首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seedlings play an important role in the processes of plant community succession. We compared seedling (dbh < 1 cm) species composition and diversity over a chronosequence (18‐, 30‐, 60‐year‐old second growth and old growth forest) after shifting cultivation in a tropical lowland rain forest area on Hainan Island, China. Seedling diversity reached a maximum in the 60‐year‐old second growth forest, which is consistent with the intermediate disturbance hypothesis. With the progression of secondary succession, canopy openness (CO), soil organic matter, soil phosphorus content, and tree abundance showed a general decreasing trend; soil water content and tree basal area showed a general trend of increase, while soil pH and other nutrients reached maximum values and tree richness reached a minimum value at intermediate stages of succession. Seedling composition and diversity were significantly affected by soil water, pH, soil nutrient content, and biotic factors in the 18‐year‐old second growth forests; by soil pH, soil nutrient content, and biotic factors in the 30‐year‐old second growth forests; by CO, soil nutrient content and tree abundance in the 60‐year‐old second growth forests; and by CO, soil pH, and soil nutrient content in the old growth forests. At earlier stages of succession, the effect of the proportion of old growth forest in the surrounding landscape on seedling diversity was greater than that of land‐use history, but the importance of these drivers was reversed at later stages of succession.  相似文献   

2.
Question: Are contemporary herb and tree patterns explained by historic land use practices? If so, are observed vegetation patterns associated with life‐history characteristics, soil properties, or other environmental variables? Location: Southeastern Ohio, USA. Methods: Using archival records, currently forested sites were identified with distinct land use histories: cultivated, pasture (but not plowed), and reference sites which appear to have never been cleared. Trees were recorded by size and species on twenty 20 m × 20 m plots; percent cover was estimated for each herb species in nested 10 m × 10 m plots. Environmental characteristics were noted, and soil samples analysed for nutrient availability and organic matter. Nonmetric multidimensional scaling ordination was performed separately on both tree and herb datasets to graphically characterize community composition among plots. Life‐history traits were investigated to explain observed compositional differences. Results: Vegetation patterns were explained by current environmental gradients, especially by land‐use history. Cultivated and pasture sites had similar tree composition, distinct from reference sites. Herb composition of pasture and reference sites was similar and distinct from cultivated sites, suggesting the ‘tenacity’ of some forest herbs on formerly cleared sites. Tilling removes rhizomatous species, and disfavors species with unassisted dispersal. These life‐history traits were underrepresented on cultivated sites, although ant‐dispersed species were not. Conclusions: Historic land‐use practices accounted for as much variation in species composition as environmental gradients. Furthermore, trees and herbs responded differently to past land‐use practices. Life‐history traits of individual species interact with the nature of disturbance to influence community composition.  相似文献   

3.
Based on the high diversity of Brazilian fauna and flora, edaphoclimatic conditions in the Cerrado of Minas Gerais, and the situation of utilization of EPNs in Brazil, a survey was conducted in order to relate the presence of these organisms with the physical and chemical attributes of the soil, combined with precipitation. To this end, soil samples were collected in areas with diversified vegetation types in Monte Carmelo, MG, at Juliana Farm. The samples were obtained every 15 days for 6 months. From each spot, soil samples (about 500 g) were collected for soil moisture characterization, nematode isolation and determination of pH, organic matter, potassium (K), calcium (Ca), magnesium (Mg), phosphorus (P), potential acidity (H + Al) and precipitation data (mm). Three populations of entomopathogenic nematodes of the Heterorhabditis amazonensis species were isolated in Cerrado stricto sensu and Gallery forest areas. The occurrence H. amazonensis could not be considered restricted to specific soil condition, as organic matter, humidity, pH, Ca, K, Mg and H + Al, especially considering the organic matter and K values, which had variable levels between the places of collection. The p values of the positive soil samples were at a lower level than the mean of the Gallery forest and Cerrado, and at the same level as maize and pasture area. The soil moisture in the Cerrado area increased with the higher values of precipitation; however, in the Gallery forest area this association was not observed. Also, the nematodes were isolated when the temperature began to decrease.  相似文献   

4.
An ecological functional assessment (EFA) was used on 10 southwest Costa Rica sites representing a chronosequence of formerly pastured lands to undisturbed tropical wet forest. Ecological functional assessment is a tool designed to assess wetland functions in the United States that was adapted to upland forests. Models to indicate characteristic soil hydrologic features and soil structure and aboveground spatial structure of habitat were used to examine the degree to which selected sites within the chronosequence approach the undisturbed condition of the natural forest. An index of the functional model for the maintenance of characteristic soil hydrologic features (such as infiltration, bulk density, etc.) showed that the 20‐year‐old secondary forest was at approximately 60% of the condition of the undisturbed sites, whereas active pasture was evaluated at approximately 20% of the reference undisturbed forest; 4‐ and 10‐year‐old sites were intermediate. The spatial structure of habitat model showed that 20‐year‐old secondary forest was approximately 50% of reference forest, whereas active pasture was approximately 10% of the condition of undisturbed forest; 4‐year‐old sites were evaluated at approximately 20% and 10‐year‐old sites at approximately 60% of the reference state. Overall the functional assessment process indicated that degraded tropical wet forest sites have recovered almost 60% of their functional qualities 10 years following pasture abandonment. These results indicate that EFA can be a useful technique for monitoring restoration programs in the tropics.  相似文献   

5.
Land use and land cover changes in the Brazilian Amazon region have major implications for regional and even global carbon cycling. We analyzed the effects of the predominant land use change, conversion of tropical forest to pasture, on total soil C and N, using the Century ecosystem model and data collected from the Nova Vida ranch, Western Brazilian Amazon. We estimated equilibrium organic matter levels, plant productivity and residue carbon inputs under native forest conditions, then simulated deforestation following the slash and burn procedure. Soil organic matter dynamics were simulated for pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911. Using input data from the Nova Vida ranch, the Century model predicted that forest clearance and conversion to pasture would cause an initial decline in soil C and N stocks, followed by a slow rise to levels exceeding those under native forest. Simulated soil total C and N levels (2500 g C m?2 and 245 g N m?2 in the 0–20 cm layer) prior to conversion to pasture were close to those measured in the native forest. Simulated above‐ and below‐ground biomass for the forest and pasture were comparable with literature values from this region. The model predicted the long‐term changes in soil C and N under pasture inferred from the pasture chronosequence, but there was considerable variation in soil C stocks for pastures <20 years in age. Differences in soil texture between pastures were relatively small and could not account for much of the variability between different pastures of similar ages, in either the measured or simulated data. It is likely that much of the variability in C stocks between pastures of similar ages is related to initial C stocks immediately following deforestation and that this was the largest source of variability in the chronosequence. Internal C cycling processes in Century were evaluated using measurements of microbial biomass and soil δ13C. The relative magnitude and long‐term trend in microbial biomass simulated by the model were consistent with measurements. The close fit of simulated to measured values of δ13C over time suggests that the relative loss of forest‐derived C and its replacement by pasture‐derived C was accurately predicted by the model. After 80 years, almost 90% of the organic matter in the top 20 cm was pasture derived. While our analysis represents a single ‘case study’ of pasture conversion, our results suggest that modeling studies in these pasture systems can help to evaluate the magnitude of impacts on C and N cycling, and determine the effect of management strategies on pasture sustainability.  相似文献   

6.
After converting cropland to forest, carbon Is sequestered in the aggradlng blomass of the new forests, but the question remains, to what extent will the former arable soil contribute as a sink for CO2? Quantifying changes In soil carbon Is an Important consideration In the large-scale conversion of cropland to forest. Extensive field studies were undertaken to Identify a number of suitable sites for comparison of soil properties under pasture and forest. The present paper describes results from a study of the effects of first rotation larch on soil carbon In seven stands In an afforestation chronosequence compared with adjacent Korean pine, pasture, and cropland. An adjacent 250-year-old natural forest was Included to give Information on the possible long-term changes In soil carbon In northeast China In 2004. Soil carbon Initially decreased during the first 12 yr before a gradual recovery and accumulation of soil carbon occurred. The Initial (0-12 yr) decrease In soil carbon was an average 1.2% per year among case studies, whereas the Increase In soil carbon (12-33 yr) was 1.90% per year. Together with the carbon sequestration of forest floors, this led to total soil carbon stores of approximately 101.83 Mg/hm^2 over the 33-year chronosequence. Within the relatively short time span, carbon sequestration occurred mainly In tree blomees, whereas soil carbon stores were clearly higher In the 250-year-old plantation (184 Mg/hm^2). The ongoing redistribution of mineral soil carbon In the young stands and the higher soil carbon contents In the 250-year-old afforested stand suggest that nutrient-rich afforestation soils may become greater sinks for carbon (C) In the long term.  相似文献   

7.
Post‐mining restoration sites often develop novel ecosystems as soil conditions are completely new and ecosystem assemblage can be spontaneous even on afforested sites. This study presents results from long‐term monitoring and evaluation of an afforested oil‐shale quarry in Estonia. The study is based on chronosequence data of soil and vegetation and comparisons are made to similar forest site‐types used in forest management in Estonia. After site reclamation, soil development lowered pH and increased N, K, and organic C content in soil to levels similar to the common Hepatica forest site‐type but P, total C, and pH were more similar to the Calamagrostis forest site‐type. Vegetation of the restoration area differed from that on common forest sites; forest stand development was similar to the Hepatica forest‐type. A variety of species were present that are representive of dry and wet sites, as well as infertile and fertile sites. It appears that novel ecosystems may be developing on post‐mining reclaimed land in Northeast Estonia and may require adaptations to typical forest management regimes that have been based on site‐types. Monitoring and evaluation gives an opportunity to plan further management activities on these areas.  相似文献   

8.
Khomutova  T. E.  Shirshova  L. T.  Tinz  S.  Rolland  W.  Richter  J. 《Plant and Soil》2000,219(1-2):13-19
The conversion of natural forests into cultivated lands causes changes of the carbon cycle, which are of particular importance for fragile landscapes. We examined the mobilization of organic carbon in undisturbed soil monoliths of a deciduous forest, a pine plantation, and a pasture under constant temperature (20°C) and moisture via a leaching experiment. Soil percolation was performed with synthetic rainfall solution (pH 5) for a period of 20 weeks. The leachates of the first 12 weeks were analyzed for the pH, DOC content, light absorbance at 260 and 330 nm. At the end of the experiment soil pH, total carbon, C:N ratio, content of fractions of humic substances were examined. After 20 weeks of the leaching experiment the decrease of soil total Corg reached 29, 23, and 50% in soil monoliths of deciduous forest, pasture, and coniferous forest, respectively. The amounts of DOC removed constituted 6.4, 3.8, and 6.2% of initial soil Corg, respectively. Cumulative values of DOC production decreased in the sequence coniferous forest > deciduous forest > pasture. UV-Vis absorptivities of DOC were similar in both forests and differed from those in pasture. UV-Vis characteristics showed that DOC composition changed during the experiment. The intensive soil percolation caused alterations of the properties of soil organic matter, in particular a change of fraction composition of humic substances occurred.  相似文献   

9.
We examined the effects of the conversion of tropical forest to pasture on soil organic matter (SOM) origin and quality along a chronosequence of sites, including a primary forest and six pastures. Bulk soil samples received a physical size-fractionation treatment to assess the contribution of each compartment to total SOM pool. Besides a general increase in total C and N stocks along the chronosequence, we observed a reduction of the relative contribution of the coarser fractions to total soil C content, and an increased concentration in the finer fractions. The origin of the C in each size fraction was established from measurements of13C abundance. After 80 years about 93% of the C in the least humified fraction of the top 10 cm of soil was of pasture origin, while in the most humified it was 82%. Chemical analyses indicated that the fine silt and coarse clay fractions contained the most refractory carbon.  相似文献   

10.
Brigalow (Acacia harpophylla)–Dawson gum (Eucalyptus cambageana) open forests are predominantly supported by solodic soils in central Queensland. This report describes relations between some physical, chemical and morphological properties of surface soils (0–0.10 m) within a virgin brigalow–Dawson gum forest. Soil property gradients were found to radiate horizontally from tree-dominated to non-vegetated areas, indicative of a vegetation-induction process. These reflect the importance of litterfall organic matter in determining soil fertility and soil physical conditions at this site. The decomposition of litterfall is probably responsible for significant increases in soil organic carbon (C), total nitrogen (N) and total sulphur (S) concentrations with increasing vegetation canopy cover. The composition of soil organic matter appears constant across the study area, as similar soil C:N:S ratios were recorded across all vegetation canopy classes. Soil salinity, total phosphorus, mineral nitrogen, cation exchange capacity, exchangeable calcium and exchangeable potassium levels also increased with increasing vegetation canopy cover. Surface soil physical properties were also related to vegetation canopy cover. Bulk density and the < 20 μm dispersion ratio decreased while soil micro-relief and A hor?izon depth increased with increasing vegetation canopy cover. Organic C, through inverse relations with bulk density and the < 20 μm dispersion ratio, appears to enhance soil porosity and aggregate stability, indicating the role of organic matter in the stabilization of larger virgin soil aggregates. The close association between virgin forest and surface soil fertility is seen to have implications for changes in land-use, with a decline in nutrient availability, soil aggregate stability and productivity following forest clearing.  相似文献   

11.
Over the past decades, the tropical mountain rainforest of southern Ecuador has been threatened by conversion to cattle pastures. Frequently, these pastures are invaded by bracken fern and abandoned when bracken becomes dominant. Changes in land-use (forest–pasture–abandoned pasture) can affect soil microorganisms and their physiological responses with respect to soil carbon and nutrient cycling. In situ investigations on litter decomposition and soil respiration as well as biogeochemical characterization of the soil were carried out to identify the driving factors behind. The conversion of forest to pasture induced a pronounced increase in CO2–C effluxes to 12.2 Mg ha?1 a?1 which did not decrease after abandonment. Soil microbial activity and biomass showed a different pattern with lowest values at forest and abandoned pasture sites. With 3445 mg kg?1 (0–5 cm) microbial biomass carbon (MBC by CFE-method), the active pasture had a more than three times higher value than forest and abandoned pasture, which was among the highest in tropical pasture soils. A shift in the microbial community structure (phospholipid fatty acid, PLFA) was also induced by the establishment of pasture land; the relative abundance of fungi and Gram-negative bacteria increased. PLFA fingerprints of the forest organic layer were more similar to pasture than to forest mineral soil. Chemical properties (pH value, exchangeable cations) were the main factors influencing the respective microbial structure. Bracken-invasion resulted in a decrease in the quantity and quality of above- and belowground biomass. The lower organic substance and nutrient availability induced a significant decline in microbial biomass and activity. After pasture abandonment, these differences in soil microbial function were not accompanied by pronounced shifts in the community structure and in soil pH as was shown for the conversion to pasture. A disconnection between microbial structure and function was identified. Similar soil CO2–C effluxes between active and abandoned pasture sites might be explained by an underestimation of the effluxes from the active pasture site. All measurements were carried out between grass tussocks where fine-root density was about 2.6 times lower than below tussocks. Thus, lower proportions of root respiration were expected than below tussocks. Overall, soil microorganisms responded differently to changes in land-use from forest to pasture and from pasture to abandoned pasture resulting in pronounced changes of carbon and nutrient cycling and hence of ecosystem functioning.  相似文献   

12.
The effects of soil disturbance on the nematode community were assessed at 30 sites on the outer coastal plain of Mississippi, representing four ages since soil disturbance plus a control group of six undisturbed sites. Thirty-five taxa were encountered, dominated in abundance and taxonomic richness by plant and bacterial feeders. Nematodes were more abundant and more taxonomically rich in sites with a low slope and deep litter cover, distant from trees. Plant feeders were more numerous at sites with a dense herb cover, suggesting limitation by food availability. When sites were arranged as a chronosequence, herb cover, litter depth, soil organic matter, soil moisture, and tree canopy cover increased through time consistent with succession to forest. The abundance of most trophic groups decreased in the 10 to 20 years following disturbance and increased thereafter, a pattern repeated in taxonomic richness of plant and bacterial feeders. Fifty years after disturbance, nematode abundance had not returned to levels observed in control sites. These results suggest that nematode succession following soil disturbance is a gradual process regulated by establishment of aboveground vegetation. There was no evidence of dispersal limitation or facilitation by colonist nematode species.  相似文献   

13.
As oil palm has been considered one of the most favorable oilseeds for biodiesel production in Brazil, it is important to understand how cultivation of this perennial crop will affect the dynamics of soil organic carbon (SOC) in the long term. The aim of this study was to evaluate the changes in soil C stocks after the conversion of forest and pasture into oil palm production in the Amazon Region. Soil samples were collected in March 2008 and September 2009 in five areas: native forest (NARF), pasture cultivated for 55 years (PAST), and oil palm cultivated for 4 (OP‐4), 8 (OP‐8) and 25 years (OP‐25), respectively. Soils were sampled in March 2008 to evaluate the spatial variability of SOC and nitrogen (N) contents in relation to the spacing between trees. In September 2009, soils were sampled to evaluate the soil C stocks in the avenues (inter rows) and frond piles, and to compare the total C stocks with natural forest and pasture system. Soil C contents were 22–38% higher in the area nearest the oil palm base (0.6 m) than the average across the inter row (0–4.5 m from the tree), indicating that the increment in soil organic matter (SOM) must have been largely derived from root material. The soil C stocks under palm frond piles were 9–26% higher than in the inter rows, due to inputs of SOM by pruned palm fronds. The soil carbon stocks in oil palm areas, after adjustments for differences in bulk density and clay content across treatments, were 35–46% lower than pasture soil C stocks, but were 0–18% higher than the native forest soil C content. The results found here may be used to improve the life cycle assessment of biodiesel derived from palm oil.  相似文献   

14.
东灵山油松林和辽东栎林下土壤资源和光资源的空间特征   总被引:8,自引:1,他引:7  
刘建  何维明  房志玲 《生态学报》2005,25(11):2954-2960
油松林和辽东栎林是中国暖温带具有代表性的森林植被林型。为揭示油松林和辽东栎林下土壤资源和光资源的空间特征,在东灵山相应植被下各设置一条100 m样线,利用HH 2高精度土壤水分仪(美国生产)沿样线每隔1 m测定土壤水分含量,并分析相应点土壤有机质含量;利用H em iV iew林冠分析系统每隔10 m测定森林的叶面积指数、林冠覆盖度、林冠均匀性、光资源状况;采用半方差方法分析土壤水分和有机质的空间异质性。(1)油松林与辽东栎林的叶面积指数、林冠覆盖度、辐射因子和林下光资源没有显著差异,但油松林林冠均匀性显著小于辽东栎林。(2)辽东栎林的间接辐射因子与林下总辐射呈显著正相关(R2=0.466,p=0.030),而油松林的间接辐射因子与总辐射无显著相关(R2=0.203,p=0.191)。(3)光资源的数量及其组成在油松林和辽东栎林下的变化非常相似,但光资源的组成与林冠特征的关系在两种森林间存在差异。(4)油松林下土壤水分和土壤有机质含量低于辽东栎林,但异质性恰好相反;油松林下这两种因子不具有显著的空间自相关性,而辽东栎林下具有显著的空间自相关性。(5)自然条件下,10 m尺度的林下辐射强弱与土壤水分之间并不存在显著负相关。  相似文献   

15.
Regional and global environmental modeling depend on soil data for input layers or parameterization. However, randomly located observations, such as provided by agricultural databases, are not always representative of trends identified in field studies conducted under carefully controlled conditions. Many researchers lament the paucity of soil profile data in Amazônia, and suggest that given more data, regional studies would more closely approximate field research results. We assess the ability of a well‐populated regional database collected in the southwestern Brazilian Amazon to reproduce expected biogeochemical trends associated with forest clearing and pasture establishment, and explore the ramifications of relying on independently collected soil data for regional modeling. The Soteron database includes analyses of approximately 3000 soil cores collected for zoning purposes in the state of Rondônia. Pasture ages were determined from a time series of Landsat TM images classified using spectral mixture analysis. Although regional averages showed some of the temporal trends expected based on field study results (e.g. increase in pH following forest clearing), the trends were not statistically significant. Stratification by precipitation and other variables showed pasture age to be important but difficult to separate from other potential controls on soil conditions, mainly because of the reduced number of observations in each stratum. Using multiple regression, which permitted the inclusion of all potential explanatory factors and interactions, pasture age was shown to be a statistically significant predictor of soil conditions. However, the expected temporal sequence of changes documented by field chronosequence studies could not be reproduced. Properties dominated by large‐scale environmental gradients – pH, sum of base cations, aluminum saturation, and exchangeable calcium – were moderately well modeled, while those more strongly linked to dynamic spatially heterogeneous processes such as biological cycling and land management, particularly organic carbon and nitrogen, could not be modeled. Management‐induced soil changes occur at too fine a scale to be captured by most maps, and the relative changes are small compared with spatial heterogeneity caused by controls on soil development over large regions. Therefore, regardless of whether chronosequence‐derived models of biogeochemical response to land‐cover change are correct, the results of these models will not lead to spatially explicit maps that can be validated by regional reconnaissance, nor will they facilitate realistic predictions of the regional biogeochemical consequences of land‐cover change. The change from local to regional scale entails a change in the relative importance of processes controlling soil property behavior.  相似文献   

16.
The structure and composition of the soil micro‐arthropod communities of five postmining rehabilitating sites (between 1 and 24 years after rehabilitation) are compared with that of an undisturbed dune forest benchmark. We extracted soil micro‐arthropods (Acari and insects) with a modified Berlese–Tullgren funnel and used soil carbon, calcium, potassium, magnesium, nitrogen, sodium, phosphorous and acidity (pH) as explanatory variables of micro‐arthropod community composition. Acari accounted for the majority of all the micro‐arthropods (between 65 and 97% of the sample) at the different sites. Density, richness, diversity and composition showed significant differences between the unmined benchmark site and the rehabilitating sites for both insects and Acari, with weak habitat‐age related patterns. Canonical Correspondence Analysis suggests that differences between samples from regenerating sites and those from the benchmark sites slowly decrease with increasing regeneration age, but that community composition is only weakly related to soil properties. Our results suggest that coastal dune forest rehabilitation could give rise to the regeneration of micro‐arthropod assemblages, but it may take a long time. Therefore, potential limiting factors for community regeneration need to be identified to improve the chances for successful restoration.  相似文献   

17.
The vegetation and environmental conditions of south Swedish hornbeam Carpinus betulus forests are described with data from 35 permanent sample plots The main floristic gradient of the ground vegetation is closely related to acid-base properties of the top soil base saturation, pH and organic matter content Other floristic differences are related to tree canopy cover and the distance of the sample plots to the Baltic coast Species richness of herbaceous plants typical of forests increases with soil pH, The number of other herbaceous species, occurring in both forests and open habitats, and of woody species is not related to pH Comparisons of vegetation data from 1983 and 1993 show relatively small compositional differences of the herbaceous forest flora The number of other herbaceous species increased considerably m those plots where canopy trees had been cut after 1983 The number of new species in managed plots increases with soil pH Species losses and gains of the herbaceous forest flora between 1983 and 1993 are generally lower as compared with other herbaceous species and woody species However, the ground cover of herbaceous forest species, especially of Oxalis acetosella and Lamium galeobdolon , was considerably lower in 1993 as compared to 1983 in both unmanaged and managed plots Possible explanations for this decrease are current soil acidification and drought during the growing season  相似文献   

18.
The influence of forest stand age in a Picea sitchensis plantation on (1) soil fluxes of three greenhouse gases (GHGs – CO2, CH4 and N2O) and (2) overall net ecosystem global warming potential (GWP), was investigated in a 2‐year study. The objective was to isolate the effect of forest stand age on soil edaphic characteristics (temperature, water table and volumetric moisture) and the consequent influence of these characteristics on the GHG fluxes. Fluxes were measured in a chronosequence in Harwood, England, with sites comprising 30‐ and 20‐year‐old second rotation forest and a site clearfelled (CF) some 18 months before measurement. Adjoining unforested grassland (UN) acted as a control. Comparisons were made between flux data, soil temperature and moisture data and, at the 30‐year‐old and CF sites, eddy covariance data for net ecosystem carbon (C) exchange (NEE). The main findings were: firstly, integrated CO2 efflux was the dominant influence on the GHG budget, contributing 93–94% of the total GHG flux across the chronosequence compared with 6–7% from CH4 and N2O combined. Secondly, there were clear links between the trends in edaphic factors as the forest matured, or after clearfelling, and the emission of GHGs. In the chronosequence sites, annual fluxes of CO2 were lower at the 20‐year‐old (20y) site than at the 30‐year‐old (30y) and CF sites, with soil temperature the dominant control. CH4 efflux was highest at the CF site, with peak flux 491±54.5 μg m−2 h−1 and maximum annual flux 18.0±1.1 kg CH4 ha−1 yr−1. No consistent uptake of CH4 was noted at any site. A linear relationship was found between log CH4 flux and the closeness of the water table to the soil surface across all sites. N2O efflux was highest in the 30y site, reaching 108±38.3 μg N2O‐N m−2 h−1 (171 μg N2O m−2 h−1) in midsummer and a maximum annual flux of 4.7±1.2 kg N2O ha−1 yr−1 in 2001. Automatic chamber data showed a positive exponential relationship between N2O flux and soil temperature at this site. The relationship between N2O emission and soil volumetric moisture indicated an optimum moisture content for N2O flux of 40–50% by volume. The relationship between C : N ratio data and integrated N2O flux was consistent with a pattern previously noted across temperate and boreal forest soils.  相似文献   

19.
Mineral soils from a chronosequence of landslide scars ranging in age from 1 to more than 55 years in a subtropical montane rain forest of eastern Puerto Rico were used to determine the rate at which labile P capital recovers during primary succession. Nine organic and inorganic soil P fractions were measured using the Hedley sequential extraction procedure. Deep soil cores (9 m) from a nearby site were also analyzed to determine the distribution of P fractions below the solum. Litterfall P was measured for two years in the landslide scars to estimate allochthonous litter P inputs, and published precipitation data were used to estimate annual atmospheric inputs of P to the recovering forests. In the upper solum (0–10 cm), organic matter increased with landslide age, as did resin‐Pi, labile P (defined here as resin‐Pi + HCO3‐Pi + HCO3‐Po) and total organic P. Occluded P decreased with increasing landslide age. No significant changes in P concentrations or pools were observed in 10 to 35 or in 35 to 60 cm depth intervals across the chronosequence. Labile soil P increased to approximately two‐thirds of the pre‐disturbance levels in the oldest landslide scar (>55 yr). Thus, plants, their associated microflora/fauna, and P inputs from off‐site substantially altered the distribution of soil P fractions during forest recovery. Across the chronosequence, the increase in labile P accumulated in soil and biomass appeared to be greater than the estimated allochthonous inputs from litter and precipitation, indicating that as the forest developed, some occluded P may have been released for use by soil biota. Resin‐Pi and labile P were correlated with soil organic matter content, suggesting, as in other highly weathered soils, organic matter accumulation and turnover are important in maintaining labile P pools. Primary mineral P (apatite) was scarce, even in deep soil cores.  相似文献   

20.
Woodland restoration is underway globally to counter the negative soil quality and ecological impacts of agricultural expansion and woodland fragmentation, and restore or enhance biodiversity, ecosystem functions and services. However, we lack information about the long‐term effects of woodland restoration on agricultural soils, particularly at temporal scales meaningful to woodland and soil development. This study utilized soil and earthworm sampling across a chronosequence of sites transitioning from “agricultural land” to “secondary woodland” (50–110 years) and “ancient woodland” (>400 years), with the goal of quantifying the effects of woodland restoration on agricultural land, on key soil quality parameters (soil bulk density, pH, carbon and nitrogen stocks, and earthworm abundance, biomass, species richness and diversity). Broad‐leaved woodland restoration led to significantly greater soil organic carbon (SOC) stocks compared to arable land, and young (50–60 years) secondary woodland increased earthworm species and functional diversity compared to both arable and pasture agricultural land. SOC stocks in secondary broad‐leaved woodlands (50–110 years) were comparable to those found in long‐term ancient woodlands (>400 years). Our findings show that broad‐leaved woodland restoration of agricultural land can lead to meaningful soil ecological improvement and gains in SOC within 50–110 years, and provide intel on how restoration activities may be best targeted to maximize soil quality and functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号