首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Receptor binding of paramyxovirus attachment proteins and the interactions between attachment and fusion (F) proteins are thought to be central to activation of the F protein activity; however, mechanisms involved are unclear. To explore the relationships between Newcastle disease virus (NDV) HN and F protein interactions and HN protein attachment to sialic acid receptors, HN and F protein-containing complexes were detected and quantified by reciprocal coimmunoprecipitation from extracts of transfected avian cells. To inhibit HN protein receptor binding, cells transfected with HN and F protein cDNAs were incubated with neuraminidase from the start of transfection. Under these conditions, no fusion was observed, but amounts of HN and F protein complexes increased twofold over amounts detected in extracts of untreated cells. Stimulation of attachment by incubation of untransfected target cells with neuraminidase-treated HN and F protein-expressing cells resulted in a twofold decrease in amounts of HN and F protein complexes. In contrast, high levels of complexes containing HN protein and an uncleaved F protein (F-K115Q) were detected, and those levels were unaffected by neuraminidase treatment of cell monolayers or by incubation with target cells. These results suggest that HN and F proteins reside in a complex in the absence of receptor binding. Furthermore, the results show that not only receptor binding but also F protein cleavage are necessary for disassociation of the HN and F protein-containing complexes.  相似文献   

3.
We have used native mass spectrometry to analyze macromolecular complexes involved in the chaperonin-assisted refolding of gp23, the major capsid protein of bacteriophage T4. Adapting the instrumental methods allowed us to monitor all intermediate complexes involved in the chaperonin folding cycle. We found that GroEL can bind up to two unfolded gp23 substrate molecules. Notably, when GroEL is in complex with the cochaperonin gp31, it binds exclusively one gp23. We also demonstrated that the folding and assembly of gp23 into 336-kDa hexamers by GroEL-gp31 can be monitored directly by electrospray ionization mass spectrometry (ESI-MS). These data reinforce the great potential of ESI-MS as a technique to investigate structure-function relationships of protein assemblies in general and the chaperonin-protein folding machinery in particular. A major advantage of native mass spectrometry is that, given sufficient resolution, it allows the analysis at the picomole level of sensitivity of heterogeneous protein complexes with molecular masses up to several million daltons.  相似文献   

4.

Background

Retinol Binding Protein 4 (RBP4) is an exciting new biomarker for the determination of insulin resistance and type 2 diabetes. It is known that circulating RBP4 resides in multiple variants which may provide enhanced clinical utility, but conventional immunoassay methods are blind to such differences. A Mass Spectrometric immunoassay (MSIA) technology that can quantitate total RBP4 as well as individual isoforms may provide an enhanced analysis for this biomarker.

Methods

RBP4 was isolated and detected from 0.5 uL of human plasma using MSIA technology, for the simultaneous quantification and differentiation of endogenous human RBP4 and its variants.

Results

The linear range of the assay was 7.81–500 ug/mL, and the limit of detection and limit of quantification were 3.36 ug/mL and 6.52 ug/mL, respectively. The intra-assay CVs were determined to be 5.1% and the inter-assay CVs were 9.6%. The percent recovery of the RBP4-MSIA ranged from 95 – 105%. Method comparison of the RBP4 MSIA vs the Immun Diagnostik ELISA yielded a Passing & Bablok fit of MSIA  = 1.05× ELISA – 3.09, while the Cusum linearity p-value was >0.1 and the mean bias determined by the Altman Bland test was 1.2%.

Conclusion

The novel RBP4 MSIA provided a fast, accurate and precise quantitative protein measurement as compared to the standard commercially available ELISA. Moreover, this method also allowed for the detection of RBP4 variants that are present in each sample, which may in the future provide a new dimension in the clinical utility of this biomarker.  相似文献   

5.
6.
The N-terminal tails of the four core histones are subject to several types of covalent post-translational modifications that have specific roles in regulating chromatin structure and function. Here we present an extensive analysis of the core histone modifications occurring through the cell cycle. Our MS experiments characterized the modification patterns of histones from HeLa cells arrested in phase G1, S, and G2/M. For all core histones, the modifications in the G1 and S phases were largely identical but drastically different during mitosis. Modification changes between S and G2/M phases were quantified using the SILAC (stable isotope labeling by amino acids in cell culture) approach. Most striking was the mitotic phosphorylation on histone H3 and H4, whereas phosphorylation on H2A was constant during the cell cycle. A loss of acetylation was observed on all histones in G2/M-arrested cells. The pattern of cycle-dependent methylation was more complex: during G2/M, H3 Lys27 and Lys36 were decreased, whereas H4 Lys20 was increased. Our results show that mitosis was the period of the cell cycle during which many modifications exhibit dynamic changes.  相似文献   

7.
A key factor involved in the processing of histone pre-mRNAs in the nucleus and translation of mature histone mRNAs in the cytoplasm is the stem-loop binding protein (SLBP). In this work, we have investigated SLBP nuclear transport and subcellular localization during the cell cycle. SLBP is predominantly nuclear under steady-state conditions and localizes to the cytoplasm during S phase when histone mRNAs accumulate. Consistently, SLBP mutants that are defective in histone mRNA binding remain nuclear. As assayed in heterokaryons, export of SLBP from the nucleus is dependent on histone mRNA binding, demonstrating that SLBP on its own does not possess any nuclear export signals. We find that SLBP interacts with the import receptors Impalpha/Impbeta and Transportin-SR2. Moreover, complexes formed between SLBP and the two import receptors are disrupted by RanGTP. We have further shown that SLBP is imported by both receptors in vitro. Three sequences in SLBP required for Impalpha/Impbeta binding were identified. Simultaneous mutation of all three sequences was necessary to abolish SLBP nuclear localization in vivo. In contrast, we were unable to identify an in vivo role for Transportin-SR2 in SLBP nuclear localization. Thus, only the Impalpha/Impbeta pathway contributes to SLBP nuclear import in HeLa cells.  相似文献   

8.
9.
Analysis of protein complexes using mass spectrometry   总被引:1,自引:0,他引:1  
The versatile combination of affinity purification and mass spectrometry (AP-MS) has recently been applied to the detailed characterization of many protein complexes and large protein-interaction networks. The combination of AP-MS with other techniques, such as biochemical fractionation, intact mass measurement and chemical crosslinking, can help to decipher the supramolecular organization of protein complexes. AP-MS can also be combined with quantitative proteomics approaches to better understand the dynamics of protein-complex assembly.  相似文献   

10.
Gram-negative bacterial pathogens have developed specialized secretion systems to transfer bacterial proteins directly into host cells. These bacterial effectors are central to virulence and reprogram host cell processes to favor bacterial survival, colonization, and proliferation. Knowing the complete set of effectors encoded by a particular pathogen is the key to understanding bacterial disease. In addition, the identification of the molecular assemblies that these effectors engage once inside the host cell is critical to determining the mechanism of action of each effector. In this work we used stable isotope labeling of amino acids in cell culture (SILAC), a powerful quantitative proteomics technique, to identify the proteins secreted by the Salmonella pathogenicity island-2 type three secretion system (SPI-2 T3SS) and to characterize the host interaction partners of SPI-2 effectors. We confirmed many of the known SPI-2 effectors and were able to identify several novel substrate candidates of this secretion system. We verified previously published host protein-effector binding pairs and obtained 11 novel interactions, three of which were investigated further and confirmed by reciprocal co-immunoprecipitation. The host cell interaction partners identified here suggest that Salmonella SPI-2 effectors target, in a concerted fashion, cellular processes such as cell attachment and cell cycle control that are underappreciated in the context of infection. The technology outlined in this study is specific and sensitive and serves as a robust tool for the identification of effectors and their host targets that is readily amenable to the study of other bacterial pathogens.  相似文献   

11.
The chaperonin-containing t-complex polypeptide 1 (CCT) is a cytosolic molecular chaperone composed of eight subunits that assists in the folding of actin, tubulin and other cytosolic proteins. We show here that the content of particular subunits of CCT within mammalian cells decreases concomitantly with the reduction of chaperone activity during cell cycle arrest at M phase. CCT recovers chaperone activity upon resumption of these subunits after release from M phase arrest or during arrest at S phase. The levels of alpha, delta and zeta-1 subunits decreased more rapidly than the other subunits during M phase arrest by colcemid treatment and recovered after release from the arrest. Gel filtration chromatography or native (nondenaturing) PAGE analysis followed by immunoblotting indicated that the alpha and delta subunit content in the 700- to 900-kDa CCT complex was appreciably lower in the M phase cells than in asynchronous cells. In vivo, the CCT complex of M-phase-arrested cells was found to bind lower amounts of tubulin than that of asynchronous cells. In vitro, the CCT complex of M phase-arrested cells was less active in binding and folding denatured actin than that of asynchronous cells. On the other hand, the CCT complex of asynchronous cells (a mixture of various phases of cell cycle) exhibited lower alpha and delta subunit content and lower chaperone activity than that of S-phase-arrested cells obtained by excess thymidine treatment. In addition, turnover (synthesis and degradation) rates of the alpha and delta subunits in vivo were more rapid than those of most other subunits. These results suggest that the content of alpha and delta subunits of CCT reduces from the complete active complex in S phase cells to incomplete inactive complex in M phase cells.  相似文献   

12.
We have characterized Xenopus ISWI, a catalytic subunit of a family of chromatin-remodeling complexes. We show that ISWI is expressed constitutively during development but poorly expressed in adult tissues except oocytes which contain a large store of maternal protein. We further analyzed its localization both in vivo and in vitro in Xenopus cell cycle extracts and identified that ISWI binds to chromatin at the G1-S period. However, its association to chromatin does not require ongoing DNA replication. Immunodepletion of ISWI has no effect on either sperm chromatin decondensation or the kinetics and efficiency of DNA replication. Nucleosome assembly also occurs in ISWI-depleted extracts, but nucleosome spacing is disturbed. From these results, we conclude that ISWI is not necessary for sperm chromatin decondensation and the accelerated rates of DNA replication that characterize early development.  相似文献   

13.
14.
15.
Systematic analysis of the RNA-protein interactome requires robust and scalable methods. We here show the combination of two completely orthogonal, generic techniques to identify RNA-protein interactions: PAR-CLIP reveals a collection of RNAs bound to a protein whereas SILAC-based RNA pull-downs identify a group of proteins bound to an RNA. We investigated binding sites for five different proteins (IGF2BP1-3, QKI and PUM2) exhibiting different binding patterns. We report near perfect agreement between the two approaches. Nevertheless, they are non-redundant, and ideally complement each other to map the RNA-protein interaction network.  相似文献   

16.
Structural plasticity and dynamic protein–protein interactions are critical determinants of protein function within living systems. Quantitative chemical cross-linking with mass spectrometry (qXL-MS) is an emerging technology able to provide information on changes in protein conformations and interactions. Importantly, qXL-MS is applicable to complex biological systems, including living cells and tissues, thereby providing insights into proteins within their native environments. Here, we present an overview of recent technological developments and applications involving qXL-MS, including design and synthesis of isotope-labeled cross-linkers, development of new liquid chromatography–MS methodologies, and computational developments enabling interpretation of the data.  相似文献   

17.
The combination of affinity purification and tandem mass spectrometry (MS) has emerged as a powerful approach to delineate biological processes. In particular, the use of epitope tags has allowed this approach to become scaleable and has bypassed difficulties associated with generation of antibodies. Single epitope tags and tandem affinity purification (TAP) tags have been used to systematically map protein complexes generating protein interaction data at a near proteome-wide scale. Recent developments in the design of tags, optimisation of purification conditions, experimental design and data analysis have greatly improved the sensitivity and specificity of this approach. Concomitant developments in MS, including high accuracy and high-throughput instrumentation together with quantitative MS methods, have facilitated large-scale and comprehensive analysis of multiprotein complexes.  相似文献   

18.
19.
20.
Pflieger D  Bigeard J  Hirt H 《Proteomics》2011,11(9):1824-1833
The components that enable cells and organisms to fulfill a plethora of chemical and physical reactions, including their ability to metabolize, replicate, repair and communicate with their environment are mostly based on the functioning of highly complex cellular machines which are to a large extent composed of proteins. With the development of MS techniques compatible with the analysis of minute amounts of biological material, it has become more and more feasible to dissect the composition and modification of these protein machineries. Indeed, new purification methods of protein complexes followed by MS analysis together with the genomic sequencing of various organisms - and in particular of crop species - now provide unforeseen insight to understand biological processes at a molecular level. We here review the current state of the art of in vivo protein complex isolation and their MS-based analytical characterization, emphasizing on the tandem affinity purification approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号