首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Several lines of evidence are compatible with the hypothesis that Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) or leader protein (EBNA-LP) affects expression of the EBV latent infection membrane protein LMP1. We now demonstrate the following. (i) Acute transfection and expression of EBNA-2 under control of simian virus 40 or Moloney murine leukemia virus promoters resulted in increased LMP1 expression in P3HR-1-infected Burkitt's lymphoma cells and the P3HR-1 or Daudi cell line. (ii) Transfection and expression of EBNA-LP alone had no effect on LMP1 expression and did not act synergistically with EBNA-2 to affect LMP1 expression. (iii) LMP1 expression in Daudi and P3HR-1-infected cells was controlled at the mRNA level, and EBNA-2 expression in Daudi cells increased LMP1 mRNA. (iv) No other EBV genes were required for EBNA-2 transactivation of LMP1 since cotransfection of recombinant EBNA-2 expression vectors and genomic LMP1 DNA fragments enhanced LMP1 expression in the EBV-negative B-lymphoma cell lines BJAB, Louckes, and BL30. (v) An EBNA-2-responsive element was found within the -512 to +40 LMP1 DNA since this DNA linked to a chloramphenicol acetyltransferase reporter gene was transactivated by cotransfection with an EBNA-2 expression vector. (vi) The EBV type 2 EBNA-2 transactivated LMP1 as well as the EBV type 1 EBNA-2. (vii) Two deletions within the EBNA-2 gene which rendered EBV transformation incompetent did not transactivate LMP1, whereas a transformation-competent EBNA-2 deletion mutant did transactivate LMP1. LMP1 is a potent effector of B-lymphocyte activation and can act synergistically with EBNA-2 to induce cellular CD23 gene expression. Thus, EBNA-2 transactivation of LMP1 amplifies the biological impact of EBNA-2 and underscores its central role in EBV-induced growth transformation.  相似文献   

3.
Among the few Epstein-Barr virus (EBV) genes expressed during latency are the Epstein-Barr nuclear antigens (EBNAs), at least one of which contributes to the ability of the virus to transform B lymphocytes. We have analyzed a promoter located in the BamHI-C fragment of EBV which is responsible for the expression of EBNA-1 in some cell lines. Deletion analysis of a 1.4-kb region 5' of the RNA start site has identified a 700-bp fragment that is required for optimal promoter activity in latently infected B lymphocytes, as shown by promoter constructs linked to the chloramphenicol acetyltransferase reporter gene. This fragment is also able to enhance activity, in an orientation-independent manner, of the simian virus 40 early promoter linked to the chloramphenicol acetyltransferase gene. The enhancer element has some constitutive activity in EBV-negative lymphoid cells, which is increased in the presence of the EBNA-2 gene product. Further deletions have shown that the EBNA-2-responsive region requires a 98-bp region that contains a degenerate octamer-binding motif. In epithelial cells there was no enhancer activity regardless of the presence of EBNA-2. These results demonstrate that BamHI-C promoter activity may be dependent not on an enhancer contained in the ori-P, as was previously assumed, but rather on EBNA-2 transactivation of this more proximal enhancer located in the upstream region of the BamHI C promoter itself.  相似文献   

4.
5.
J I Cohen  F Wang    E Kieff 《Journal of virology》1991,65(5):2545-2554
Epstein-Barr virus (EBV) nuclear protein 2 (EBNA-2) is essential for B-lymphocyte growth transformation. EBNA-2 transactivates expression of the EBV latent membrane protein (LMP-1) and also transactivates expression of the B-lymphocyte proteins CD21 and CD23. In order to analyze the functional domains of EBNA-2, we constructed 11 linker-insertion and 15 deletion mutations. Each of the mutant EBNA-2 proteins localized to the nucleus, and each was expressed at levels similar to wild-type EBNA-2. Deletion of both EBNA-2 basic domains was required to prevent nuclear localization, indicating that either is sufficient for nuclear translocation. The mutant EBNA-2 genes were assayed for lymphocyte transformation after recombination with the EBNA-2-deleted P3HR-1 EBV genome and for LMP-1 transactivation following transfection into P3HR-1-infected B-lymphoma cells. Cell lines transformed by recombinant EBV carrying EBNA-2 mutations were assayed for growth properties and LMP-1, CD21, and CD23 expression. The mutational analysis indicates that at least four separate EBNA-2 domains are essential for lymphocyte transformation. Two other domains are necessary for the full transforming phenotype. Two deletion and eight linker-insertion mutations did not reduce transforming activity. Mutations which diminish or abolish lymphocyte transformation also diminish or abolish LMP-1 transactivation, respectively. Cells transformed by recombinant EBV carrying EBNA-2 genes with diminished or normal transforming activity all expressed high levels of LMP-1, CD23, and CD21. These findings suggest that transactivation of these viral and cellular genes by EBNA-2 plays a critical role in lymphocyte transformation by EBV. Furthermore, these results indicate that the transformation and transactivation functions of EBNA-2 may not be separable.  相似文献   

6.
Latent Epstein-Barr virus (EBV) infection and growth transformation of B lymphocytes is characterized by EBV nuclear and membrane protein expression (EBV nuclear antigen [EBNA] and latent membrane protein [LMP], respectively). LMP1 is known to be an oncogene in rodent fibroblasts and to induce B-lymphocyte activation and cellular adhesion molecules in the EBV-negative Burkitt's lymphoma cell line Louckes. EBNA-2 is required for EBV-induced growth transformation; it lowers rodent fibroblast serum dependence and specifically induces the B-lymphocyte activation antigen CD23 in Louckes cells. These initial observations are now extended through an expanded study of EBNA- and LMP1-induced phenotypic effects in a different EBV-negative B-lymphoma cell line, BJAB. LMP1 effects were also evaluated in the EBV-negative B-lymphoma cell line BL41 and the EBV-positive Burkitt's lymphoma cell line, Daudi (Daudi is deleted for EBNA-2 and does not express LMP). Previously described EBNA-2- and LMP1-transfected Louckes cells were studied in parallel. EBNA-2, from EBV-1 strains but not EBV-2, induced CD23 and CD21 expression in transfected BJAB cells. In contrast, EBNA-3C induced CD21 but not CD23, while no changes were evident in vector control-, EBNA-1-, or EBNA-LP-transfected clones. EBNAs did not affect CD10, CD30, CD39, CD40, CD44, or cellular adhesion molecules. LMP1 expression in all cell lines induced growth in large clumps and expression of the cellular adhesion molecules ICAM-1, LFA-1, and LFA-3 in those cell lines which constitutively express low levels. LMP1 expression induced marked homotypic adhesion in the BJAB cell line, despite the fact that there was no significant increase in the high constitutive BJAB LFA-1 and ICAM-1 levels, suggesting that LMP1 also induces an associated functional change in these molecules. LMP1 induction of these cellular adhesion molecules was also associated with increased heterotypic adhesion to T lymphocytes. The Burkitt's lymphoma marker, CALLA (CD10), was uniformly down regulated by LMP1 in all cell lines. In contrast, LMP1 induced unique profiles of B-lymphocyte activation antigens in the various cell lines. LMP1 induced CD23 and CD39 in BJAB; CD23 in Louckes; CD39 and CD40 in BL41; and CD21, CD40, and CD44 in Daudi. In BJAB, CD23 surface and mRNA expression were markedly increased by EBNA-2 and LMP1 coexpression, compared with EBNA-2 or LMP1 alone. This cooperative effect was CD23 specific, since no such effect was observed on another marker, CD21.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The Epstein-Barr virus (EBV) genome becomes established as a multicopy plasmid in the nucleus of infected B lymphocytes. A cis-acting DNA sequence previously described within the BamHI-C fragment of the EBV genome (J. Yates, N. Warren, D. Reisman, and B. Sugden, Proc. Natl. Acad. Sci. USA 81:3806-3810, 1984) allows stable extrachromosomal plasmid maintenance in latently infected cells, but not in EBV-negative cells. In agreement with the findings of Yates et al., deletion analysis permitted the assignment of this function to a 2,208-base-pair region (nucleotides 7315 to 9517 of the B95-8 strain of EBV) of the BamHI-C fragment that contained a striking repetitive sequence and an extended region of dyad symmetry. A recombinant vector, p410+, was constructed which carried the BamHI-K fragment (nucleotides 107565 to 112625 of the B95-8 strain, encoding the EBV-associated nuclear antigen EBNA-1), the cis-acting sequence from the BamHI-C fragment, and a dominant selectable marker gene encoding G-418 resistance in animal cells. After being transfected into HeLa cells, this plasmid persisted extrachromosomally at a low copy number, with no detectable rearrangements or deletions. Two mutations in the BamHI-K-derived portion of p410+, a large in-frame deletion and a linker insertion frameshift mutation, both of which alter the carboxy-terminal portion of EBNA-1, destroyed the ability of the plasmid to persist extrachromosomally in HeLa cells. A small in-frame deletion and linker insertion mutation in the region encoding the carboxy-terminal portion of EBNA-1, which replaced 19 amino acid codons with 2, had no effect on the maintenance of p410+ in HeLa cells. These observations indicate that EBNA-1, in combination with a cis-acting sequence in the BamHI-C fragment, is in part responsible for extrachromosomal EBV-derived plasmid maintenance in HeLa cells. Two additional activities have been localized to the BamHI-C DNA fragment: (i) a DNA sequence that could functionally substitute for the simian virus 40 enhancer and promoter elements controlling the expression of G-418 resistance and (ii) a DNA sequence which, although not sufficient to allow extrachromosomal plasmid maintenance, enhanced the frequency of transformation to G-418 resistance in EBV-positive (but not EBV-negative) cells. These findings suggest that the BamHI-C fragment contains a lymphoid-specific or EBV-inducible promoter or enhancer element or both.  相似文献   

8.
9.
10.
11.
《Research in virology》1990,141(1):17-30
We have investigated the effect of Epstein-Barr virus nuclear antigen 1 (EBNA-1), a nuclear protein encoded by EBV, on herpes simplex virus type 1 (HSV-1) infection either in cells constitutively expressing EBNA-1 or in transient expression assays. Rat-1 cells and rat embryo fibroblasts (REF) immortalized by c-myc or E1A were transfected with a specific EBV DNA fragment coding for EBNA-1. Cloned cell lines which constitutively expressed this antigen were infected with HSV-1. Our results indicate that in EBNA-1-expressing cells, virus growth was higher than in control cells for different virus strains or rodent cell lines. This increase was maximal when cells were infected at low multiplicity, as determined by virus growth, and correlated with the stimulation of viral DNA synthesis. REF + c-myc and Vero cells were contransfected by an EBNA-1 expression vector driven by Moloney murine leukaemia virus LTR and HSV-1 immediate-early (α0) or early thymidine kinase upstream promoter regulatory regions linked to chloramphenicol acetyltransferase (CAT) coding sequences as effectors. In both cell lines, stimulation of CAT expression by EBNA-1 was observed only with the immediate-early promoter. These results suggest that EBNA-1 can transactivate immediate-early HSV-1 expression.  相似文献   

12.
We have previously shown that the Epstein-Barr virus (EBV) immediate-early gene product, BZLF1, can activate expression of the EBV BMLF1 immediate-early promoter in EBV-positive, but not EBV-negative, B cells, suggesting that the BZLF1 effect may be mediated through another EBV gene product (S. Kenney, J. Kamine, E. Holley-Guthrie, J.-C. Lin, E.-C. Mar, and J. S. Pagano, J. Virol. 63:1729-1736, 1989). Here, we show that the EBV BRLF1 immediate-early gene product transactivates the BMLF1 promoter in either EBV-positive or EBV-negative B cells. Deletional analysis revealed that both the BZLF1-responsive region and the BRLF1-responsive region of the BMLF1 promoter are contained within the same 140-base-pair FokI-PvuII fragment located 300 base pairs upstream of the mRNA start site. This FokI-PvuII fragment functions as an enhancer element in the presence of the BRLF1 transactivator and contains the sequence CCGTGGAGA ATGTC, which is strikingly similar to the BRLF1-responsive region of the EBV DR/DL enhancer (A. Chevallier-Greco, H. Gruffat, E. Manet, A. Calender, and A. Sergeant, J. Virol. 63:615-623, 1989). The effect of BZLF1 on the BMLF1 promoter is likely to be indirect and mediated through the BRLF1 transactivator.  相似文献   

13.
Injection of Epstein-Barr virus (EBV)-transformed human lymphoblastoid B cells into immunodeficient SCID mice results in the appearance of rapidly growing, fatal human B-cell tumors. To evaluate the role of EBV nuclear protein 2 (EBNA-2) in this process, we generated lymphoblastoid cell lines transformed by several EBV mutants which were identical except for deletions in the EBNA-2 gene (J. I. Cohen, F. Wang, and E. Kieff, J. Virol. 65:2545-2554, 1991). These cell lines were injected intraperitoneally into SCID mice, and the interval until tumor detection was determined. Cell lines transformed with EBV type 1 (strain W91) or with EBV type 2 (strain P3HR-1) with an inserted type 1 EBNA-2 gene grew at the same rapid rate, indicating the potential importance of EBNA-2 for tumor formation in vivo. Cell lines derived from three different EBV mutants with deletions in the amino half of EBNA-2 produced tumors more slowly than cell lines transformed by wild-type W91 virus. In contrast, a cell line transformed with an EBV mutant with a deletion in the carboxy terminus of EBNA-2 grew more rapidly than cell lines transformed by wild-type virus. EBV mutants with deletions in the amino half of EBNA-2 had had reduced transforming activity in vitro, while the carboxy-terminal EBNA-2 mutant had had transforming activity greater than or equal to that of the wild type. These data indicate that EBNA-2 plays a critical role both for B-cell tumor growth in SCID mice and for B-lymphocyte transformation in vitro.  相似文献   

14.
15.
16.
Expression of the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) oncogene is regulated by the EBV nuclear protein 2 (EBNA-2) transactivator. EBNA-2 is known to interact with the cellular DNA-binding protein J kappa and is recruited to promoters containing the GTGGGAA J kappa recognition sequence. The minimal EBNA-2-responsive LMP-1 promoter includes one J kappa-binding site, and we now show that mutation of that site, such that J kappa cannot bind, reduces EBNA-2 responsiveness by 60%. To identify other factors which interact with the LMP-1 EBNA-2 response element (E2RE), a -236/-145 minimal E2RE was used as a probe in an electrophoretic mobility shift assay. The previously characterized factors J kappa, PU.1, and AML1 bind to the LMP-1 E2RE, along with six other unidentified factors (LBF2 to LBF7). Binding sites were mapped for each factor. LBF4 is B- and T-cell specific and recognizes the PU.1 GGAA core sequence as shown by methylation interference. LBF4 has a molecular mass of 105 kDa and is probably unrelated to PU.1. LBF2 was found only in epithelial cell lines, whereas LBF3, LBF5, LBF6, and LBF7 were not cell type specific. Mutations of the AML1- or LBF4-binding sites had no effect on EBNA-2 transactivation, whereas mutation of the PU.1-binding site completely eliminated EBNA-2 responses. A gst-EBNA-2 fusion protein specifically depleted PU.1 from nuclear extracts and bound in vitro translated PU.1, providing biochemical evidence for a direct EBNA-2-PU.1 interaction. Thus, EBNA-2 transactivation of the LMP-1 promoter is dependent on interaction with at least two distinct sequence-specific DNA-binding proteins, J kappa and PU.1. LBF3, LBF5, LBF6, or LBF7 may also be involved, since their binding sites also contribute to EBNA-2 responsiveness.  相似文献   

17.
The Epstein-Barr virus (EBV) genome contains two cis-acting elements which are required for stable extrachromosomal plasmid maintenance in latently infected cells. The first consists of 20 30-base-pair (bp) repeats, each of which contains a DNA-binding site for EBV nuclear antigen 1 (EBNA-1), the trans-acting factor required for plasmid persistence. The second element is composed of a 65-bp dyad symmetry, containing four EBNA-1-binding sites. Deletion mutants were constructed which reduce the number of EBNA-1-binding sites in the 30-bp repeats, alter the number of EBNA-1-binding sites in the dyad region, or truncate the dyad element. The effect of the deletion mutations on plasmid maintenance was examined by transfecting recombinant plasmids, containing both the mutated EBV sequences and a drug resistance marker, into D98-Raji cells. The plasmids were tested for their ability to generate drug-resistant D98-Raji cell colonies and their capacity to be maintained in an extrachromosomal form without undergoing extensive rearrangements. EBV plasmids with 12 or 15 copies of the 30-bp repeats were wild type in both assays. Plasmids with just two or six copies of these repeated elements failed to generate drug-resistant colonies at a normal level, and normal episomal plasmids were not detected in the resulting colonies. Rare colonies of cells resulting from transfection of these two- or six-copy mutants contained rearranged, episomal forms of the input plasmids. The rearrangements most often produced head-to-tail oligomers containing a minimum of eight 30-bp repeated elements. The rearranged plasmids were shown to be revertant for plasmid maintenance in that they yielded wild-type or greater numbers of drug-resistant colonies and persisted at the wild-type or a greater episomal copy number. By use of an EBV plasmid that contained no 30-bp elements, no revertants could be isolated. One to five copies of a synthetic linker corresponding to a consensus 30-bp repeated element inserted into a plasmid with no 30-bp elements now permitted the generation of oligomeric, episomal forms of the mutant test plasmid. These experiments demonstrate a requirement for a minimal number (six to eight copies) of the 30-bp repeated element. Deletions in the 65-bp dyad region had little or no effect upon the ability to generate enhanced numbers of drug-resistant D98-Raji colonies, indicating that the 30-bp repeated element is predominantly required for this phenotype.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
Replication of the Epstein-Barr viral (EBV) genome occurs once per cell cycle during latent infection. Similarly, plasmids containing EBV’s plasmid origin of replication, oriP, are replicated once per cell cycle. Replication from oriP requires EBV nuclear antigen 1 (EBNA-1) in trans; however, its contributions to this replication are unknown. oriP contains 24 EBNA-1 binding sites; 20 are located within the family of repeats, and 4 are found within the dyad symmetry element. The site of initiation of DNA replication within oriP is at or near the dyad symmetry element. We have identified a plasmid that contains the family of repeats but lacks the dyad symmetry element whose replication can be detected for a limited number of cell cycles. The detection of short-term replication of this plasmid requires EBNA-1 and can be inhibited by a dominant-negative inhibitor of EBNA-1. We have identified two regions within this plasmid which can independently contribute to this replication in the absence of the dyad symmetry element of oriP. One region contains native EBV sequences within the BamHI C fragment of the B95-8 genome of EBV; the other contains sequences within the simian virus 40 genome. We have mapped the region contributing to replication within the EBV sequences to a 298-bp fragment, Rep*. Plasmids which contain three copies of Rep* plus the family of repeats support replication more efficiently than those with one copy, consistent with a stochastic model for the initiation of DNA synthesis. Plasmids with three copies of Rep* also support long-term replication in the presence of EBNA-1. These observations together indicate that the latent origin of replication of EBV is more complex than formerly appreciated; it is a multicomponent origin of which the dyad symmetry element is one efficient component. The experimental approach described here could be used to identify eukaryotic sequences which mediate DNA synthesis, albeit inefficiently.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号