首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
To determine whether or not the changes in the orientation ofmicrotubules (MTs) that are induced by GA3 and ABA result fromchanges in the rate of epicotyl elongation caused by these hormones,we examined the effects of GA3 and ABA on the orientation ofMTs in epidermal cells of decapitated epicotyls of the dwarfpea (Pisum sativum cv. Little Marvel), in which neither GA3nor ABA causes changes in the rate of epicotyl elongation. Cuttings taken from GA3-pretreated seedlings were decapitatedand treated with ABA. ABA eliminated the GA3-induced predominanceof transverse MTs and treatment with ABA resulted in a predominanceof longitudinal MTs in the decapitated cuttings. However, ABAdid not reduce the rate of epicotyl elongation in these samples.Cuttings taken from ABA-pretreated seedlings were decapitatedand treated with GA3. GA3 caused the orientation of MTs to changefrom longitudinal to transverse in the decapitated cuttings.However, GA3 had no promotive effect on elongation of theseepicotyls. The results indicate that both ABA and GA3 have the abilityto change the orientation of MTs by mechanisms that do not involvechanges in the rate of cell elongation. (Received August 18, 1992; Accepted January 18, 1993)  相似文献   

2.
The physiological characteristics of the response of excised cowpea (Vigna sinensis cv Blackeye pea No. 5) epicotyls to gibberellins (GAs) were studied. Epicotyl explants, retaining the petioles and a 2-cm portion of hypocotyl, were placed upright in small vials containing water. Plant growth substances were injected into the subapical tissues as ethanol solutions.Epicotyl elongation resulting from treatment with 0.5 g of GA ranged between 5 and 13 times that of the control, depending on the GA applied. With GA1, no differences were obtained with explants prepared from 5 to 9-day-old seedlings. The increase in elongation could be detected within 6 h of treatment, and the stimulus of a single application lasted at least 4 days. Final elongation was proportional to the logarithm of the amount of GA, applied, 0.01 to lug. The response to GA treatment was limited to the upper part, the most sensitive zone being located between 2 to 4 mm below the apex of the epicotyl; this effect was entirely due to cell elongation.The induction of epicotyl elongation by GAs seems to be specific and independent of the effect of auxin. IAA had no effect on elongation and 4-chloro-phenoxyisobutyric acid (PCIB) did not affect the response to GA1 Abbreviations ABA abscisic acid - GA gibberellin - IAA Indole-3-acetic acid - TIBA 2,3,5-triiodobenzoic acid - PCIB 4-chloro-phenoxyisobutyric acid  相似文献   

3.
Embryos isolated from dormant apple seeds were treated with jasmonic acid (JA), gibberellin A3 (GA3), abscisic acid (ABA) and hydrogen cyanide in darkness and in light. The chemicals were present in the culture medium continuously and simultaneously or applied for 2 days and in different sequences. All treatments stimulated embryo germination except ABA, which was strongly inhibitory. Additive effects of JA with light and with GA3 on embryo germination were observed, whereas ABA interacted synergically with JA, HCN and light. ABA and GA3 were most effective when applied early during embryo incubation, but the late JA treatment was more stimulatory. It is concluded that JA does not act on the regulatory pathway that is initiated by light and which leads to embryo germination through gibberellin accumulation and alkaline lipase activation. ABA and HCN appear to be involved in the control of this pathway. JA and ABA may be involved in the control of alkaline lipase activity, independently of this regulatory chain.Abbreviations ABA abscisic acid - GA3 gibberellin A3 - JA jasmonic acid  相似文献   

4.
The effect of gibberellin A1 (GA1) on production of ethylene by cowpea (Vigna sinensis cv Blackeye pea no. 5) epicotyl explants and its relationship to epicotyl elongation was investigated. The explants were placed upright in water and incubated in sealed culture tubes or in large jars. GA, and IAA in ethanol solution were injected into the subapical tissues of the decapitated epicotyls. Cowpea epicotyl explants elongated after GA but not after IAA treatment, and they were very sensitive to exogenous ethylene. As little as 0.14 1/1 ethylene reduced significantly GA1-induced epicotyl elongation.Treatment with GA1 induced the production of ethylene which began 10 h after GA application, showed a peak at about 22 h and then declined. The yield of ethylene was proportional to the amount of GA, injected. The inhibition of epicotyl elongation in closed tubes was avoided by absorbing ethylene released with Hg(Cl04)2 , or by adding AVG to the incubation solution to inhibit ethylene production. Treatment with IAA elicited a rapid production of ethylene which ceased about 10 h after application. The effects of IAA and GA1 on ethylene production were additive.Abbreviations AVG aminoethoxyvinylglycine 2-amino-4-(2-aminoethoxy)-trans-3butenoic acid - ACC 1-aminocyclopropane-1-carboxylic acid - GA gibberellin - IAA indole-3-acetic acid  相似文献   

5.
Summary The outer tangential wall (OTW) of epidermal cells of azuki bean epicotyls has a crossed polylamellate structure, in which lamellae of longitudinal cellulose microfibrils alternate with lamellae of transverse cellulose microfibrils. This implies that the cyclic reorientation of cortical microtubules (MTs) from longitudinal to transverse and from transverse to longitudinal occurs on the OTW. Treatment with a solution that contained no auxin caused the accumulation of cells with longitudinal MTs, suggesting that auxin is required for the reorientation of MTs from longitudinal to transverse during the reorientation cycle. Treatment with 6-dimethylaminopurine (DMAP), an inhibitor of protein kinases that promoted the reorientation of MTs from transverse to longitudinal, resulted in the accumulation of cells with longitudinal MTs. Subsequent treatment with auxin caused a marked increase in the percentage of cells with transverse MTs and then a decrease in the percentage, indicating that the reorientation of MTs from longitudinal to transverse and then from transverse to longitudinal occurred during treatment with auxin. The percentage of cells with transverse MTs decreased more slowly in segments that had been pretreated with gibberellin A3 (GA) than in segments that had been pretreated without GA, suggesting that GA, in cooperation with auxin, caused the suppression of the reorientation of MTs from transverse to longitudinal.Abbreviations BL brassinolide - BSA bovine serum albumin - GA gibberellin A3 - DMAP 6-dimethylaminopurine - DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - IAA indoleacetic acid - MT microtubule - OTW outer tangential wall - PBS phosphate-buffered saline Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

6.
Actinomycin D inhibited the elongation of epicotyl segmentsfrom azuki bean seedlings that was induced by simultaneous treatmentwith IAA and GA3. The drug also inhibited the elongation ofthe segments that was caused by IAA alone when it was appliedtogether with IAA. When the segments were pretreated with GA3and then incubated with IAA, GA3 promoted the elongation causedby IAA and brought about a predominance of transverse corticalmicrotubules (MTs) in the epidermal cells of the segments. Thechange in the arrangement of MTs caused by pretreatment withGA3 was evident 1 h after the start of subsequent incubationwith IAA when the effect of pretreatment with GA3 on the elongationhad not yet become apparent. Pretreatment with GA3 did not causeany change in the arrangement of MTs when GA3-pretreated segmentswere not incubated subsequently with IAA. Although actinomycinD applied before treatment with IAA did not inhibit the IAA-inducedelongation, the drug diminished the promotion of the elongationcaused by pretreatment with GA3 and prevented GA3 from bringingabout a predominance of transverse MTs when the drug was appliedduring the pretreatment with GA3. GA3-induced synthesis of mRNA seems to be involved in the promotionby GA3 of IAA-induced elongation and in the GA3-induced rearrangementof cortical MTs. (Received June 15, 1993; Accepted August 16, 1993)  相似文献   

7.
The elongation rate of cowpea epicotyls from whole cowpea (Vigna sinensis) seedlings and derooted and debladed plants (explants) increased after the main light period (8-hour duration) was extended with either continuous low intensity tungsten light or brief (5 minutes) far-red (FR) irradiation. This end-of-day FR effect was reversed by red (R) irradiation suggesting the involvement of phytochrome. These results confirm and extend those obtained previously with other species. Localization studies indicate the epicotyl to be the site of the photoreceptor. Treatment of cowpea seedlings with paclobutrazol, a gibberellin (GA) biosynthetic inhibitor, abolished the FR promoted epicotyl elongation, indicating a role for GAs in this process. There was no significant difference in epicotyl elongation rates of R plus FR irradiated explants treated with GA1 or GA20 and R irradiated explants treated with GA1. However, R irradiation inhibited subsequent epicotyl elongation of GA20 treated explants. Moreover, the observation, using GC-MS, that GA1 and GA20 are native GAs in cowpea lends support to the concept that phytochrome may control the conversion of endogenous GA20 to GA1 in cowpea.  相似文献   

8.
In de-rooted seedlings of Amaranthus caudatus L., betacyanin synthesis induced by white light or cytokinin was inhibited by abscisic acid (ABA) or a mixture of gibberellins A4 and A7 (GA4/7). The GA4/7 and ABA effects were additive. Thus ABA inhibited the cytokinin action but had no effect on the gibberellin response.  相似文献   

9.
The enhancement of internodal elongation in floating or deepwater rice (Oryza sativa L. cv. Habiganj Aman II) by treatment with ethylene or gibberellic acid (GA3) at high relative humidity (RH) is inhibited by abscisic acid (ABA). Here, we examined the interactive effects of ethylene, gibberellin (GA) and ABA at low RH on internodal elongation of deepwater rice stem segments. Although ethylene alone hardly promoted internodal elongation of stem sections at 30% RH, it enhanced the internodal elongation induced by GA3. Application of ABA alone to stem segments had no effect on internodal elongation. However, in the presence of ethylene and GA3 at 30% RH, ABA further promoted internodal elongation. This promotive effect of ABA was not found in the internodes of stem segments treated either with ethylene or with GA3 at 30% RH or in the internodes of stem segments treated with ethylene and/or GA3 at 100% RH.  相似文献   

10.
Ethylene decreases the content of endogenous abscisic acid (ABA) and increases the level of bioactive gibberellin A1 (GA1) in the submerged internodes of deepwater rice. During partial submergence, internodes of deepwater rice undergo rapid elongation as a result of ethylene accumulation in the internodal lacunae. In anin vitro experiment using stem sections from deepwater rice, treatment with 5 μL L-1 ethylene promoted stem growth by up to 3.2-foId times over air treatment. Expression patterns were analyzed for genes that encode GA- and ABA-biosynthesis enzymes to determine any possible molecular basis for the changes observed in GA1 and ABA contents as a result of ethylene action. Expression of theOsGA20ox2 andOsGA20ox4 genes, which encode GA 20-oxidase, and of theOsGA3ox2 gene, which encodes the enzyme that converts GA20 to CA1, was up-regulated, whereas that of three ABA-biosynthetic genes —OsNCED1, OsNCED2, andOsNCEDS-was down-regulated in the presence of ethylene. These results indicate that GA and ABA contribute equally to the submergence-or ethylene-induced stem elongation of deepwater rice via the coordinated and opposite regulation of biosynthesis.  相似文献   

11.
Summary In epidermal cells of azuki bean (Vigna angularis) epicotyl segments, that were sequentially treated with an auxin-free solution and an auxin solution, cortical microtubules changed their orientation from longitudinal to transverse. Auxin caused the reorientation of microtubules from longitudinal to transverse in segments that were kept under anaerobic conditions and, therefore, showed no elongation, indicating that auxin can regulate the orientation of microtubules by a mechanism that does not involve auxin-induced change in the rate of cell elongation.Abbreviations DMSO dimethylsulfoxide - GA3 gibberellic acid - IAA indoleacetic acid - MT microtubule - PBS phosphate-buffered saline  相似文献   

12.
13.
Kazuo Takeda  Hiroh Shibaoka 《Planta》1981,151(4):393-398
Gibberellic-acid (GA3) treatment of azukibean epicotyls resulted in alterations of the direction of newly deposited microfibrils, on the cell walls. Cells having transverse microfibrils on the inner surface of the wall were observed more frequently in GA3-treated epicotyls than in untreated or water-treated ones. This effect of GA3 was negated by simultaneously supplied colchicine. A crossed polylamellate structure was observed in the inner portion of the walls of GA3-treated cells, but not in the inner portion of the walls of colchicine-treated cells. The wall formed under the influence of colchicine consisted of microfibrils running in the same direction.Abbreviations GA gibberellin - GA3 gibberellic acid (gibberellin A3)  相似文献   

14.
G. V. Hoad 《Planta》1980,150(4):275-278
Lupin pods were isolated from the plant and the pedicels placed in solutions of either radiolabeled sucrose, glucose, abscisic acid, or gibberellin A9 (GA9). Phloem exudate was collected from the cut stylar ends of the pods and both quantitative and qualitative data were obtained on the activity in the sap. Fed sucrose, abscisic acid, and GA9 were found in phloem exudate, but labeled glucose was immobile as the monosaccharide and activity in exudate appeared in sucrose.Abbreviations GA gibberellic acid - ABA abscisic acid - TLC thin layer chromatography  相似文献   

15.
In gibberellic-acid(GA3)-treated epicotyls of dwarf peas (Pisum sativum L.) grown in the light, DNA (per cell and per epicotyl) is followed. Histofluorometric DNA determinations show that GA3-promoted cell elongation is not accompanied by increased endomitosis, but chemical estimations show an increased DNA content per epicotyl. This difference must therefore be the result of increased mitotic activity in the GA3-treated tissue. Epicotyls of seedlings grown with or without cotyledons under continuous light with GA3 are tetraploid, as are those of ecotylized embryos grown in darkness. These epicotyls reach no more than half the length of octaploid epicotyls of seedlings grown in darkness. This result provides evidence for a relationship between polyploidy and final possible cell length.  相似文献   

16.

Background and Aims

Epicotyl dormancy break in seeds that have deep simple epicotyl morphophysiological dormancy (MPD) requires radicle emergence and even a certain root length in some species. However, the mechanisms by which root length affects epicotyl dormancy break are not clear at present. This study aims to explore the relationship between root length and epicotyl dormancy release in radicle-emerged seeds of Tibetan peony, Paeonia ludlowii, with discussion of the possible mechanisms.

Methods

Radicle-emerged seeds (radicle length 1·5, 3·0, 4·5 and 6·0 cm) were incubated at 5, 10 and 15 °C. During the stratification, some seeds were transferred to 15 °C and monitored for epicotyl–plumule growth. Hormone content was determined by ELISA, and the role of hormones in epicotyl dormancy release was tested by exogenous hormone and embryo culture.

Key Results

Cold stratification did not break the epicotyl dormancy until the root length was ≥6 cm. The indole-3-actic acid (IAA) and GA3 contents of seeds having 6 cm roots were significantly higher than those of seeds with other root lengths, but the abscisic acid (ABA) content was lowest among radicle-emerged seeds. GA3 (400 mg L−1) could break epicotyl dormancy of all radicle-emerged seeds, while IAA (200 mg L−1) had little or no effect. When grown on MS medium, radicles of naked embryos grew and cotyledons turned green, but epicotyls did not elongate. Naked embryos developed into seedlings on a mixed medium of MS + 100 mg L−1 GA3.

Conclusions

A root length of ≥6·0 cm is necessary for epicotyl dormancy release by cold stratification. The underlying reason for root length affecting epicotyl dormancy release is a difference in the GA3/ABA ratio in the epicotyl within radicle-emerged seeds, which is mainly as a result of a difference in ABA accumulation before cold stratification.  相似文献   

17.
Negative photoblastism induced in white clover seeds at 5°C or by lowered water potential (–0.3 MPa, polyethylene glycol) was affected by ethrel, gibberellin A3, benzylaminopurine and kinetin treatments. The effects were different for water and temperature stressed seeds. The observed synergistic and additive effects of light and growth regulators confirm the earlier suggestion that there are two different mechanisms involved in the light inhibition of white clover seed germination induced by various adverse environmental conditions.Abbreviations ABA abscisic acid - BAP benzylaminopurine - GA3 gibberellin A3 - PEG polyethylene glycol  相似文献   

18.
Seasonal Changes of GA1, GA19 and Abscisic Acid in Three Rice Cultivars   总被引:4,自引:0,他引:4  
The levels of endogenous gibberellin A1 and A19 (GA1 and GA19)and abscisic acid (ABA) in three rice (Oryza sativa L.) cultivars,Nihonbare (normal), Tan-ginbozu (semid-warf) and Tong-il (semi-dwarf),were measured at various stages of internode elongation andear development. GA19 was the main GA in Nihonbare and Tong-ilthroughout the life cycle but was not detected in Tan-ginbozu.The levels of GA1 in the ears of all three cultivars were lowand reached their maxima after anthesis. Similarly, the earsof all three cultivars contained high ABA levels which peakedafter anthesis. Shoots contained low quantities of ABA throughoutthe life cycle. The roles of GAs and ABA are discussed withrespect to physiological phenomena, such as internode elongation,ear development and dwarfism. (Received May 9, 1981; Accepted July 18, 1981)  相似文献   

19.
Brassinolide, at 10–8M or higher, enhanced the elongationof epicotyl segments from azuki bean seedlings that was inducedby IAA, but it did not enhance the increase in fresh weightof the segments, an indication that brassinolide suppressedthe lateral expansion of the segments. The additional elongationcaused by brassinolide was completely prevented in the presenceof 10–5 M cremart, which disrupted the cortical microtubules(MTs) in epidermal cells in the segments, and in the presenceof 10–6M 2,6-dichlorobenzonitrile, an inhibitor of thesynthesis of cellulose. Brassinolide at 10–7M, appliedtogether with IAA, increased the percentage of epidermal cellswith transversely oriented cortical MTs. Brassinolide appearsto enhance the longitudinal expansion and suppress the lateralexpansion of epicotyl cells by organizing cortical MTs transverselyto the cell axis and, thereby, causing the deposition of cellulosemicrofibrils in the same orientation. Brassinolide by itself, at 10–8M or higher, induced theelongation of epicotyl segments and the elongation caused bybrassinolide was partially prevented by 10–5M cremart,results that suggest that brassinolide regulates cell expansionvia at least two processes, an MT-dependent process and an MT-independentprocess. Brassinolide by itself increased the percentage ofepidermal cells with transversely oriented cortical MTs. Since,in azuki bean epicotyls, the percentage of cells with transverseMTs is increased only by the combination of auxin and gibberellinbut not by either alone, brassinolide applied alone seems toplay a double role, similar to that of auxin and of gibberellin,in organizing cortical MTs. (Received September 2, 1994; Accepted November 16, 1994)  相似文献   

20.
Summary By selecting for germinating seeds in the progeny of mutagen-treated non-germinating gibberellin responsive dwarf mutants of the ga–1 locus in Arabidopsis thaliana, germinating lines (revertants) could be isolated. About half of the revertants were homozygous recessive for a gene (aba), which probably regulates the presence of abscisic acid (ABA). Arguments for the function of this gene were obtained from lines homozygous recessive for this locus only, obtained by selection from the F2 progeny of revertant X wild-type crosses. These lines are characterized by a reduced seed dormancy, symptoms of withering, increased transpiration and a lowered ABA content in developing and ripe seeds and leaves.Abbreviations ABA Abscisic acid - GA4+7 Mixture of gibberellin A4 and A7 - EMS Ethylmethanesulfonate - NG Non-germinating - G Germinating  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号