirillum-like bacteria on leaching rates could be detected. During continuous leaching at pH 1.5 Leptospirillum-like bacteria displaced Thiobacillus ferrooxidans. The iron leaching rate achieved by Leptospirillum-rich cultures was found to be up to 3.9 times higher than that by Leptospirillum-free cultures.  相似文献   

2.
Vardanyan  N. S.  Akopyan  V. P. 《Microbiology》2003,72(4):438-442
Two strains of Leptospirillum-like bacteria isolated from dumps of Alaverdi and Akhtala sulfide ore deposits in Armenia were studied. The optimum and maximum temperatures for the growth of both strains were 37 and 40°C, respectively. The pH optimum was 2.0–2.3. Bacterial growth and ferrous iron oxidation were inhibited by yeast extract. The pyrite-leaching activity of the Leptospirillum-like bacteria under mesophilic conditions was close to that of Acidithiobacillus ferrooxidans and exceeded by 2.0–2.7 times the activity of these moderately thermophilic bacteria at 37°C. The leaching of pyrite by Leptospirillum-like bacteria increased in the presence of sulfur-oxidizing bacteria, particularly, in their association with a thermotolerant sulfur-oxidizing bacterium.  相似文献   

3.
Summary Pyrite was microbiologically removed by Thiobacillus ferrooxidans in pure and mixed cultures from German bituminous coal at 10% pulp density with maximum pyrite oxidation rate of 350 mg pyritic S/l per day. However, at pulp densities above 20% bacterial growth and consequently pyrite oxidation were completely prevented both in a conventional airlift reactor and in a stirred-tank reactor. Modifying the airlift reactor by adapting a conical bottom part, bacterial growth and pyrite oxidation could be achieved even at 30% pulp density, resulting in a pyrite removal of more than 90% at a pyrite oxidation rate of 230 mg pyritic S/l per day.Dedicated to Prof. Dr. H. Jüntgen on the occasion of his 60th birthday  相似文献   

4.
Accumulation of elemental sulfur during pyrite oxidation lowers the efficiency of coal desulfurization and bioleaching. In the case of pyrite bioleaching by Leptospirillum ferrooxidans, an iron(II)-ion-oxidizing organism without sulfur-oxidizing capacity, from the pyritic sulfur moiety about 10% elemental sulfur, 2% pentathionate, and 1% tetrathionate accumulated by a recently described cyclic pyrite oxidation mechanism. In the case of pure cultures of Thiobacillus ferrooxidans and mixed cultures of L. ferrooxidans and T. thiooxidans, pyrite was nearly completely oxidized to sulfate because of the capacity of these cultures to oxidize both iron(II) ions and sulfur compounds. Pyrite oxidation in acidic solutions, mediated chemically by iron(III) ion, resulted in an accumulation of similar amounts of sulfur compounds as obtained with L. ferrooxidans. Changes of pH to values below 2 or in the iron ion concentration are not decisive for diverting the flux of sulfur compounds. The literature on pyrite bioleaching is in agreement with the findings indicating that the chemistry of direct and indirect pyrite leaching is identical. Received: 20 April 1998 / Received revision: 27 August 1998 / Accepted: 3 September 1998  相似文献   

5.
Available cultures of Thiobacillus ferrooxidans were found to be contaminated with bacteria very similar to Thiobacillus acidophilus. The experiments described were performed with a homogeneous culture of Thiobacillus ferrooxidans.Pyrite (FeS2) was oxidized by Thiobacillus ferrooxidans grown on iron (Fe2+), elemental sulphur (So) or FeS2.Evidence for the direct utilization of the sulphur moiety of pyrite by Thiobacillus ferrooxidans was derived from the following observations: a. Known inhibitors of Fe2+ and So oxidation, NaN3 and NEM, respectively, partially abolished FeS2 oxidation. b. A b-type cytochrome was detectable in FeS2-and So-grown cells but not in Fe2+-grown cells. c. FeS2 and So reduced b-type cytochromes in whole cells grown on So. d. CO2 fixation at pH 4.0 per mole of oxygen consumed was the highest with So, lowest with Fe2+ and medium with FeS2 as substrate. e. Bacterial Fe2+ oxidation was found to be negligible at pH 5.0 whereas both FeS2 and So oxidation was still appreciable above this pH. f. Separation of pyrite and bacteria by means of a dialysis bag caused a pronounced drop of the oxidation rate which was similar to the reduction of pyrite oxidation by NEM; indirect oxidation of the sulphur moiety by Fe3+ was not affected by separation of pyrite and bacteria.Bacterial oxidation and utilization of the sulphur moiety of pyrite were relatively more important with increasing pH.  相似文献   

6.
Microorganisms were enumerated and isolated on selective solid media from a pilot-scale stirred-tank bioleaching operation in which a polymetallic sulfide concentrate was subjected to biologically accelerated oxidation at 45°C. Four distinct prokaryotes were isolated: three bacteria (an Acidithiobacillus caldus-like organism, a thermophilic Leptospirillum sp., and a Sulfobacillus sp.) and one archaeon (a Ferroplasma-like isolate). The relative numbers of these prokaryotes changed in the three reactors sampled, and the Ferroplasma isolate became increasingly dominant as mineral oxidation progressed, eventually accounting for >99% of plate isolates in the third of three in-line reactors. The identities of the isolates were confirmed by analyses of their 16S rRNA genes, and some key physiological traits (e.g., oxidation of iron and/or sulfur and autotrophy or heterotrophy) were examined. More detailed studies were carried out with the Leptospirillum and Ferroplasma isolates. The data presented here represent the first quantitative study of the microorganisms in a metal leaching situation and confirm that mixed cultures of iron- and sulfur-oxidizing prokaryotic acidophiles catalyze the accelerated dissolution of sulfidic minerals in industrial tank bioleaching operations. The results show that indigenous acidophilic microbial populations change as mineral dissolution becomes more extensive.  相似文献   

7.
Pyritic sulphur was removed from coal by growing Thiobacillus ferrooxidans in a 250 ml batch bioreactor. Thiobacillus ferrooxidansgrown on sulphur and which was added 5 days after initial inoculation, enhanced the iron solubilization rate by 35% as compared to control (without addition of sulphur-grown cells). About 93% pyritic sulphur was removed in presence of sulphur-grown cells as compared to 77% in the control.  相似文献   

8.
Abstract: Enrichment culture of hot spring water samples with pyrite as substrate has provided acidophiles with novel growth characteristics: with these bacteria, the range of conditions under which rapid microbial oxidation of mineral sulphides has been demonstrated has been extended. The upper temperature limit for bacterial mineral oxidation in reactors has been raised. The dissolution of pyrite occurred during growth of Sulfolobus -like thermophiles up to almost 90C. The most efficient extraction of copper from chalcopyrite occurred at 80–85C. With moderate thermophiles, rapid oxidation of minerals was obtained during autotrophic growth in the absence of supplemental CO2: a mixed enrichment culture was active in pyrite dissolution at 45–50C in reactors gassed only with air which contrasted with poor growth by well-studied moderate thermophiles in the absence of enhanced CO2 concentrations.  相似文献   

9.
Biological autotrophic sulfur oxidation processes have been proposed to remove heavy metals from wastewater treatment sludge by bioleaching. We made a characterization of the microbial population in batch and continuous sludge bioleaching reactors using fluorescent in situ hybridization of fluorescently-labeled oligonucleotidic probes targeting rRNA in a ‚top to bottom approach’. Batch incubations of sludge with 0.2% (w/v) elemental sulfur resulted in a pH value of 5. Alpha-Proteobacteria hybridizing with probe ALF1b were dominant in this incubation. Members of the Acidophilium-group (hybridizing with probe Acdp821) of Nitrospira/Leptospirillum phylum (Ntspa712 probe) and from the archaeal domain (ARCH915) were also detected. When sludge was incubated with 1% elemental sulfur in batch or continuous reactor experiments, final pH values were always below 2. Active microbial communities consisted almost exclusively of gamma-Proteobacteria (hybridizing with probe GAM42a). However, further hybridization experiments with probe Thio820 targeting Acidithiobacillus ferroxidans and Acidithiobacillus thioxidans gave negative results. A new probe, named THIO181, encompassing all known members of the genus was designed. Hybridization perfomed with THIO181 and GAM42a showed a perfect co-localization of the hybridization signals. Further hybridization experiments with probe THIO181 and THC642, specific for the species Acidithiobacillus caldus, confirmed that this bacteria was largely responsible for the sulfur oxidation reaction in our acidophilic sludge bioleaching reactors.  相似文献   

10.
Acid rock drainage (ARD) originating from the Yasumi-ishi tunnel near the main tunnel of the Yanahara mine in Japan was characterized to be moderately acidic (pH 4.1) and contained iron at a low concentration (51?mg/L). The composition of the microbial community was determined by sequence analysis of 16S rRNA genes using PCR and denaturing gradient gel electrophoresis. The analysis of the obtained sequences showed their similarity to clones recently detected in other moderately acidic mine drainages. Uncultured bacteria related to Ferrovum- and Gallionella-like clones were dominant in the microbial community. Analyses using specific primers for acidophilic iron- or sulfur-oxidizing bacteria, Acidithiobacillus ferrooxidans, Leptospirillum spp., Acidithiobacillus caldus, Acidithiobacillus thiooxidans, and Sulfobacillus spp. revealed the absence of these bacteria in the microbial community in ARD from the Yasumi-ishi tunnel. Clones affiliated with a member of the order Thermoplasmatales were detected as the dominant archaea in the ARD microbial population.  相似文献   

11.
The microbial population structure and function of natural anaerobic communities maintained in lab-scale continuously stirred tank reactors at different lactate to sulfate ratios and in the absence of sulfate were analyzed using an integrated approach of molecular techniques and chemical analysis. The population structure, determined by denaturing gradient gel electrophoresis and by the use of oligonucleotide probes, was linked to the functional changes in the reactors. At the influent lactate to sulfate molar ratio of 0.35 mol mol−1, i.e., electron donor limitation, lactate oxidation was mainly carried out by incompletely oxidizing sulfate-reducing bacteria, which formed 80–85% of the total bacterial population. Desulfomicrobium- and Desulfovibrio-like species were the most abundant sulfate-reducing bacteria. Acetogens and methanogenic Archaea were mostly outcompeted, although less than 2% of an acetogenic population could still be observed at this limiting concentration of lactate. In the near absence of sulfate (i.e., at very high lactate/sulfate ratio), acetogens and methanogenic Archaea were the dominant microbial communities. Acetogenic bacteria represented by Dendrosporobacter quercicolus-like species formed more than 70% of the population, while methanogenic bacteria related to uncultured Archaea comprising about 10–15% of the microbial community. At an influent lactate to sulfate molar ratio of 2 mol mol−1, i.e., under sulfate-limiting conditions, a different metabolic route was followed by the mixed anaerobic community. Apparently, lactate was fermented to acetate and propionate, while the majority of sulfidogenesis and methanogenesis were dependent on these fermentation products. This was consistent with the presence of significant levels (40–45% of total bacteria) of D. quercicolus-like heteroacetogens and a corresponding increase of propionate-oxidizing Desulfobulbus-like sulfate-reducing bacteria (20% of the total bacteria). Methanogenic Archaea accounted for 10% of the total microbial community.  相似文献   

12.
A novel technique (“bioshrouding”) for safeguarding highly reactive sulfidic mineral tailings deposits is proposed. In this, freshly milled wastes are colonised with ferric iron-reducing heterotrophic acidophilic bacteria that form biofilms on reactive mineral surfaces, thereby preventing or minimising colonisation by iron sulfide-oxidising chemolithotrophs such as Acidithiobacillus ferrooxidans and Leptospirillum spp. Data from initial experiments showed that dissolution of pyrite could be reduced by between 57 and 75% by “bioshrouding” the mineral with three different species of heterotrophic acidophiles (Acidiphilium, Acidocella and Acidobacterium spp.), under conditions that were conducive to microbial oxidative dissolution of the iron sulfide.  相似文献   

13.
Microbes such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans have been investigated a lot, because of their important role in acid mine drainage (AMD) generation. In this article, the composition of microbial communities in two AMD samples was studied. A culture-independent 16S rDNA-based cloning approach, restriction fragment length polymorphism has been used. The interaction between microbes and natural pyrite specimen surface was researched by scanning electrode microscopy (SEM) and fluorescence in situ hybridization (FISH). The phylogenetic analysis revealed bacteria in these two samples fell into three major groups: Proteobacteria, Nitrospira, and Firmicutes. Archaea was also detected in these two samples. Thermoplasma and Ferroplasma lineages were abundant. From SEM and FISH, a number of A. ferrooxidans, a few cells of Archaea and Acidiphilium were detected adsorbed on the pyrite specimen surface. Leptospirillum sp. (hybridize with the probe LF655) has not been detected to be present on the pyrite specimen surface.  相似文献   

14.
Two strains ofLeptospirillum-like bacteria, L6 and L8, have been isolated from a mixed inoculum, also containingThiobacillus ferrooxidans andT. thiooxidans, cultured for one year with a colbaltiferous pyrite as energy substrate in a 100 I continuous bioleaching laboratory unit. Several physiological properties of the strains are described. The vibrio-shaped microorganisms grew at pH values lower than 1.3. Their growth rate was maximum between 2.5 and 8.0 g l1 ferrous iron. The optimal growth temperature was 37.5° C. Ferric iron had a stimulative effect on bacterial development up to 8 g l–1, and growth was as rapid at 14 g l–1 ferric iron as at 8 g l–1. The negative influence of cobalt on the final cell concentration was observed at 0.5 g l–1, but the growth rate was not affected up to 2 g l–1. The G + C content of strains L8 is 55.6 mol%.  相似文献   

15.
Wide variations were found in the rate of chemical and microbiological leaching of iron from pyritic materials from various sources. Thiobacillus ferrooxidans accelerated leaching of iron from all of the pyritic materials tested in shake flask suspensions at loadings of 0.4% (wt/vol) pulp density. The most chemically reactive pyrites exhibited the fastest bioleaching rates. However, at 2.0% pulp density, a delay in onset of bioleaching occurred with two of the pyrites derived from coal sources. T. ferrooxidans was unable to oxidize the most chemically reactive pyrite at 2.0% pulp density. No inhibition of pyrite oxidation by T. ferrooxidans occurred with mineral pyrite at 2.0% pulp density. Experiments with the most chemically reactive pyrite indicated that the leachates from the material were not inhibitory to iron oxidation by T. ferrooxidans.  相似文献   

16.
17.
When Ectothiorhodospira shaposhnikovii VKM B-1525 was used for desuphurization of biogas in the laboratory and in a pilot plant, there was complete oxidation of H2S, the main product being elemental sulphur. The advatage of this culture over green bacteria is discussed.M.B. Vainshtein, G.I. Gogotova and N.-J. Heinritz are with the Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142292 Russia  相似文献   

18.
Conversion of hydrogen sulphide (H2S) by the bacterium Thiobacillus thiooxidans to sulphur or sulphate was demonstrated in a continuous column contacter using a countercurrent flow of gas and liquid medium. The initial conversion to sulphur was much faster than subsequent oxidation to sulphate, allowing for removal of elemental sulphur. The rate of H2S removal increased with available surface area in the column bed and with time. The number of bacteria in the column increased very slowly with time, placing great importance on the initial concentration of bacteria in the column. Correspondence to: H. M. Lizama  相似文献   

19.
Summary The leaching activity of five batches of Thiobacillus ferrooxidans, strain F26-77, cultivated under various conditions, towards elemental sulphur, ferrous ions, pyrite, covellite, chalcopyrite and sphalerite was studied. The activities of sulphite oxidase, thiosulphate oxidase and rhodanese were determined in crude, cell-free bacterial extracts. The effectiveness of leaching was directly correlated with the enzymic activity of the cultures. The results suggest that the activities of the enzymes metabolizing sulphur and its inorganic compounds in Thiobacillus ferrooxidans, or bacterial leaching activity on sulphur and sulphides, rather than the rate of oxidation of ferrous ions, should be taken as the criterion of usefulness for the leaching of sulphide minerals.  相似文献   

20.
Summary A study has been made of microbial processes in the oxidation of pyrite in aicd sulphate soil material. Such soils are formed during aeration of marine muds rich in pyrite (FeS2). Bacteria of the type ofThiobacillus ferrooxidans are mainly responsible for the oxidation of pyrite, causing a pronounced acidification of the soil. However, becauseThiobacillus ferrooxidans functions optimally at pH values bellow 4.0, its activity cannot explain the initial pH drop from approximately neutral to about 4. This was shown to be a non-biological process, in which bacteria play an insignificant part. AlthoughThiobacillus thioparus andThiobacillus thiooxidans were isolated from the acidifying soil, they did not stimulate oxidation of FeS2, but utilized reduced sulphur compounds, which are formed during the non-biological oxidation of FeS2.Ethylene-oxide-sterilized and dry-sterilized soil inoculated with pure cultures of mixtures of various thiobacilli or with freshly sampled acid sulphate soil soil did not acidify faster than sterile blanks.Thiobacillus thiooxians. Thiobacillus thioparus. Thiobacillus intermedius andThiobacillus perometabolis increased from about 104 to 105 cells/ml in media with FeS2 as energy source. However, FeS2 oxidation in the inoculated media was not faster than in sterile blanks.Attempts to isolate microorganisms other thanThiobacillus ferrooxidans, like metallogenium orLeptospirillum ferrooxidans, which might also be involved in the oxidation of FeS2 were not successful.Addition of CaCO3 to the soil prevented acidification but did not stop non-biological oxidation of FeS2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号