首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Lemma and palea are unique floral structures found only in Poaceae, and are responsible for protecting the inner floral organs and kernels from environmental stresses. However, the mechanism underlying specification of their morphology remains unclear. In this study, we characterized a rice mutant, beak like spikelet1 (bls1), which specifically affects development of the lemma and palea. In bls1 mutant, floral-organ identity and floral-organ patterning are normal, and the defects occur at the stage of the lemma and palea expansion, whereas the other aspects of floral architecture and form are not affected. We isolated BLS1 by positional cloning and found that it encodes a protein with a conserved domain of unknown function. BLS1 is expressed strongly in young inflorescence, specifically the young lemmas and paleas of spikelets. Subcellular localization analysis showed that BLS1 is localized in the nucleus. Expression of the AP1-like and SEP-like floral homeotic genes were not changed in the bls1 mutant. Our study suggested that BLS1 is required for lateral development of the lemma and palea and does not function at stages of floral-organ initiation and patterning.  相似文献   

5.
Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1‐1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain‐like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1‐1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP–WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain‐like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice.  相似文献   

6.
In rice, an E-class gene, OsMADS1, acts to specify the identities of the lemma and palea. In this study, the OsMADS1 gene with a CaMV35S promoter was transformed into a japonica cultivar, Zhonghua 11. All transgenic plants successfully showed similar phenotypes, including dwarfism, distorted panicles, decreased numbers of branches and spikelets, and elongated sterile lemma. Histological analysis showed that the elongated sterile lemma developed with silicified epidermal and sclerenchymal cells, which were lacking in the wild-type sterile lemma, suggesting that the elongated sterile lemma had assumed the identity of the lemma or palea. Some marker genes were subjected to a detailed analysis of the distribution of their expression among the lemma, palea and sterile lemma. DROOPING LEAF (DL) and OsMADS6 genes were only expressed in the normal lemma or palea, respectively. In the elongated sterile lemma, a high level of DL gene expression was detected, while no expression of OsMADS6 was found, implying that the sterile lemma transformed into the lemma but not the palea. These results provide clues to elucidate the mechanism of evolution from lemma to sterile lemma in rice. qPCR analysis also suggested that the ectopic expression of OsMADS1 induced abnormal brassinosteroid and gibberellin acid activation, and then resulted in developmental defects in the stem and panicle.  相似文献   

7.
The rice stunted lemma/palea 1 (slp1) mutant displays a dwarf, shortened panicle length, degenerated lemma and palea, and sterility. A previous study suggested that a missense mutation at the sixth amino acid of the OsSPL16 protein was likely to be responsible for the slp1 mutant phenotype. The current study shows that the overexpression of the wild-type OsSPL16 allele in slp1/slp1 and Slp1/slp1 mutants was unable to convert the slp1 mutant phenotype to normal. However, the introduction of the mutant OsSPL16 allele into a normal rice cultivar led to the slp1 mutant phenotype in transgenic plants. These results indicated that the missense mutation in OsSPL16 creates a neomorphic allele, which affects plant height and the development of the inflorescence and spikelet.  相似文献   

8.
Li J  Chu H  Zhang Y  Mou T  Wu C  Zhang Q  Xu J 《PloS one》2012,7(3):e34231
Heading date and grain weight are two determining agronomic traits of crop yield. To date, molecular factors controlling both heading date and grain weight have not been identified. Here we report the isolation of a hemizygous mutation, heading and grain weight (hgw), which delays heading and reduces grain weight in rice. Analysis of hgw mutant phenotypes indicate that the hemizygous hgw mutation decreases latitudinal cell number in the lemma and palea, both composing the spikelet hull that is known to determine the size and shape of brown grain. Molecular cloning and characterization of the HGW gene showed that it encodes a novel plant-specific ubiquitin-associated (UBA) domain protein localized in the cytoplasm and nucleus, and functions as a key upstream regulator to promote expressions of heading date- and grain weight-related genes. Moreover, co-expression analysis in rice and Arabidopsis indicated that HGW and its Arabidopsis homolog are co-expressed with genes encoding various components of ubiquitination machinery, implying a fundamental role for the ubiquitination pathway in heading date and grain weight control.  相似文献   

9.
Natural Variations in SLG7 Regulate Grain Shape in Rice   总被引:1,自引:0,他引:1  
Rice (Oryza sativa) grain shape, which is controlled by quantitative trait loci (QTL), has a strong effect on yield production and quality. However, the molecular basis for grain development remains largely unknown. In this study, we identified a novel QTL, Slender grain on chromosome 7 (SLG7), that is responsible for grain shape, using backcross introgression lines derived from 9311 and Azucena. The SLG7 allele from Azucena produces longer and thinner grains, although it has no influence on grain weight and yield production. SLG7 encodes a protein homologous to LONGIFOLIA 1 and LONGIFOLIA 2, both of which increase organ length in Arabidopsis. SLG7 is constitutively expressed in various tissues in rice, and the SLG7 protein is located in plasma membrane. Morphological and cellular analyses suggested that SLG7 produces slender grains by longitudinally increasing cell length, while transversely decreasing cell width, which is independent from cell division. Our findings show that the functions of SLG7 family members are conserved across monocots and dicots and that the SLG7 allele could be applied in breeding to modify rice grain appearance.  相似文献   

10.
The palea and lemma are unique organs in grass plants that form a protective barrier around the floral organs and developing kernel. The interlocking of the palea and lemma is critical for maintaining fertility and seed yield in rice; however, the molecules that control the interlocking structure remain largely unknown. Here, we showed that when OsCR4 mRNA expression was knocked down in rice by RNA interference, the palea and lemma separated at later spikelet stages and gradually turned brown after heading, resulting in the severe interruption of pistil pollination and damage to the development of embryo and endosperm, with defects in aleurone. The irregular architecture of the palea and lemma was caused by tumour-like cell growth in the outer epidermis and wart-like cell masses in the inner epidermis. These abnormal cells showed discontinuous cuticles and uneven cell walls, leading to organ self-fusion that distorted the interlocking structures. Additionally, the faster leakage of chlorophyll, reduced silica content and elevated accumulation of anthocyanin in the palea and lemma indicated a lesion in the protective barrier, which also impaired seed quality. OsCR4 is an active receptor-like kinase associated with the membrane fraction. An analysis of promoter::GUS reporter plants showed that OsCR4 is specifically expressed in the epidermal cells of paleas and lemmas. Together, these results suggest that OsCR4 plays an essential role in maintaining the interlocking of the palea and lemma by promoting epidermal cell differentiation.  相似文献   

11.
12.

Key message

The split-hull phenotype caused by reduced lemma width and low lignin content is under control of SPH encoding a type-2 13-lipoxygenase and contributes to high dehulling efficiency.

Abstract

Rice hulls consist of two bract-like structures, the lemma and palea. The hull is an important organ that helps to protect seeds from environmental stress, determines seed shape, and ensures grain filling. Achieving optimal hull size and morphology is beneficial for seed development. We characterized the split-hull (sph) mutant in rice, which exhibits hull splitting in the interlocking part between lemma and palea and/or the folded part of the lemma during the grain filling stage. Morphological and chemical analysis revealed that reduction in the width of the lemma and lignin content of the hull in the sph mutant might be the cause of hull splitting. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive gene, sph (Os04g0447100), which encodes a type-2 13-lipoxygenase. SPH knockout and knockdown transgenic plants displayed the same split-hull phenotype as in the mutant. The sph mutant showed significantly higher linoleic and linolenic acid (substrates of lipoxygenase) contents in spikelets compared to the wild type. It is probably due to the genetic defect of SPH and subsequent decrease in lipoxygenase activity. In dehulling experiment, the sph mutant showed high dehulling efficiency even by a weak tearing force in a dehulling machine. Collectively, the results provide a basis for understanding of the functional role of lipoxygenase in structure and maintenance of hulls, and would facilitate breeding of easy-dehulling rice.
  相似文献   

13.
The effects on grain weight of removing spikelet and floralorgans, other manipulations of the florets or spikelets andcovering intact or treated spikes to reduce the amount of lightwere tested. Removal of organs which exposed the developing grain to increasedlight intensity resulted in a reduction in grain size. The restrictionin grain growth was already apparent 2 weeks after anthesisand was accompanied by a more compact pericarp. Covering thetreated spikes with opaque bags resulted in normal pericarpstructure and restoration of grain weight. Only a small portionof the restoration effect could be attributed to the increaseof humidity under the covers. Treatments which exerted physical constraint on the developinggrain reduced its size and affected its shape. The size of thefloret cavity and the transmission of light through floral bractsare shown to be two of the factors controlling grain growth. Triticum destivum L., Triticum spelta L., wheat, morphogenesis, histogenesis, grain development, glume, lemma, palea  相似文献   

14.
Long awns are important for seed dispersal in wild rice (Oryza rufipogon), but are absent in cultivated rice (Oryza sativa). The genetic mechanism involved in loss-of-awn in cultivated rice remains unknown. We report here the molecular cloning of a major quantitative trait locus, An-1, which regulates long awn formation in O. rufipogon. An-1 encodes a basic helix-loop-helix protein, which regulates cell division. The nearly-isogenic line (NIL-An-1) carrying a wild allele An-1 in the genetic background of the awnless indica Guangluai4 produces long awns and longer grains, but significantly fewer grains per panicle compared with Guangluai4. Transgenic studies confirmed that An-1 positively regulates awn elongation, but negatively regulates grain number per panicle. Genetic variations in the An-1 locus were found to be associated with awn loss in cultivated rice. Population genetic analysis of wild and cultivated rice showed a significant reduction in nucleotide diversity of the An-1 locus in rice cultivars, suggesting that the An-1 locus was a major target for artificial selection. Thus, we propose that awn loss was favored and strongly selected by humans, as genetic variations at the An-1 locus that cause awn loss would increase grain numbers and subsequently improve grain yield in cultivated rice.  相似文献   

15.
16.
Grain size and weight are directly associated with grain yield in crops. However, the molecular mechanisms that set final grain size and weight remain largely unknown. Here, we characterize two large grain mutants, large grain8‐1 (large8‐1) and large grain8‐2 (large8‐2). LARGE8 encodes the mitogen‐activated protein kinase phosphatase1 (OsMKP1). Loss of function mutations in OsMKP1 results in large grains, while overexpression of OsMKP1 leads to small grains. OsMKP1 determines grain size by restricting cell proliferation in grain hulls. OsMKP1 directly interacts with and deactivates the mitogen‐activated protein kinase 6 (OsMAPK6). Taken together, we identify OsMKP1 as a crucial factor that influences grain size by deactivating OsMAPK6, indicating that the reversible phosphorylation of OsMAPK6 plays important roles in determining grain size in rice.  相似文献   

17.
Increased crop yields are required to support rapid population growth worldwide. Grain weight is a key component of rice yield, but the underlying molecular mechanisms that control it remain elusive. Here, we report the cloning and characterization of a new quantitative trait locus (QTL) for the control of rice grain length, weight and yield. This locus, GL3.1, encodes a protein phosphatase kelch (PPKL) family — Ser/Thr phosphatase. GL3.1 is a member of the large grain WY3 variety, which is associated with weaker dephosphorylation activity than the small grain FAZ1 variety. GL3.1-WY3 influences protein phosphorylation in the spikelet to accelerate cell division, thereby resulting in longer grains and higher yields. Further studies have shown that GL3.1 directly dephosphorylates its substrate, Cyclin-T1;3, which has only been rarely studied in plants. The downregulation of Cyclin-T1;3 in rice resulted in a shorter grain, which indicates a novel function for Cyclin-T in cell cycle regulation. Our findings suggest a new mechanism for the regulation of grain size and yield that is driven through a novel phosphatase-mediated process that affects the phosphorylation of Cyclin-T1;3 during cell cycle progression, and thus provide new insight into the mechanisms underlying crop seed development. We bred a new variety containing the natural GL3.1 allele that demonstrated increased grain yield, which indicates that GL3.1 is a powerful tool for breeding high-yield crops.  相似文献   

18.
Silicon may play an important role in regulating the transpirationrate of rice (Oryza sativa L.), particularly cuticular transpiration.The control of cuticular transpiration is important in ricespikelets because water stress at anthesis may severely disruptfertility and grain yield. Data on the quantitative variationamong rice cultivars in the thickness of the silica layer ofthe flowering spikelet were obtained in order to assess thepotential for genetic selection for silica layer thickness asa potential means for increasing spikelet resistance to waterloss. Flowering spikelets were collected from 17 genotypes and thicknessmeasurements were made of the major anatomical layers in crosssection. The silica layer of the lemma varied from 42 to 177µm among cultivars. Similar variation was observed inthe palea. Differences among cultivars were also found in thethickness of the epidermis and sclerenchyma-parenchyma layer. The total cross-sectional thickness of the lemma and palea averagedslightly over 100 µm. Total thickness was not significantlycorrelated with the length, width or product of length width.Thickness of silica deposition was significantly correlatedwith spikelet length width suggesting that these easily measuredparameters may be useful in screening for silica thickness. Oryza sativa L., rice, panicle, silicon, lemma, palea, husk  相似文献   

19.
Luo Q  Zhou K  Zhao X  Zeng Q  Xia H  Zhai W  Xu J  Wu X  Yang H  Zhu L 《Planta》2005,221(2):222-230
In grass, the evolutionary relationship between lemma and palea, and their relationship to the flower organs in dicots have been variously interpreted and wildely debated. In the present study, we carried out morphological and genetic analysis of a palealess mutant (pal) from rice (Oryza sativa L.), and fine mapping the gene responsible for the mutated trait. Together, our findings indicate that the palea is replaced by two leaf-like structures in the pal flowers, and this trait is controlled by one recessive gene, termed palealess1 (pal1). With a large F2 segregating population, the pal1 gene was finally mapped into a physical region of 35 kb. Our results also suggest that the lemma and palea of rice are not homologous organs, palea is likely evolutionarily equivalent to the eudicot sepal, and the pal1 should be an A function gene for rice floral organ identity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号