首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of pinpoint-sampling followed by on-line pre-concentration of the sample, throughout in-capillary derivatization and capillary electrophoretic separation was evaluated by demonstrating the detection of taurine, 2-aminoethanesulfonic acid at a specific location of a rat brain. The direct sampling of taurine from the rat brain was accomplished by using voltage injection associated with two kinds of driving forces, electrophoretic flow and electroosmotic flow (EOF). The capillary tube (75 microm of inner diameter x 375 microm of outer diameter) of the capillary electrophoresis (CE) apparatus was already filled with a CE run buffer, viz., 40 mM phosphate-borate buffer (pH 10) containing 2mM o-phthalaldehyde (OPA)/N-acetylcysteine (NAC) as the derivatization reagent. One end of a platinum wire (0.5mm o.d.), used as the anode, and the inlet end of capillary tube (from which a 1.0 cm long polyimide coating was removed), were pricked down onto the surface of either the cerebrum or cerebellum of a rat brain at a location of very small dimension. When a low voltage (5 kV, 30s) was applied, taurine began to move from the rat brain into the capillary tube, and, simultaneously, electric focusing of taurine occurred by the action of "the pH-junction effect" at the inlet end of the capillary tube. After completing the injection, both the platinum wire and capillary tube were detached from the brain and dipped into the run buffer in an anode reservoir filed with the same solution as that in the capillary tube for the CE apparatus. Then, by applying a high voltage (20 kV) between the ends of the capillary tube, taurine was automatically derivatized to yield the fluorescent derivative, separated and detected with fluorescence (E(x)=340 nm, E(m)=455 nm) during migration throughout the capillary tube. The migration profiles obtained from cerebrum and cerebellum appeared to be different, but the peak corresponding to taurine was identified on both electropherograms. The efficacy of the present method including sample on-line pre-concentration prior to throughout in-capillary derivatization CE was first verified with several preliminary experiments by using samples of taurine in water, saline and a piece of 1.5% agar-gel block, as an alternate standard for the rat brain used in this study.  相似文献   

2.
Jaspe J  Hagen SJ 《Biophysical journal》2006,91(9):3415-3424
Protein molecules typically unfold (denature) when subjected to extremes of heat, cold, pH, solvent composition, or mechanical stress. One might expect that shearing forces induced by a nonuniform fluid flow would also destabilize proteins, as when a protein solution flows rapidly through a narrow channel. However, although the protein literature contains many references to shear denaturation, we find little quantitative evidence for the phenomenon. We have investigated whether a high shear can destabilize a small globular protein to any measurable extent. We study a protein (horse cytochrome c, 104 amino acids) whose fluorescence increases sharply upon unfolding. By forcing the sample through a silica capillary (inner diameter 150-180 microm) at speeds approaching 10 m/s, we subject the protein to shear rates dv(z)/dr as large as approximately 2 x 10(5) s(-1) while illuminating it with an ultraviolet laser. We can readily detect fluorescence changes of <1%, corresponding to shifts of < approximately 0.01 kJ/mol in the stability of the folded state. We find no evidence that even our highest shear rates significantly destabilize the folded protein. A simple model suggests that extraordinary shear rates, approximately 10(7) s(-1), would be required to denature typical small, globular proteins in water.  相似文献   

3.
A micro flow cytometer has been fabricated that detects and counts fluorescent particles flowing through a microchannel at high speed based upon their fluorescence emission intensity. Dielectrophoresis is used to continuously focus particles within the flowing fluid stream into the centre of the device, which is 40 microm high and 250 microm wide. The method ensures that all the particles pass through an interrogation region approximately 5 microm in diameter, which is created by focusing a beam of light into a spot. The functioning of the device was demonstrated by detecting and counting fluorescent latex particles at a rate of up to 250 particles/s. A mixture of three different populations of latex particle was used, each sub-population with a distinct level of fluorescent intensity. The device was evaluated by comparison with a conventional fluorescent activated cell sorter (FACS) and numerical simulation demonstrated that for 6 microm beads, and for this design of chip the theoretical throughput is of the order of 1000 particles/s (corresponding to a particle velocity of 10 mm s(-1)).  相似文献   

4.
The process by which a protein folds into its native conformation is highly relevant to biology and human health yet still poorly understood. One reason for this is that folding takes place over a wide range of timescales, from nanoseconds to seconds or longer, depending on the protein1. Conventional stopped-flow mixers have allowed measurement of folding kinetics starting at about 1 ms. We have recently developed a microfluidic mixer that dilutes denaturant ~100-fold in ~8 μs2. Unlike a stopped-flow mixer, this mixer operates in the laminar flow regime in which turbulence does not occur. The absence of turbulence allows precise numeric simulation of all flows within the mixer with excellent agreement to experiment3-4.Laminar flow is achieved for Reynolds numbers Re ≤100. For aqueous solutions, this requires micron scale geometries. We use a hard substrate, such as silicon or fused silica, to make channels 5-10 μm wide and 10 μm deep (See Figure 1). The smallest dimensions, at the entrance to the mixing region, are on the order of 1 μm in size. The chip is sealed with a thin glass or fused silica coverslip for optical access. Typical total linear flow rates are ~1 m/s, yielding Re~10, but the protein consumption is only ~0.5 nL/s or 1.8 μL/hr. Protein concentration depends on the detection method: For tryptophan fluorescence the typical concentration is 100 μM (for 1 Trp/protein) and for FRET the typical concentration is ~100 nM.The folding process is initiated by rapid dilution of denaturant from 6 M to 0.06 M guanidine hydrochloride. The protein in high denaturant flows down a central channel and is met on either side at the mixing region by buffer without denaturant moving ~100 times faster (see Figure 2). This geometry causes rapid constriction of the protein flow into a narrow jet ~100 nm wide. Diffusion of the light denaturant molecules is very rapid, while diffusion of the heavy protein molecules is much slower, diffusing less than 1 μm in 1 ms. The difference in diffusion constant of the denaturant and the protein results in rapid dilution of the denaturant from the protein stream, reducing the effective concentration of the denaturant around the protein. The protein jet flows at a constant rate down the observation channel and fluorescence of the protein during folding can be observed using a scanning confocal microscope5.  相似文献   

5.
BACKGROUND: The development of inexpensive small flow cytometers is recognized as an important goal for many applications ranging from medical uses in developing countries for disease diagnosis to use as an analytical platform in support of homeland defense. Although hydrodynamic focusing is highly effective at particle positioning, the use of sheath fluid increases assay cost and reduces instrument utility for field and autonomous remote operations. METHODS: This work presents the creation of a novel flow cell that uses ultrasonic acoustic energy to focus small particles to the center of a flowing stream for analysis by flow cytometry. Experiments using this flow cell are described wherein its efficacy is evaluated under flow cytometric conditions with fluorescent microspheres. RESULTS: Preliminary laboratory experiments demonstrate acoustic focusing of flowing 10-microm latex particles into a tight sample stream that is approximately 40 microm in diameter. Prototype flow cytometer measurements using an acoustic-focusing flow chamber demonstrated focusing of a microsphere sample to a central stream approximately 40 microm in diameter, yielding a definite fluorescence peak for the microspheres as compared with a broad distribution for unfocused microspheres. CONCLUSIONS: The flow cell developed here uses acoustic focusing, which inherently concentrates the sample particles to the center of the sample stream. This method could eliminate the need for sheath fluid, and will enable increased interrogation times for enhanced sensitivity, while maintaining high particle-analysis rates. The concentration effect will also enable the analysis of extremely dilute samples on the order of several particles per liter, at analysis rates of a few particles per second. Such features offer the possibility of a truly versatile low-cost portable flow cytometer for field applications.  相似文献   

6.
7.
The four major bilirubin species in serum are separated by capillary electrophoresis and detected using laser-induced fluorescence detection. The optimum buffer system consists of 40 mM sodium dodecyl sulfate (SDS)—0.012 mM bovine serum albumin (BSA). The use of the SDS—BSA mixture in the mobile phase allows for the separation of four major bilirubin species at physiological pH with untreated capillaries. The results show that the use of BSA as a run buffer modifier in SDS solution improves separation efficiency and increases sample solubility via pH changes of the run buffer. The limits of detection for the bilirubin species using laser-induced fluorescence are between 30 and 150 nM, depending on the bilirubin species; not only is this approximately two orders of magnitude lower than with visible-light absorption methods, it allows the bilirubin species in normal sera to be quantitatively measured without sample pretreatment.  相似文献   

8.
A high-performance micellar electrokinetic capillary chromatography (MEKC) has been demonstrated for the determination of meropenem in human plasma and in cerebrospinal fluid (CSF) and application in meningitis patients after intravenous (IV) administration. Plasma sample was pretreated by means of solid-phase extraction (SPE) on C(18) cartridge and CSF sample was by direct injection without sample pretreatment, with subsequent quantitation by MEKC. The separation of meropenem was carried out in an untreated fused-silica capillary (40.2 cm x 50 microm I.D., effective length 30 cm) and was performed at 25 degrees C using a background electrolyte consisting of Tris buffer (40 mM, pH 8.0) solution with sodium dodecyl sulfate (SDS) as the running buffer and on-column detection at 300 nm. Several parameters affecting the separation and sensitivity of the drug were studied, including pH, the concentrations of Tris buffer and surfactant. Using cefotaxime as an internal standard (IS), the linear ranges of the method for the determination of meropenem in plasma and in CSF were all over 0.5-50 microg/mL; the detection limits (signal-to-noise ratio=3) of meropenem in plasma and in CSF were 0.2 microg/mL and 0.3 microg/mL, respectively.  相似文献   

9.
T Oida  Y Sako    A Kusumi 《Biophysical journal》1993,64(3):676-685
A new method of fluorescence microscopy for cell imaging has been developed that takes advantage of the spatial variations of fluorescence lifetimes in single cells as a source of image contrast, and thus it is named "fluorescence lifetime imaging microscopy (flimscopy)". Since time-resolved fluorescence measurements are sensitive to molecular dynamics and interactions, flimscopy allows the molecular information to be visualized in single cells. In flimscopy measurements, several (nanosecond) time-resolved fluorescence images of a sample are obtained at various delay times after pulsed laser excitation of the microscope's entire field of view. Lifetimes are calculated pixel-by-pixel from these time-resolved images, and the spatial variations of the lifetimes are then displayed in a pseudocolor format (flimscopy image). The total data acquisition time needed to obtain a flimscopy image with the diffraction-limited spatial resolution (approximately 250 nm) is decreased to just approximately 30 s for approximately 300 fluorescent molecules/micron2. This was achieved by developing a high-frequency (400 kHz) nanosecond-gating (9 ns full width at half height)-signal accumulation system. This technique allows the extent of resonance energy transfer to be visualized in single living cells, and is free from the errors due to variations in path length, light scattering, and the number of fluorophores that necessitate complex corrections in steady-state microfluorometry and fluorescence ratio imaging microscopy. Flimscopy was applied here to observe the extent of fusion of individual endosomes in single cells. Results revealed the occurrence of extensive fusion between primary endocytic vesicles and/or sorting endosomes, thereby raising the possibility that the biogenesis of sorting endosomes involves multiple fusions of primary endocytic vesicles.  相似文献   

10.
A simple and sensitive method was developed for determination of irbesartan by liquid chromatography with fluorescence detection. Irbesartan and losartan (I.S.) in human plasma were extracted using diethyl ether:dichloromethane (7:3, v/v) followed by back extraction with 0.05 M sodium hydroxide. Neutralized samples were analyzed using 0.01 M potassium dihydrogen phosphate buffer (containing 0.07% triethylamine as peak modifier, pH was adjusted with orthophosphoric acid to pH 3.0) and acetonitrile (66:34, v/v). Chromatographic separation was achieved on an ODS-C-18 column (100 mm x 4.6 mm i.d., particle size 5 microm) using isocratic elution (at flow rate 1.25 ml/min). The peak was detected using a fluorescence detector set at Ex 259 nm and Em 385 nm, and the total time for a chromatographic separation was approximately 13 min. The validated quantitation ranges of this method were 15-4000 ng/ml with coefficients of variation between 0.75 and 12.53%. Mean recoveries were 73.3-77.1% with coefficients of variation of 3.7-6.3%. The between- and within-batch precision were 0.4-2.2% and 0.9-6.2%, respectively. The between- and within-batch relative errors (bias) were (-5.5) to 0.9% and (-0.6) to 6.9%, respectively. Stability of irbesartan in plasma was >89%, with no evidence of degradation during sample processing and 60 days storage in a deep freezer at -70 degrees C. This validated method is sensitive and simple with between-batch precision of <3% and can be used for pharmacokinetic studies.  相似文献   

11.
We established a method for automated quantitative analysis of (es-)citalopram and desmethyl(es-)citalopram in serum using column-switching high performance liquid chromatography (HPLC). For sample clean-up serum was injected onto a LiChrospher CN 20 microm precolumn using 8% acetonitrile in deionized water. Drugs were eluted by back-flush flow onto the analytical column (LiChrospher CN 5 microm) at a flow rate of 1.5 ml/min with phosphate buffer 8 mmol/l pH 6.4/acetonitrile (50/50, v/v). Haloperidol was used as internal standard. Analytes were detected by ultraviolet spectrophotometry at 210 nm. Detection limit of (es-)citalopram was 6 ng/ml. The method was found to be suitable for therapeutic drug monitoring of patients treated with citalopram or escitalopram.  相似文献   

12.
Fluorescent proteins are now widely used in fluorescence microscopy as genetic tags to any protein of interest. Recently, a new fluorescent protein, Kaede, was introduced, which exhibits an irreversible color shift from green to red fluorescence after photoactivation with lambda = 350-410 nm and, thus, allows for specific cellular tracking of proteins before and after exposure to the illumination light. In this work, the dynamics of this photoconversion reaction of Kaede are studied by fluorescence techniques based on single-molecule spectroscopy. By fluorescence correlation spectroscopy, fast flickering dynamics of the chromophore group were revealed. Although these dynamics on a submillisecond timescale were found to be dependent on pH for the green fluorescent Kaede chromophore, the flickering timescale of the photoconverted red chromophore was constant over a large pH range but varied with intensity of the 488-nm excitation light. These findings suggest a comprehensive reorganization of the chromophore and its close environment caused by the photoconversion reaction. To study the photoconversion in more detail, we introduced a novel experimental arrangement to perform continuous flow experiments on a single-molecule scale in a microfluidic channel. Here, the reaction in the flowing sample was induced by the focused light of a diode laser (lambda = 405 nm). Original and photoconverted Kaede protein were differentiated by subsequent excitation at lambda = 488 nm. By variation of flow rate and intensity of the initiating laser we found a reaction rate of 38.6 s(-1) for the complete photoconversion, which is much slower than the internal dynamics of the chromophores. No fluorescent intermediate states could be revealed.  相似文献   

13.
Observations that prefibrillar aggregates from different amyloidogenic proteins can be solubilised under some conditions have raised questions as to the generality of this phenomenon and the nature of the factors that influence it. By studying aggregates formed from human muscle acylphosphatase (AcP) under mild denaturing conditions, and by using a battery of techniques, we demonstrate that disaggregation is possible under conditions close to physiological where the protein is stable in its native state. In the presence of 25% (v/v) trifluoroethanol (TFE) AcP undergoes partial unfolding and globular aggregates (60-200 nm in diameter) that can assemble further into clusters (400-800 nm in diameter) develop progressively. Yet larger superstructures (>5 microm) are formed when the concentration of the globular aggregates exceeds a critical concentration. After diluting the sample to give a solution containing 5% TFE, the fraction of partially unfolded monomeric protein refolds very rapidly, with a rate constant of approximately 1s(-1). The 60-200 nm globular aggregates disaggregate with an apparent rate constant of approximately 2.5 x 10(-3)s(-1) while the 400-800 nm clusters disassembly more slowly with a rate constant of approximately 3.1 x 10(-4)s(-1). The larger (>5 microm) superstructures are not disrupted under the conditions used here. These results suggest that amyloid formation occurs in discrete steps whose reversibility is increasingly difficult, and dependent on the size of the aggregates, and that disaggregation experiments can provide a powerful method of detecting different types of species within the complex process of aggregation. In addition, our work suggests that destabilization of amyloid aggregates resulting in the conversion of misfolded proteins back to their native states could be an important factor in both the onset and treatment of diseases associated with protein aggregation.  相似文献   

14.
A reversed-phase HPLC method with fluorescence detection for the quantification of hexafluoroisopropanol (HFIP) in urine is presented. HFIP, a metabolite of the inhalation anesthetic sevoflurane, is excreted mainly in urine as glucuronic acid conjugate. After enzymatic hydrolysis of the glucuronate, primary amino groups of interferent urinary compounds are blocked by reaction with o-phthalic dicarboxaldehyde and 3-mercaptopropionic acid, followed by labeling of HFIP with 9-fluorenylmethyl chloroformate. The derivatization reaction proceeds in a water-acetonitrile (1:1) solution at room temperature with a borate buffer of pH 12.5 as a catalyst. A stable fluorescent derivative of HFIP is formed within 5 min. The HFIP-FMOC derivative is separated by reversed-phase chromatography with isocratic elution on an octadecyl silyl column (33x4.6 mm, 3 microm) and guard column (20x4.0 mm, 40 microm), at 35 degrees C, and detected by fluorescence detection at an excitation wavelength of 265 nm and an emission wavelength of 311 nm. The method detection limit is 40 pg, per 10-microl injection volume, corresponding to 16 microg/l of HFIP in urine. The among-series relative standard deviation is <6% at 200 microg/l (n=6). As a preliminary application, the method was used to detect HFIP concentration in the urine of two volunteers exposed for 3 h to an airborne concentration of sevoflurane in the order of 2 ppm.  相似文献   

15.
It was shown that denaturation of beef liver glutamate dehydrogenase under the action of guanidine hydrochloride results in a diplacement of the protein fluorescence maximum from 332 to 349 nm, in a decrease of optical rotation of the protein at 233 nm and in an appearance of negative bands in the difference absorbance spectrum with extrema at 279 and 287 nm. The transition of native enzyme into a denaturated state is observed within a narrow interval of guanidine hydrochloride concentrations. The middle point of the transition corresponds to approximately 2,2 M guanidine hydrochloride. The inactivation kinetics for glutamate dehydrogenase coincide with those of the enzyme spectral properties alterations due to denaturation. The attempts at renaturation of glutamate dehydrogenase by diluting the denaturated enzyme solution or by a dialysis against a buffer solution were unsuccessful.  相似文献   

16.
The sensitivity of proteomics measurements using liquid chromatography (LC) separations interfaced with electrospray ionization-mass spectrometry (ESI-MS) improves approximately inversely with liquid flow rate (for the columns having the same separation efficiency, linear velocity, and porosity), making attractive the use of smaller inner diameter LC columns. We report the development and initial application of 10 microm i.d. silica-based monolithic LC columns providing more sensitive proteomics measurements. A 50-microm-i.d. micro solid-phase extraction precolumn was used for ease of sample injection and cleanup prior to the reversed-phase LC separation, enabling the sample volume loading speed to be increased by approximately 50-fold. Greater than 10-fold improvement in sensitivity was obtained compared to analyses using more conventional capillary LC, enabling e.g. the identification of >5000 different peptides by MS/MS from 100-ng of a Shewanella oneidensis tryptic digest using an ion trap MS. The low nL/min LC flow rates provide more uniform responses for different peptides, and provided improved quantitative measurements compared to conventional separation systems without the use of internal standards or isotopic labeling. The improved sensitivity allowed LC-MS measurements of immunopurified protein phosphatase 5 that were in good agreement with quantitative Western blot analyses.  相似文献   

17.
Previous models of cardiac Ca2+ sparks have assumed that Ca2+ currents through the Ca2+ release units (CRUs) were approximately 1-2 pA, producing sparks with peak fluorescence ratio (F/F(0)) of approximately 2.0 and a full-width at half maximum (FWHM) of approximately 1 microm. Here, we present actual Ca2+ sparks with peak F/F(0) of >6 and a FWHM of approximately 2 microm, and a mathematical model of such sparks, the main feature of which is a much larger underlying Ca2+ current. Assuming infinite reaction rates and no endogenous buffers, we obtain a lower bound of approximately 11 pA needed to generate a Ca2+ spark with FWHM of 2 microm. Under realistic conditions, the CRU current must be approximately 20 pA to generate a 2- microm Ca2+)spark. For currents > or =5 pA, the computed spark amplitudes (F/F(0)) are large (approximately 6-12 depending on buffer model). We considered several factors that might produce sparks with FWHM approximately 2 microm without using large currents. Possible protein-dye interactions increased the FWHM slightly. Hypothetical Ca2+ "quarks" had little effect, as did blurring of sparks by the confocal microscope. A clusters of CRUs, each producing 10 pA simultaneously, can produce sparks with FWHM approximately 2 microm. We conclude that cardiac Ca2+ sparks are significantly larger in peak amplitude than previously thought, that such large Ca2+ sparks are consistent with the measured FWHM of approximately 2 microm, and that the underlying Ca2+ current is in the range of 10-20 pA.  相似文献   

18.
D-Penicillamine (D-Pen) is a thiol drug used in the treatment of Wilson's disease, rheumatoid arthritis, metal intoxication and cystinuria. We have recently described a new capillary electrophoresis (CE) method to measure physiological thiols, in which separation of total plasma homocysteine, cysteine, cysteinylglycine, glutathione is achieved using the organic base N-methyl-D-glucamine in the run buffer. In this paper, we present an improvement of our method that allows a baseline separation of total plasma D-Pen from the physiological thiols. Moreover, reduced, free and protein-bound forms of drug are measured by varying the order of disulfide reduction with tributylphosphine and proteins precipitation with 5-sulphosalicylic acid (SSA). After derivatization with 5-iodoacetamidofluorescein (5-IAF), samples are separated and measured by capillary electrophoresis with laser-induced fluorescence in an uncoated fused-silica capillary (57 x 75 microm i.d.) using a phosphate/borate run buffer pH 11.4. In these conditions, the migration time of D-Pen is about 7 min and the time required for each analysis is roughly 10 min. The proposed method has been utilized to measure the various forms of the drug in a D-Pen administered Wilson's disease patient.  相似文献   

19.
The ionotropic 5HT(3) receptor was expressed in transiently transfected mammalian cells, yielding an unprecedented high concentration of up to 12 million receptors per cell. Receptor traffic in the plasma membrane of live cells was observed continuously over 24 h by fluorescence scanning confocal microscopy. This was possible by using 5HT(3) receptor-specific fluorescent ligands with high binding affinity and low off-rate to pulse label receptors at any time after appearance on the cell surface, and label subsequently those receptors expressed later by another, spectrally distinguishable, high-affinity fluorescent ligand. Having reached a critical cell surface concentration of approximately 3000 receptors/microm(2), the receptors started to aggregate in patches with a 4-fold increased surface concentration. The clusters were constantly delivered from a pool of freshly expressed receptors isotropically distributed within the basolateral region of the cell membrane. From there, they migrated to and accumulated on the apical cell surface approximately 9 h after transfection. Individual clusters grew until they reached a critical size of 1-2 microm when they merged to form with 3-5 microm large macroclusters. Clustered receptors were immobile on the minute time scale but always coexisted with monomeric receptors in the regions surrounding the clusters as revealed by fluorescence correlation spectroscopy. Because the receptor density of 12 000 receptors/microm(2) in the patches is as high as that found in two-dimensional crystals of certain membrane proteins, such patches might be a proper source for direct crystallization of membrane proteins without prior purification.  相似文献   

20.
A novel freeze-quench instrument with a characteristic of 137 +/- 18 micros is reported. The prototype has several key features that distinguish it from conventional freeze-quench devices and provide a significant improvement in time resolution: (a) high operating pressures (up to 400 bar) result in a sample flow with high linear rates (up to 200 m s(-1)); (b) tangential micro-mixer with an operating volume of approximately 1 nl yields short mixing times (up to 20 micros); (c) fast transport between the mixer and the cryomedium results in short reaction times: the ageing solution exits the mixer as a free-flowing jet, and the chemical reaction occurs "in-flight" on the way to the cryomedium; (d) a small jet diameter (approximately 20 microm) and a high jet velocity (approximately 200 m s(-1)) provide high sample-cooling rates, resulting in a short cryofixation time (up to 30 micros). The dynamic range of the freeze-quench device is between 130 micros and 15 ms. The novel tangential micro-mixer efficiently mixes viscous aqueous solutions, showing more than 95% mixing at eta < or = 4 (equivalent to protein concentrations up to 250 mg ml(-1)), which makes it an excellent tool for the preparation of pre-steady state samples of concentrated protein solutions for spectroscopic structure analysis. The novel freeze-quench device is characterized using the reaction of binding of azide to metmyoglobin from horse heart. Reaction samples are analyzed using 77 K optical absorbance spectroscopy, and X-band EPR spectroscopy. A simple procedure of spectral analysis is reported that allows (a) to perform a quantitative analysis of the reaction kinetics and (b) to identify and characterize novel reaction intermediates. The reduction of dioxygen by the bo3-type quinol oxidase from Escherichia coli is assayed using the MHQ technique. In these pilot experiments, low-temperature optical absorbance measurements show the rapid oxidation of heme o3 in the first 137 micros of the reaction, accompanied by the formation of an oxo-ferryl species. X-band EPR spectroscopy shows that a short-living radical intermediate is formed during the oxidation of heme o3. The radical decays within approximately 1 ms concomitant with the oxidation of heme b, and can be attributed to the PM reaction intermediate converting to the oxoferryl intermediate F. The general field of application of the freeze-quench methodology is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号