首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural and synthetic melanins have been studied by optical absorption and photoconductivity measurements in the range 200–700 nm. Both optical absorption and photoconductivity increase in the ultraviolet region, and a negative photoconductivity was observed with a maximum near 500 nm. This behaviour has been interpreted by the band model of amorphous materials and an “optical gap” of 3.4 eV has been determined.  相似文献   

2.
Excitation energy transfer in the light-harvesting chlorophyll a/b.protein   总被引:3,自引:0,他引:3  
The "light-harvesting chlorophyll a/b.protein" described by Thornber has been prepared electrophoretically from spinach chloroplasts. The optical properties relevant to energy transfer have been measured in the red region (i.e. 600-700 nm). Measurements of the absorption spectrum, fluorescence excitation spectrum and excitation dependence of the fluorescence emission spectrum of this protein confirm that energy transfer from chlorophyll b to chlorophyll a is highly efficient, as is the case in concentrated chlorophyll solutions and in vivo. The excitiation dependence of the fluorescence polarization shows a minimum polarization of 1.9% at 650 nm which is the absorption maximum of chlorophyll b in the protein and rises steadily to a maximum value of 13.8% at 695 nm, the red edge of the chlorophyll a absorption band. Analysis of these measurements shows that at least two unresolved components must be responsible for the chlorophyll a absorption maximum. Comparison of polarization measurements with those observed in vivo shows that most of the depolarization observed in vivo can take place within a single protein. Circular dichroism measurements show a double structure in the chlorophyll b absorption band which suggest an exciton splitting not resolved in absorption. Analysis of these data yields information about the relative orientation of the So leads to S1 transition moments of the chlorophyll molecules within the protein.  相似文献   

3.
A research of optical properties of individual microalgae Chlorella vulgaris cells was performed under various conditions of cultivation. On the basis of cell absorption spectra measurements in the visible spectrum region chlorophyll "a" absorption maxima are estimated to fall within the intervals of 669-675 nm for the red region of the spectrum and 429--436 nm for the blue one. Concentration of chlorophylls in the cells of the diameter from 2,8 up to 3,3 micrometers was found to increase considerably for algae grown both in continuous denisty static and periodical regimes. Integral optical density of individual Chlorella cells in the range of 400-750 nm grows with cell diameter increase. This increase appears to be most intensive in the cells grown in density static regime. A correlation was also established between algae cell dimensions and the general maxima position (correlation coefficient has a positive sign and absolute value near unit). With cell diameter growth the absorption maxima shift to the region of long waves.  相似文献   

4.
In this work the spectroscopic properties of the special low-energy absorption bands of the outer antenna complexes of higher plant Photosystem I have been investigated by means of low-temperature absorption, fluorescence, and fluorescence line-narrowing experiments. It was found that the red-most absorption bands of Lhca3, Lhca4, and Lhca1-4 peak, respectively, at 704, 708, and 709 nm and are responsible for 725-, 733-, and 732-nm fluorescence emission bands. These bands are more red shifted compared to "normal" chlorophyll a (Chl a) bands present in light-harvesting complexes. The low-energy forms are characterized by a very large bandwidth (400-450 cm(-1)), which is the result of both large homogeneous and inhomogeneous broadening. The observed optical reorganization energy is untypical for Chl a and resembles more that of BChl a antenna systems. The large broadening and the changes in optical reorganization energy are explained by a mixing of an Lhca excitonic state with a charge transfer state. Such a charge transfer state can be stabilized by the polar residues around Chl 1025. It is shown that the optical reorganization energy is changing through the inhomogeneous distribution of the red-most absorption band, with the pigments contributing to the red part of the distribution showing higher values. A second red emission form in Lhca4 was detected at 705 nm and originates from a broad absorption band peaking at 690 nm. This fluorescence emission is present also in the Lhca4-N-47H mutant, which lacks the 733-nm emission band.  相似文献   

5.
Bacteriorhodopsin (BR) is an integral membrane protein found in "purple membrane" (the Archaea cell membrane) mainly in Halobacteria. This protein absorbs green light (wavelength 500-650 nm, with the absorption maximum at 568 nm) and converts it into an electrochemical gradient. This gradient in turn is used for ATP production. The ability of BR to convert light energy into chemical energy or sunlight into electricity has been used in different applications mainly optical appliances but also for therapeutic/medical applications and research. This review surveys some of these applications that have been patented in the last five years.  相似文献   

6.
The optical activity of octopus rhodopsin, acid metarhodopsin and alkaline metarhodopsin was studied by a sensitive and rapid CD apparatus. For sometime it has been thought that cephalopod metarhodopsins do not have any optical activity associated with their main absorption band. However, the present work shows that acid metarhodopsin in digitonin has a positive CD band at 498 nm and a negative CD band at 436 nm and alkaline metarhodopsin has a negative CD band at 381 nm. Detergent affected the wavelength of the CD peak of the visual pigments though the pattern of the spectrum was similar. From these results it is concluded that the conformation of all-trans retinal in octopus metarhodopsin is influenced by the asymmetric conformation of the protein near the retinal and therefore inducing optical activity.  相似文献   

7.
Liang  Cuiping  Yi  Zao  Chen  Xifang  Tang  Yongjian  Yi  Yong  Zhou  Zigang  Wu  Xuanguang  Huang  Zhen  Yi  Yougen  Zhang  Guangfu 《Plasmonics (Norwell, Mass.)》2020,15(1):93-100

In this paper, we demonstrate a dual-band metamaterial perfect absorber based on a Ag-dielectric-Ag multilayer nanostructure. The structure of top metal film covers nanoring grooves array. A dielectric layer has a function of confining electromagnetic fields. Theoretical analysis shows that two absorption peaks (1059 nm and 1304 nm) with the absorption of 99.2% and 99.9% have been achieved, respectively. The physical origin of perfect absorption peaks are related to the Fabry-Perot resonance effect and localized surface plasmon resonance (LSPR) of the nanoring grooves. Its perfect absorption and resonance wavelength can be well regulated by adjusting the relevant structural parameters. Additionally, the absorber demonstrates good operation angle-polarization-tolerance at wide incident angles (0–60°). We believe that our design has a promising application in plasmon-enhanced photovoltaic, optical absorption switching, and modulator optical communications in the infrared regime.

  相似文献   

8.
By optical methods it has been previously shown that the globular "head" of histone H1 forms a hydrophobic cavity containing Tyr72. The latter is screened from the polar water surrounding and its intramolecular mobility is drastically hindered. As a consequence of the alteration in the micromilieu are a long wave shift (lambda max = 279,5 nm) and a more pronounced longwave absorption spectra, higher anisotropy (A = 0,11), augmented quantum yield of fluorescence (approximately 0,2) and a decrease of the Stern-Volmer constant for Hl at fluorescence quenching by acrylamide. It was found that changes in fluorescence intensity of histones are connected with alterations in the quantum yield of fluorescence at lambda exc = = 265 nm, but not at lambda exc = 280 nm. The changes in fluorescence intensity at light excitation 280 nm (F280) and 265 nm (F265) are in good accordance with shift delta E286 in differential absorption spectra. Introduction of parameter Cf = F280/F265 allows to study shifts of excitation spectra instead of shifts in absorption spectra of histones. This method has certain advantages, since it permits investigations with lower protein concentrations and in turbid solutions. The data obtained allow to draw out Tyr72 of histone Hl into a special class of fluorescent-tyrosyls, that differ in properties from those of other tryptophandevoided proteins: RNAse, insulin and core-histones H2A, H2B, H3 and H4.  相似文献   

9.
Kinetic refractive index spectroscopy has been applied to the study of the bacteriorhodopsin photocycle. A fully hydrated purple membrane film was examined in the temperature range from 10° to 40°C using 532 nm excitation (doubled Nd YAG laser) and 633 nm (He–Ne laser) testing beam. Multiexponential fitting of the data revealed five processes. Four of them are well known from kinetic optical absorption studies. The fifth process has only recently been observed in optical absorption experiments where it has a relatively small amplitude. In our refractive index experiments it has an amplitude of up to 30% of the full signal amplitude. It is characterized by an Arrhenius temperature dependence with an activation enthalpy of 40±5 kJ/mol and a decay time of about 0.8 ms at 20°C.  相似文献   

10.
Cytochrome aa3 from Nitrosomonas europaea   总被引:3,自引:0,他引:3  
Cytochrome c oxidase has been purified from the ammonia oxidizing chemoautotroph Nitrosomonas europaea by ion-exchange chromatography in the presence of Triton X-100. The enzyme has absorption maxima at 420 and 592 nm in the resting state and at 444 and 598 nm in the dithionite-reduced form; optical extinction coefficient (598 nm minus 640 nm) = 21.9 cm-1 nM-1. The enzyme has approximately 11 nmol of heme a and approximately 11 nmol of copper per mg of protein (Lowry procedure). There appear to be three subunits (approximate molecular weights 50,800, 38,400, and 35,500), two heme groups (a and a3), and two copper atoms per minimal unit. The EPR spectra of the resting and partially reduced enzyme are remarkably similar to the corresponding spectra of the mitochondrial cytochrome aa3-type oxidase. Although the enzyme had been previously classified as "cytochrome a1" on the basis of its ferrous alpha absorption maximum (598 nm), its metal content and EPR spectral properties clearly show that it is better classified as a cytochrome aa3. Neither the data reported here nor a review of the literature supports the existence of cytochrome a1 as an entity discrete from cytochrome aa3. The purified enzyme is reduced rapidly by ferrous horse heart cytochrome c or cytochrome c-554 from N. europaea, but not with cytochrome c-552 from N. europaea. The identity of the natural electron donor is as yet unestablished. With horse heart cytochrome c as electron donor, the purified enzyme could account for a significant portion of the terminal oxidase activity in vivo.  相似文献   

11.
Absorption and scattering efficiencies of semiconductor-coated Au nanoshell have been studied by the extended Mie theory for their possible solar cell, optical imaging, and photothermal applications, etc. The effect of Au shell layer thickness, core size, and surrounding medium on the absorption and scattering efficiencies at the localized surface plasmon resonance (LSPR) wavelengths has been reported. It has been found that both the absorption and scattering efficiencies get blue-shifted with an increase in Au shell layer thickness from 2 to 10 nm and with an increase in surrounding refractive index whereas the corresponding LSPR peaks shift towards red. It has also been found that the spectra are red-shifted with an increase in the core radius from 20 to 40 nm while keeping the shell thickness same. The effect of shell thickness on the absorption peak position and absorption linewidth has also been studied. Hence, the optical response of both CdSe- and CdTe-coated Au nanoshells can be tuned and controlled from the visible to the near-infrared (NIR) region of the electromagnetic (EM) spectrum. Finally, the CdSe-coated Au nanoshell exhibits high scattering and absorption efficiencies in comparison to the CdTe-coated nanoshell.  相似文献   

12.
A specific carotenoid associated with reaction centers purified from Rhodopseudomonas sphaeroides shows an optical absorbance change in response to photochemical activity, at temperatures down to 35 K. The change corresponds to a bathochromic shift of 1 nm of each absorption band. The same change is induced by either chemical oxidation or photo-oxidation of reaction center bacteriochlorophyll (P-870). Reduction of the electron acceptor of the reaction center, either chemically or photochemically, does not cause a carotenoid absorbance change or modify a change already induced by oxidation of P-870. The change of the carotenoid spectrum can therefore be correlated with the appearance of positive charge in the reaction center. In these studies we observed that at 35 K the absorption band of reaction center bacteriochlorophyll near 600 nm exhibits a shoulder at 605 nm. The resolution into two components is more pronounced in the light-dark difference spectrum. This observation is consistent with our earlier finding, that the "special pair" of bacteriochlorophyll molecules that acts as photochemical electron donor has a dimer-like absorption spectrum in the near infrared.  相似文献   

13.
In the subwavelength regime, several nanophotonic configurations have been proposed to overcome the conventional light trapping or light absorption enhancement limit in solar cells also known as the Yablonovitch limit. It has been recently suggested that establishing such limit should rely on computational inverse electromagnetic design instead of the traditional approach combining intuition and a priori known physical effect. In the present work, by applying an inverse full wave vector electromagnetic computational approach, a 1D nanostructured optical cavity with a new resonance configuration is designed that provides an ultrabroadband (≈450 nm) light absorption enhancement when applied to a 107 nm thick active layer organic solar cell based on a low‐bandgap (1.32 eV) nonfullerene acceptor. It is demonstrated computationally and experimentally that the absorption enhancement provided by such a cavity surpasses the conventional limit resulting from an ergodic optical geometry by a 7% average over a 450 nm band and by more than 20% in the NIR. In such a cavity configuration the solar cells exhibit a maximum power conversion efficiency above 14%, corresponding to the highest ever measured for devices based on the specific nonfullerene acceptor used.  相似文献   

14.
The average, corrected attenuance spectra for both spectral forms of phytochrome in a mature leaf were calculated. Optical masking by chlorophyll together with the detour effect (optical path lengthening effect) due to multiple light scattering led to large changes in both the Qy band shape and wavelength position and the effective intensity of the weak vibrational bands increases. The Pfr/Pr oscillator-strength-ratio between 400-750 nm (0.93 in vitro), becomes 1.63 in a leaf. Thus the dominant absorption form is Pfr. These two values permit calculation of the phytochrome photoequilibrium under conditions of "daylight" illumination both in vitro and in folia. These values are 0.6 and 0.38 respectively. Previous literature estimates for the situation in vitro, based on the 660/730 nm absorption ratio, yielded values close to 0.6. It is demonstrated that this large decrease in the phytochrome photoequilibrium in a leaf has the effect of translating this parameter to a position on the dose (red/far-red light ratio)-response (Pfr/Ptot) plot towards greater sensitivity to changes in the environmental red/far-red ratio. The increased sensitivity factor is almost five-fold for the "daylight" environment and is even greater for the various "shade-light" environments. The approximate time taken to attain photoequilibrium (1/e lifetime) has also been calculated for phytochrome in a leaf in different light environments. For the "daylight" environment the photoequilibration time is approximately 5 s, which increases into the 20-80 s interval under different degrees of "shade light". Thus, despite the strong optical masking by chlorophyll in a mature leaf, the phytochrome photoequilibrium is attained quite rapidly on a physiological time scale.  相似文献   

15.
Chen  Meijie  He  Yurong  Ye  Qin  Zhu  Jiaqi 《Plasmonics (Norwell, Mass.)》2019,14(6):1357-1364

In this study, we present a high-performance tunable plasmonic absorber based on metal-insulator-metal nanostructures. High absorption is supported over a wide range of wavelengths, which is retained well at a very wide range of incident angles too. The coupling process occurs with high absorption efficiency of ∼ 99% by tuning the thickness of the dielectric layer. In addition, a complex trapezoidal nanostructure based on simple metal-insulator-metal structures by stacking different widths of Cu strip-nanostructures in the vertical direction has been put forward to enhance light absorption based on selective absorption. A trapezoidal sample has been designed with a solar absorption as high as 95% at wavelengths ranging from 300 nm to 2000 nm for different operating temperatures. Furthermore, the optical absorber has a very simple geometric structure and is easy to integrate into complex photonic devices. Perfect absorption and easy fabrication of the metal-insulator-metal structure make it an attractive device in numerous photonic applications.

  相似文献   

16.
Nanosecond absorption dynamics at approximately 685 nm after excitation of photosystem I (PS I) from Synechocystis sp. PCC 6803 is consistent with electrochromic shift of absorption bands of the Chl a pigments in the vicinity of the secondary electron acceptor A(1). Based on experimental optical data and structure-based simulations, the effective local dielectric constant has been estimated to be between 3 and 20, which suggests that electron transfer in PS I is accompanied by considerable protein relaxation. Similar effective dielectric constant values have been previously observed for the bacterial photosynthetic reaction center and indicate that protein reorganization leading to effective charge screening may be a necessary structural property of proteins that facilitate the charge transfer function. The data presented here also argue against attributing redmost absorption in PS I to closely spaced antenna chlorophylls (Chls) A38 and A39, and suggest that optical transitions of these Chls, along with that of connecting chlorophyll (A40) lie in the range 680-695 nm.  相似文献   

17.
A study of the absorption and fluorescence characteristics of the D1/D2/cytb-559 reaction centre complex of Photosystem II has been carried out by gaussian decomposition of absorption spectra both at room temperature and 72 K and of the room temperature fluorescence spectrum. A five component fit was found in which the absorption and fluorescence sub-bands could be connected by the Stepanov relation. The photobleaching and light-activated degradation in the dark of long wavelength pigments permitted a further characterisation of the absorption bands. The absorption (fluorescence) maxima of the five bands at room temperature are 660 nm (670 nm), 669 nm (675 nm), 675 nm (681 nm), 680 nm (683 nm), 681 nm (689 nm). A novel feature of this analysis is the presence of two approximately isoenergetic absorption bands near 680 nm at room temperature. The narrower one (FWHM=12.5 nm) is attributed to pheophytin while the broader band (FWHM=23 nm) is thought to be P680. The P680 band width is discussed in terms of homogeneous and site inhomogeous band broadening. The P680 fluorescence has a large Stokes shift (9 nm) and most fluorescence in the 690–700 nm range is associated with this chromophore.The three accessory pigment bands are broad (FWHM=17–24 nm) and the 660 nm gaussian is largely temperature insensitive thus indicating significant site inhomogeneous broadening.The very slight narrowing of the D1/D2/cytb-559 Qy absorption at crytogenic temperatures is discussed in terms of the coarse spectral inhomogeneity associated with the spectral forms and the apparently large site inhomogeneous broadening of short wavelength accessory pigments.  相似文献   

18.
Some spectral properties of human thyroalbumin have been studied. Ultra-violet absorption of the aqueous solution of this protein has two maxima: at the wavelengths of 276 and 296--298 nm. Under the excitation by a monochromatic light with the wavelength of 280 nm the thyroalbumin has the fluorescence spectrum with the maximum at 430 nm and the quantum yeild of fluorescence about 5,4%. It has been established that thyroalbumin fluorescence consists of two components with the maxima at 385 and 450 nm. Moreover the "sortwave" component is principally attributed for by the presence do iodoamino acids.  相似文献   

19.
The optical scattering coefficient of a dilute, well-solubilized eumelanin solution has been accurately measured as a function of incident wavelength, and found to contribute <6% of the total optical attenuation between 210 and 325 nm. At longer wavelengths (325-800 nm), the scattering was less than the minimum sensitivity of our instrument. This indicates that ultraviolet and visible optical density spectra can be interpreted as true absorption with a high degree of confidence. The scattering coefficient versus wavelength was found to be consistent with Rayleigh theory for a particle radius of 38 +/- 1 nm. Our results shed important light on the role of melanins as photoprotectants.  相似文献   

20.
Low-temperature heterogeneous absorption and circular dichroism spectra of the Rb. sphaeroides LH2 complexes are calculated within the framework of the mini-exciton theory and diagonal static random disorder for the pure electronic transitions of the monomeric Bchl molecules. The coupling of Bchl molecules with the surrounding amino acid residues has been shown to change both the exciton distribution between the pigment molecules in each of the exciton states. The value of the delocalization index depends on the excitation wavelength and varies between 2-6 Bchl molecules. The optical transitions occurring at 780-790 and 820 nm have been found to be strongly mixed so that all Bchl molecules of the LH2 complex predetermine absorption in these spectral regions. On the other hand, absorption at 800 and 850 nm is mainly determined by the cycles of 9 and 18 Bchl molecules, respectively. Thus, the light energy absorbed by the B800 molecules at 800 nm is transferred to the B850 molecules by the interlevel exciton relaxation processes due to the population of the heavily mixed 820-nm exciton levels. The width of the heterogeneous absorption band for the cyclic monomeric aggregate has been shown to decrease as compared with the monomeric absorption band by square root(Ndel) time, where Ndel is the mean number of pigments over which the exciton is delocalized within the excited absorption band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号