首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 448 毫秒
1.
Embryogenic callus was initiated by culturing in vitro taro corm slices on agar-solidified half-strength MS medium containing 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) for 20 days followed by transfer to 1.0 mg/L thidiazuron (TDZ). Callus was subsequently proliferated on solid medium containing 1.0 mg/L TDZ, 0.5 mg/L 2,4-D and 800 mg/L glutamine before transfer to liquid medium containing the same components but with reduced glutamine (100 mg/L). After 3 months in liquid culture on an orbital shaker, cytoplasmically dense cell aggregates began to form. Somatic embryogenesis was induced by plating suspension cells onto solid media containing reduced levels of hormones (0.1 mg/L TDZ, 0.05 mg/L 2,4-D), high concentrations of sucrose (40–50 g/L) and biotin (1.0 mg/L). Embryo maturation and germination was then induced on media containing 0.05 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-acetic acid (IAA). Histological studies of the developing embryos revealed the presence of typical shoot and root poles suggesting that these structures were true somatic embryos. The rate of somatic embryos formation was 500–3,000 per mL settled cell volume while approximately 60% of the embryos regenerated into plants.  相似文献   

2.
A simple and efficient system was developed for rapid somatic embryogenesis from leaf explants of Merwilla plumbea, a traditional but threatened medicinal plant in South Africa. Friable embryogenic callus (FEC) was obtained from leaf explants on embryogenic callus induction medium containing agar-solidified Murashige and Skoog (MS) salts and vitamins, 8.3 μM picloram, 2.3 μM thidiazuron (TDZ) and 20 μM glutamine. FEC was subsequently incubated in embryogenic callus proliferation medium containing 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.1 μM picloram for 7 days before it was transferred to liquid somatic embryo medium (SEML) containing MS medium supplemented with 0.4 μM picloram and 0.9 μM TDZ. In SEML supplemented with 150 mg L−1 haemoglobin, 5.4–35.6 somatic embryos per settled cell volume of 500 mg FEC were obtained. These embryos were at globular to cotyledonary developmental stages. Embryo maturation, germination and plant formation rate was 94.4% following transfer of SEs to half-strength MS medium supplemented with 1.4 μM gibberellic acid. Plantlets transferred into soil acclimatized in the misthouse and established successfully in the greenhouse (100%). This is the first report on induction of Merwilla plumbea somatic embryogenesis. The protocol developed offers controlled vegetative propagation by alleviating extinction threats, ensures germplasm conservation and provides a system for physiological, biochemical, molecular and cellular studies of embryo development.  相似文献   

3.
Agrobacterium rhizogenes A4M70GUS-mediated transformation of two local breeding lines of sugar beet was obtained using 4-week-old seedlings. Root formation efficiency was 61.54% for SBa genotype and 36.36% for SBb genotype. Five highly proliferated hairy root lines have been established in liquid hormone-free MS medium. Transgenic nature of the hairy root clones was evaluated by GUS assay, PCR and RT-PCR analyses. Hairy root-derived calli were induced using different plant growth regulators (PGRs): auxin, auxin/cytokinin and cytokinin. The best callus induction response was achieved on MS medium containing both 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg/l thidiazuron (TDZ). Globular embryo-like structures were observed in friable callus after its prolonged cultivation on MS medium supplemented with TDZ and giberellic acid (GA3) at 1 mg/l each, followed by growth on MS medium containing 1% glucose and 0.5 mg/l 2,3,5-triiodobenzoic acid (TIBA). Histological analysis revealed somatic embryos at different stages of development in hairy root-derived callus of sugar beet.  相似文献   

4.
Summary High-frequency somatic embryogenesis and plant regeneration was achieved on callus derived from leaf (petiole and lamina) and internode explants of Centella asiatica L. Growth regulators significantly influenced the frequency of somatic embryogenesis and plant regeneration. Calluses developed on Murashige and Skoog (MS) medium fortified with 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 5.37 μM α-naphthaleneacetic acid (NAA), both with 2.32 μM kinetin (Kn), were superior for somatic embryogenesis. Callus developed on NAA and Kn-supplemented medium favored induction and maturation of embryos earlier compared to that on 2,4-D and Kn. Embryogenic callus transferred from NAA and Kn-supplemented medium to suspension cultures of half-strength MS medium with NAA (2.69 μM) and Kn (1.16 μM) developed a mean of 204.3 somatic embryos per 100 mg of callus. Embryogenic callus transferred from 2,4-D and Kn subsequently to suspension cultures of half-strength MS medium with 2,4-D (0.45 μM) and Kn (1.16 μM) developed a mean of 303.1 embryos per 100 mg of callus. Eighty-eight percent of the embryos underwent maturation and conversion to plantlets upon transfer to half-strength MS semisolid medium having 0.054 μM NAA with either 0.044 μM BA or 0.046 μM Kn. Embryo-derived plantlets established in field conditions displayed morphological characters identical to those of the parent plant.  相似文献   

5.
A protocol has been developed for somatic embryogenesis and subsequent plant regeneration in Allium schoenoprasum L. Calli were induced from root sections isolated from axenic seedlings and cultivated on media containing either Murashige and Skoog’s (MS) or Dunstan and Short’s mineral solution supplemented with 5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) in combination with 6-benzylaminopurine (BA), 6-furfurylaminopurine (Kin) or thidiazuron (TDZ) at 1, 5 or 10 μM. The highest frequencies of callus induction were achieved on media with 5 μM 2,4-D in combination with 5 μM TDZ or 10 μM BA (78.9% and 78.4%, respectively). Calli were then transferred to 1 μM 2,4-D, where compact yellow callus turned to segmented yellowish callus with transparent globular somatic embryos at the surface. Calli that were previously grown on media with 5 μM 2,4-D in combination with 10 μM BA or 10 μM TDZ showed the highest frequencies of embryogenic callus formation (45% and 42%) as well as mean number of somatic embryos per regenerating callus. The choice of mineral solution formulation did not significantly affect callus induction or embryogenic callus formation. The embryos could complete development into whole plants on plant growth regulator (PGR)-free medium, but inclusion of Kin (0.5, 2.5 and 5 μM) in this phase improved somatic embryo development and multiplication. Subsequently transferred to 1/2 MS PGR-free medium, all embryos rooted and the survival rate of the plants in a greenhouse was 96%.  相似文献   

6.
A somatic embryogenesis protocol for plant regeneration of northern red oak (Quercus rubra) was established from immature cotyledon explants. Embryogenic callus cultures were induced on Murashige and Skoog medium (MS) containing 3% sucrose, 0.24% Phytagel™, and various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-d) after 4 weeks of culture in darkness. A higher response (66%) of embryogenic callus was induced on 0.45 μM 2,4-d. Higher numbers of globular- (31), heart- (17), torpedo- (12), and cotyledon-stage (8) embryos per explant were obtained by culturing embryogenic callus on MS with 3% sucrose, 0.24% Phytagel™, and devoid of growth regulators after 8 weeks culture in darkness. Continuous sub-culturing of embryogenic callus on medium containing 2,4-d yielded only compact callus. Desiccation of embryos for 3 days in darkness at 25 ± 2°C followed by cold storage at 4°C in darkness for 8 weeks favored embryo germination and development of plantlets. Cotyledon-stage embryos subjected to desiccation and chilling treatment cultured on MS with 3% sucrose, 0.24 Phytagel™, 0.44 μM 6-benzylaminopurine (BA), and 0.29 μM gibberellic acid germinated at a higher frequency (61%) than with 0.44 μM BA alone and control cultures. Germinated plantlets developed a shoot and root, were acclimatized successfully, and maintained in a growth room for plantlet development.  相似文献   

7.
Summary Efficient in vitro propagation of Ceropegia candelabrum L. (Asclepidaceae) through somatic embryogenesis was established. Somatic embryogenesis depended on the type of plant growth regulators in the callus-inducing medium. Friable callus, developed from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 4.52μM2,4-dichlorophenoxyacetic acid (2,4-D), underwent somatic embryogenesis. Compared to solid media, suspension culture was superior and gave rise to a higher number of somatic embryos. Transfer of the friable callus developed on MS medium containing 4.52μM 2,4-D to suspension cultures of half- or quarter-strength MS medium with lower levels of 2,4-D (0.23 or 0.45 μM) induced the highest number of somatic embryos, which developed up to the torpedo stage. Somatic embryogenesis was asynchronous with the dominance of globular embryos. About 100 mg of callus induced more than 500 embryos. Upon transfer to quarter-strength MS agar medium without growth regulators, 50% of the somatic embryos underwent maturation and developed into plantlets. Plantlets acclimatized under field conditions with 90% survival.  相似文献   

8.
Summary In vitro propagation of Andrographis paniculata (Burm. f.) Wallich ex Nees through somatic embryogenesis, and influence of 2,4-dichlorophenoxyacetic acid (2,4-1) on induction, maturation, and conversion of somatic embryos were investigated. The concentration of 2,4-D in callus induction medium determined the induction, efficacy of somatic embryogenesis, embryo maturation, and conversion. Friable callus initiated from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 2.26, 4.52, 6.78, and 9.05μM 2,4-D started to form embryos at 135, 105, 150, and 185d, respectively, after explant establishment. Callus initiated at 13.56μM 2,4-D did not induce embryos even after 240 d, whereas those initiated on MS medium with 4.52μM 2,4-D was most favorable for the formation and maturation of somatic embryos. Callus subcultured on the medium with reduced concentration of 2,4-D (2.26μM) became embryogenic. This embryogenic callus gave rise to the highest number of embryos (mean of 312 embryos) after being transferred to half-strength MS basal liquid medium. The embryos were grown only up to the torpedo stage. A higher frequency of embryos developed from callus initiated on 2.26 or 4.52 μM 2,4-D underwent maturation compared to that initiated on higher concentrations of 2.4-D. The addition of 11.7μM silver nitrate to half-strength MS liquid medium resulted in 71% of embryos undergoing maturation, while 83% of embryos developed into plantlets after being transferred to agar inedium with 0.44 μMN6-benzyladenine and 1.44 μM gibberellic acid. Most plantlets (88%) survived under field conditions and were morphologically identical to the parent plant.  相似文献   

9.
Summary The types of auxin in Murashige and Skoog (MS) medium containing N 6-benzyladenine (BA) determined indirect morphogenesis, i.e. development to bipolar somatic embryos or monopolar shoots in Euphorbia nivulia Buch.-Ham. Indirect in vitro morphogenesis depended on growth regulators, explant excision period, and light. Calli induced from explants collected in March–April were superior in the induction of indirect morphogenesis to those collected in July–August. Light enforced in vitro morphogenesis, while darkness was inhibitory. The presence of kinetin in the medium also inhibited morphogenesis. Calli developed on explants collected in March–April grown on MS medium fortified with α-naphthaleneacetic acid (NAA) and BA facilitated indirect organogenesis, while those developed on medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) and BA underwent somatic embryogenesis. MS medium with 13.3 μM BA and 2.69 μM NAA was the best for induction of shoots from callus, which developed a mean of 15.7 shoots. Shoots were best rooted on half-strength MS medium enriched with 2.46 μM indole-3-butyric acid with a mean of 5.1 roots per shoot. MS medium supplemented with 2.26 μM 2,4-D and 4.44 μM BA induced the highest number (mean of 13.4) of somatic embryos. Of the embryos transferred on half-strength MS medium containing 2.89 μM gibberellic acid, 78% of embryos developed to the cotyledonary stage. Most cotyledonary embryos (80%) underwent conversion to plantlets upon being transferred to half-strength MS basal medium in light. The survival rate of organogenesis and embryo-derived plants was 80 and 90%, respectively. Calli transformed with Agrobacterium tumefaciens showed expression of the gusA transgene and resistance to kanamycin, but did not undergo morphogenesis.  相似文献   

10.
Summary Indirect somatic embryogenesis, encapsulation, and plant regeneration was achieved with the rare rhoeophytic woody medicinal plant Rotula aquatica Lour. (Boraginaceae). Friable callus developed from leaf and internode explants on Murashige and Skoog (MS) medium with 0.45 μM 2,4-dichlorophenoxyacetic, acid (2,4-D) was most effective for the induction of somatic embryos. Subculture of the callus onto half-strength MS medium with the same concentration of 2,4-D resulted in highly embryogenic callus. Suspension culture was superior to solid medium culture for somatic embryogenesis. Embryogenic callus.during subsequent transfer to suspension cultures of half-strength MS medium having 0.23 μM 2,4-D induced the highest number of somatic embryos (a mean of 25.6 embryos per 100 mg callus) and the embryos were grown up to the torpedo stage. Transfer of embryos to half-strength MS basal solid medium allowed development, of 50% of the embryos to the cotyledonary stage. Of the cotyledonary embryos, 90% underwent conversion to plantlets on the same medium. Encapsulated cotyledonary embryos exhibited 100% conversion to plantlets. Ninety-five percent of the plantlets established in field conditions survived, and were morphologically identical to the mother plant.  相似文献   

11.
Plantlet regeneration through indirect somatic embryogenesis was attempted from rhizome derived callus of Cymbopogon winterianus Jowitt (cv. Jorlab2). Optimum callus was induced on Murashige and Skoog (MS) basal medium supplemented with 4 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D). Initially the callus was friable, shiny white and watery in nature. After subculturing on MS medium containing 2,4-D and kinetin (Kn), callus was transferred onto the MS medium supplemented with 2,4 -D, Kn and coconut water to induce somatic embryogenesis. Optimum somatic embryogenesis (78.33 %) was achieved on MS medium containing 3.0 mg dm−3 2,4-D and 0.5 mg dm−3 Kn. High frequency (65 %) plantlet conversion from embryos was achieved in MS medium supplemented with 2 mg dm−3 N6-benzyladenine (BA), 0.5 mg dm−3 Kn, 0.2 mg dm−3 calcium pantothenate and 0.2 mg dm−3 biotin.  相似文献   

12.
Summary Suspension culture of cucumber (Cucumis sativus L.) has been an inefficient method for production of somatic embryos owing to problems with embryo maturation and conversion. Embryogenic callus of cv. Green Long was induced on semisolid Murashige and Skoog (MS) medium containing 6.8 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.2 μM 6-benzylaminopurine (BA). A large number of globular somatic embryos were obtained on transfer of the callus to MS liquid medium supplemented with 87.6 mM sucrose, 1.1 μM 2,4-D, and improved by the addition of 342.4 μM l-glutamine. MS medium supplemented with 87.6 mM sucrose was more effective in somatic embryo production than other sugars. Subsequent development led to the formation of heart-and torpedo-shaped embryos. Maturation of somatic embryos occurred on plant growth regulator-free MS semi-solid medium containing 175.2 mM sucrose and 0.5 gl−1 activated charcoal. Conversion of embryos into plants was achieved on half-strength MS semi-solid medium containing 87.6 mM sucrose and 1.4 μM gibberellic acid (GA3) in a 16h photoperiod. Twenty-seven percent of embryos were converted into normal plants.  相似文献   

13.
The genus Tribulus is the source of a number of steroidal saponins and other bioactive compounds which are of medicinal and pharmaceutical importance and plant regeneration of Tribulus terrestris has been reported. The objective of this study was to evaluate the potential of immature zygotic embryos of Tribulus terrestris as an explant for plant regeneration. Embryos were cultured on MS medium supplemented with 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D) and thidiazuron (TDZ), alone or in combination and callus and shoot or embryo formation evaluated. With 2.5 mg/l NAA or 2,4-D, callus formation frequency was 100% but 57% with 2.5 mg/l TDZ. The combination of 2.5 mg/l TDZ and NAA or 2,4-D also elicited callus formation frequency of 100%. The callus formation frequency was lower with lower levels of these growth regulators. On a medium with 0.5 mg/l TDZ, 17.4% of the 2,4-D-derived callus (2.5 mg/l), developed embryo-like structures and this increased to 37.3 and 41.4% respectively, when TDZ was combined with 0.5 mg/l indole-3-butyric acid (IBA) or 2,4-D. Both shoot formation and embryo-like structures developed in cultures with 2.5 mg/l TDZ, alone or in combination with 0.5 mg/l IBA or 2,4-D. The optimum sucrose level for morphogenetic response of embryo-derived callus was between 5.0 and 7.5%. Embryo-like structures were also observed when the 2,4-D-derived callus was cultured in a liquid containing benzyladenine (BA) and IBA. Plants were regenerated from both embryo-like structures and shoot buds on solid MS medium containing 0.2 mg/l IBA and rooted plantlets were transferred to soil.  相似文献   

14.
Somatic embryogenesis was obtained from cotyledon and mature zygotic embryo callus cultures of Terminalia chebula Retz. Callus cultures of cotyledon and mature zygotic embryo were initiated on induction medium containing Murashige and Skoog (MS) nutrients with 1.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) either 0.01 or 0.1 mg/l Kinetin and 30 g/l sucrose. Induction of somatic embryogenesis, proliferation and development was obtained through different culture passages. Embryogenic cotyledon callus with globular somatic embryos was obtained on MS basal medium supplemented with 50 g/l sucrose. Globular somatic embryos were observed from mature zygotic embryo callus on induction medium. Different stages of somatic embryo development from cotyledon and mature zygotic embryo calluses were observed on MS basal medium supplemented with 50 g/l sucrose after 4 weeks of culture. Histological studies have revealed the developmental stages of somatic embryos. A maximum of 40.3±1.45 cotyledonary somatic embryos/callus was obtained from mature zygotic embryo compared to 7.70±0.37 cotyledonary somatic embryos/callus initiated from cotyledons. Germination of somatic embryos and conversion to plants were achieved. Highest frequency of germination (46.66±0.88) of somatic embryos was obtained on MS basal medium containing benzyladenine (0.5 mg/l) with 30 g/l sucrose.  相似文献   

15.
The regeneration of plants via somatic embryogenesis liquid shake culture of embryogenic calluses was achieved in Vigna mungo (L.) Hepper (blackgram). The production of embryogenic callus was induced by seeding primary leaf explants of V. mungo onto Murashige and Skoog (MS) (Physiol Plant 15:473–497, 1962) medium supplemented (optimally) with 1.5 mg/l 2,4-dichloro-phenoxyacetic acid. The embryogenic callus was then transferred to liquid MS medium supplemented (optimally) with 0.25 mg/l 2,4-dichloro-phenoxyacetic acid. Globular, heart-shaped, and torpedo-shaped embryos developed in liquid culture. The optimal carbohydrate source for production of somatic embryos was 3% sucrose (compared to glucose, fructose, and maltose). l-Glutamine (20 mg/l) stimulated the production of all somatic embryo stages significantly. Torpedo-shaped embryos were transferred to MS (Physiol Plant 15:473–497, 1962) liquid medium containing 0.5 mg/l abscisic acid to induce the maturation of cotyledonary-stage embryos. Cotyledonary-stage embryos were transferred to 1/2-MS semi-solid basal medium for embryo conversion. Approximately 1–1.5% of the embryos developed into plants.  相似文献   

16.
An efficient system for inducing somatic embryogenesis in Panax notoginseng was established using shaker flasks and bioreactor cultures; furthermore, regenerated plantlets were successfully transferred to ex vitro soil conditions. Embryogenic callus was induced from segments of adventitious roots incubated on Murashige and Skoog (MS) medium containing 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) after 5 weeks of culturing. The highest frequency (100%) of somatic embryogenesis, with a mean of 32.7 somatic embryos per callus, was obtained on embryogenic callus incubated on a medium containing 0.5 mg/L 2,4-D. To scale-up somatic embryo formation, 10 g (~1.65 × 104) of early globular-stage somatic embryos were incubated in a 3 L airlift bioreactor containing 1.5 L 1/2 MS medium without plant growth regulators (PGRs) for a period of 4 weeks; these globular-stage somatic embryos then developed into cotyledonary embryos. When maintained on PGR-free medium, the cotyledonary embryos developed roots but did not develop shoots. However, when they were treated with gibberellic acid (GA3), they continued to germinate and transformed into plantlets after 2 weeks of culture. Plantlets with well-developed shoots and roots were transferred to an autoclaved vermiculite and perlite mixture, acclimatized for a period of 3 months and successfully transferred to forest mountain soil. Following overwintering, these plants produced new growth.  相似文献   

17.
Summary Sodium chloride-tolerant plantlets of Dendrocalamus strictus were regenerated successfully from NaCl-tolerant embryogenic callus via somatic embryogenesis. The selection of embryogenic callus tolerant to 100 mM NaCl was made by exposing the callus to increasing (0–200 mM) concentrations of NaCl in Murashige and Skoog medium having 3% (w/v) sucrose, 0.8% (w/v) agar, 3.0 mg l−1 (13.6 μM) 2,4-dichlorophenoxyacetic acid (2,4-D), and 0.5mg l−1 (2.3μM) kinetin (callus initiation medium). The tolerance of the selected embryogenic callus to 100 mM NaCl was stable through three successive transfers on NaCl-free callus initiation medium. The tolerant embryogenic callus had high levels of Na+, sugar, free amino acids, and proline but a slight decline was recorded in K+ level. The stable 100 mM NaCl-tolerant embryogenic callus differentiated somatic embryos on maintenance medium [MS medium +3% sucrose +0.8% agar +2.0 mg l−1 (9.0 μM) 2,4-D+0.5 mg l−1 (2.3 μM) kinetin] supplemented with different (0–200 mM) concentrations of NaCl. About 39% of mature somatic embryos tolerant to 100 mM NaCl germinated and converted into plantlets in germination medium [half-strength MS+2% sucrose+0.02 mg l−1 (0.1 μM) α-naphthaleneacetic acid +0.1 mg l−1 (0.49 μM) indole-3-butyric acid] containing 100 mM NaCl. Of these plantlets about 31% established well on transplantation into a garden soil and sand (1:1) mixture containing 0.2% (w/w) NaCl.  相似文献   

18.
In the present study, in vitro regeneration system for a recalcitrant woody tree legume, Leucaena leucocephala (cvs. K-8, K-29, K-68 and K-850) from mature tree derived nodal explants as well as seedling derived cotyledonary node explants was developed. Best shoot initiation and elongation was found on full-strength Murashige and Skoog (MS) medium supplemented with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 100 mg dm−3 glutamine, 20.9 μM N 6-benzylamino-purine (BAP) and 5.37 μM 1-naphthalene acetic acid (NAA). Rooting was induced in half-strength MS medium containing 2 % (m/v) sucrose, 100 mg dm−3 myoinositol, 14.76 μM indole-3-butyric acid (IBA) and 0.23 μM kinetin. The cultivar K-29 gave the best response under in vitro conditions. Rooted plantlets were subjected to hardening and successfully transferred to greenhouse. Further, somatic embryogenesis from nodal explants of cv. K-29 via an intermittent callus phase was also established. Pronounced callusing was observed on full-strength MS medium containing 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 40.28 μM NAA and 12.24 μM BAP. These calli were transferred to induction medium and maximum number of globular shaped somatic embryos was achieved in full-strength MS medium fortified with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 15.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 5.0 μM BAP and 1.0 mM proline. Moreover, an increase in endogenous proline content up to 28th day of culture in induction medium was observed. These globular shaped somatic embryos matured in full-strength MS medium with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 10.0 μM BAP, 2.5 to 5.0 μM IBA and 0.5 mM spermidine.  相似文献   

19.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

20.
Plant regeneration through direct somatic embryogenesis in Aeschynanthus radicans ‘Mona Lisa’ was achieved in this study. Globular somatic embryos were formed directly from cut edges of leaf explants and cut ends or on the surface of stem explants 4 wk after culture on Murashige and Skoog (MS) medium supplemented with N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea (TDZ) with α-naphthalene acetic acid (NAA), TDZ with 2,4-dichlorophenoxyacetic acid (2,4-D), or 6-benzylaminopurine (BA) or kintin (KN) with 2,4-D. MS medium containing 9.08 μM TDZ and 2.68 μM 2,4-D resulted in 71% of stem explants producing somatic embryos. In contrast, 40% of leaf explants produced somatic embryos when induced in medium containing 6.81 μM TDZ and 2.68 μM 2,4-D. Somatic embryos matured, and some germinated into small plants on the initial induction medium. Up to 64% of stem explants cultured on medium supplemented with 9.08 μM TDZ + 2.68 μM 2,4-D, 36% of leaf explants cultured on medium containing 6.81 μM TDZ and 2.68 μM 2,4-D had somatic embryo germination before or after transferring onto MS medium containing 8.88 μM BA and 1.07 μM NAA. Shoots elongated better and roots developed well on MS medium without growth regulators. Approximately 30–50 plantlets were regenerated from each stem or leaf explant. The regenerated plants grew vigorously after transplanting to a soil-less substrate in a shaded greenhouse with more than a 98% survival rate. Three months after their establishment in the shaded greenhouse, 500 plants regenerated from stem explants were morphologically evaluated, from which five types of variants that had large, orbicular, elliptic, small, and lanceolate leaves were identified. Flow cytometry analysis of the variants along with the parent showed that they all had one identical peak, indicating that the variant lines, like the parent, were diploid. The mean nuclear DNA contents of the variant lines and their parent ranged from 4.90 to 4.99 pg 2C−1, which were not significantly different statistically. The results suggest that the regenerated plants have a stable ploidy level, and the regeneration method established in this study can be used for rapid propagation of ploidy-stable Aeschynanthus radicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号