首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to investigate the response of Na(+)/K(+)-ATPase of human erythrocytes to green laser irradiation. Effects of green laser light of fluences 9.5-63.3 J.cm(-2) and merocyanine 540-mediated laser light treatment were studied. Isolated erythrocyte membranes (protein concentration of 1 mg/ml) were irradiated by Nd:YAG laser (532 nm, 30 mW) and then incubated in a medium with 2 mM ATP for 30 min. Activity of ATPase was determined colorimetrically by measuring the colored reaction product of liberated inorganic phosphate and malachite green at 640 nm. Contribution of Na(+)/K(+)-ATPase to overall phosphate production was determined using ouabain. A positive effect of green laser light on Na(+)/K(+)-ATPase activity was observed. The dependence of enzymatically liberated inorganic phosphate on light fluence showed a linear correlation (R(2)=0.96, P=0.0005) for all fluences applied (9.5-63.3 J.cm(-2)). On the other hand, MC 540-mediated phototreatment caused a suppression of enzyme activity.  相似文献   

2.
We have purified glutaminase 65-fold from cow brain; the final specific activity is 24 μmol/min/mg. The enzyme is stable between pH 7.5 and 9.0 and has maximal activity at pH 8.8. It requires Pi for activity. The dependence of activity on Pi concentration is sigmoidal; 50 mmPi gives half-maximal velocity at pH 8.8. At 0.2 mPi, pH 8.8, the dependence of activity on glutamine concentration is hyperbolic; the observed KGln was 30 mm. Increasing Pi concentrations increase the apparent Vm and decrease the apparent KGln. NH4+ does not inhibit at concentrations up to 0.1 m. Glutamic acid inhibits competitively with respect to glutamine; at 0.2 mPi pH 8.8, KGln was 30 mm and KGlu was 19 mm. The results are consistent with a model in which NH4+ is released irreversibly from the enzyme-substrate complex and is the first product released. The activity of glutaminase appears to be independent of the nature of the buffer with which it is equilibrated before being assayed.  相似文献   

3.
Na+/K+-ATPase (sodium, potassium adenosine triphosphatase, EC 3.6.3.9) activity has been studied in whole erythrocytes from rats over time of total food deprivation for 1, 3, 5, 7–8, and 10–12 days with free access to water. Changes in Na+/K+-ATPase activity have been found to be phase-specific, i.e., associated with periods of certain metabolism level. After the hunger state and accommodation to endogenous nutrition (phases 0-I), from the 3rd to the 7th–8th day a period of compensated accommodation begins (phase II characterized by a stable euglycemic state, while the level of plateau of protein losses and hormonal stimulation are achieved). The Na+/K+-ATPase activity changes during the phase II were insignificant (p > 0.05), but potassium loss was observed in erythrocytes and blood plasma from the 5th day of starvation onwards. The phase III (the 10th–12th days) is an onset of the terminal period characterized by the lower activities of Na+/K+-ATPase (ouabain-sensitive activity) and Mg2+-ATPase (ouabain-independent activity) and by reduced sodium plasma levels that previously had remained virtually unchanged. There are considered possible causes of the observed decrease in the Na+/K+-ATPase activity during prolonged starvation, such as aging of the circulating erythrocyte population (the absence of reticulocytes and young erythrocytes), depletion of cell energy resources (hypoglycemia and glycopenia), effect of endogenous ouabain, and endotoxemia.  相似文献   

4.
Na+/K+-ATPase (EC 3.6.1.3) is an important membrane-bound enzyme. In this paper, kinetic studies on Na+/K+-ATPase were carried out under mimetic physiological conditions. By using microcalorimeter, a thermokinetic method was employed for the first time. Compared with other methods, it provided accurate measurements of not only thermodynamic data (deltarHm) but also the kinetic data (Km and Vmax). At 310.15K and pH 7.4, the molar reaction enthalpy (deltarHm) was measured as -40.514 +/- 0.9kJmol(-1). The Michaelis constant (Km) was determined to be 0.479 +/- 0.020 mM and consistent with literature data. The reliability of the thermokinetic method was further confirmed by colorimetric studies. Furthermore, a simple and reliable kinetic procedure was presented for ascertaining the true substrate for Na+/K+-ATPase and determining the effect of free ATP. Results showed that the MgATP complex was the real substrate with a Km value of about 0.5mM and free ATP was a competitive inhibitor with a Ki value of 0.253 mM.  相似文献   

5.
The behaviour of sodium transport systems across the cell membrane has been poorly investigated in elderly hypertension. Sodium efflux driven by Na+/K+/Cl-cotransport activity was therefore investigated (using a novel NMR-spectroscopy method) in 5 elderly hypertensive males (mean age 78 +/- 5 years) and 5 normotensive controls (mean age 79 +/- 3 years). In order to exclude any change in cotransport activity secondary to metabolic abnormalities, both patients and controls were non-obese and had normal glucose and lipid metabolisms. The Na+/K+/Cl-cotransport evaluation was performed after three months of pharmacological wash-out, under a diet containing 120 mEq of Na+/day. The resulting data showed that Na+ efflux due to outward Na+/K+/Cl-cotransport was higher in hypertensive group than in the normotensive one (0.50 +/- 0.10 mmol Na+/l cells/hr. vs 0.33 +/- 0.03 mmol Na+/l cells/hr., respectively, p < 0.05). Intracellular Na+ content was similar in both groups. At variance with previous data from the literature, our findings indicate that the Na+/K+/Cl-cotransport activity is elevated in elderly hypertensives.  相似文献   

6.
Isozymes of the Na+/K+-ATPase   总被引:51,自引:0,他引:51  
  相似文献   

7.
Captopril has been reported to inhibit ouabain-sensitive Na+/K+-ATPase activity in erythrocyte membrane fragments. We investigated the effect of captopril on two physiological measures of Na+/K+ pump activity: 22Na+ efflux from human erythrocytes and K+-induced relaxation of rat tail artery segments. Captopril inhibited 22Na+ efflux from erythrocytes in a concentration-dependent fashion, with 50% inhibition of total 22Na+ efflux at a concentration of 4.8 X 10(-3) M. The inhibition produced by captopril (5 X 10(-3) M) and ouabain (10(-4) M) was not greater than that produced by ouabain alone (65.3 vs. 66.9%, respectively), and captopril inhibited 50% of ouabain-sensitive 22Na+ efflux at a concentration of 2.0 X 10(-3) M. Inhibition by captopril of ouabain-sensitive 22Na efflux was not explained by changes in intracellular sodium concentration, inhibition of angiotensin-converting enzyme or a sulfhydryl effect. Utilizing rat tail arteries pre-contracted with norepinephrine (NE) or serotonin (5HT) in K+-free solutions, we demonstrated dose-related inhibition of K+-induced relaxation by captopril (10(-6) to 10(-4) M). Concentrations above 10(-4) M did not significantly inhibit K+-induced relaxation but did decrease contractile responses to NE, although not to 5HT. Inhibition of K+-induced relaxation by captopril was not affected by saralasin, teprotide or indomethacin. We conclude that captopril can inhibit membrane Na+/K+-ATPase in intact red blood cells and vascular smooth muscle cells. The mechanism of pump suppression is uncertain, but inhibition of ATPase should be considered when high concentrations of captopril are employed in physiological studies.  相似文献   

8.
The linear pentadecapeptide gramicidin A forms an ion channel in the lipid bilayer to selectively transport monovalent cations. Nevertheless, we have surprisingly found that gramicidin A directly inhibits mammalian Na(+)/K(+)-ATPase. Gramicidin A inhibited ATP hydrolysis by Na(+)/K(+)-ATPase from porcine cerebral cortex at the IC(50) value of 8.1 microM, while gramicidin S was approximately fivefold less active. The synthetic gramicidin A analog lacking N-terminal formylation and C-terminal ethanolamine exhibited a weaker inhibitory effect on the ATP-hydrolyzing activity of Na(+)/K(+)-ATPase than gramicidin A, indicating that these end modifications are necessary for gramicidin A to inhibit Na(+)/K(+)-ATPase activity. Moreover, Lineweaver-Burk analysis showed that gramicidin A exhibits a mixed type of inhibition. In addition to the most well-studied ionophore activity, our present study has disclosed a novel biological function of gramicidin A as a direct inhibitor of mammalian Na(+)/K(+)-ATPase activity.  相似文献   

9.
A method is described for studying the coupling ratio of the Na+/K+ pump, i.e., the ratio of pump-mediated fluxes of Na+ and K+, in a reconstituted system. The method is based on the comparison of the pump-generated current with the rate of K+ transport. Na+/K+-ATPase from kidney is incorporated into the membrane of artificial lipid vesicles; ATPase molecules with outward-oriented ATP-binding site are activated by addition of ATP to the medium. Using oxonol VI as a potential-sensitive dye for measuring transmembrane voltage, the pump current is determined from the change of voltage with time t. In a second set of experiments, the membrane is made selectively K+-permeable by addition of valinomycin, so that the membrane voltage U is equal to the Nernst potential of K+. Under this condition, dU/dt reflects the change of intravesicular K+ concentration and thus the flux of K+. Values of the Na+/K+ coupling ratio determined in this way are close to 1.5 in the experimental range (10-75 mM) of extravesicular (cytoplasmic) Na+ concentrations.  相似文献   

10.
Two K+ ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+ ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+ ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+ ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied.  相似文献   

11.
Hilgenberg LG  Su H  Gu H  O'Dowd DK  Smith MA 《Cell》2006,125(2):359-369
Agrin, through its interaction with the receptor tyrosine kinase MuSK, mediates accumulation of acetylcholine receptors (AChR) at the developing neuromuscular junction. Agrin has also been implicated in several functions in brain. However, the mechanism by which agrin exerts its effects in neural tissue is unknown. Here we present biochemical evidence that agrin binds to the alpha3 subunit of the Na+/K+-ATPase (NKA) in CNS neurons. Colocalization with agrin binding sites at synapses supports the hypothesis that the alpha3NKA is a neuronal agrin receptor. Agrin inhibition of alpha3NKA activity results in membrane depolarization and increased action potential frequency in cortical neurons in culture and acute slice. An agrin fragment that acts as a competitive antagonist depresses action potential frequency, showing that endogenous agrin regulates native alpha3NKA function. These data demonstrate that, through its interaction with the alpha3NKA, agrin regulates activity-dependent processes in neurons, providing a molecular framework for agrin action in the CNS.  相似文献   

12.
The formation of a vertebrate skeletal muscle fiber involves a series of sequential and interdependent events that occurs during embryogenesis. One of these events is myoblast fusion which has been widely studied, yet not completely understood. It was previously shown that during myoblast fusion there is an increase in the expression of Na+/K+-ATPase. This fact prompted us to search for a role of the enzyme during chick in vitro skeletal myogenesis. Chick myogenic cells were treated with the Na+/K+-ATPase inhibitor ouabain in four different concentrations (0.01-10 μM) and analyzed. Our results show that 0.01, 0.1 and 1 μM ouabain did not induce changes in cell viability, whereas 10 μM induced a 45% decrease. We also observed a reduction in the number and thickness of multinucleated myotubes and a decrease in the number of myoblasts after 10 μM ouabain treatment. We tested the involvement of MEK-ERK and p38 signaling pathways in the ouabain-induced effects during myogenesis, since both pathways have been associated with Na+/K+-ATPase. The MEK-ERK inhibitor U0126 alone did not alter cell viability and did not change ouabain effect. The p38 inhibitor SB202190 alone or together with 10 μM ouabain did not alter cell viability. Our results show that the 10 μM ouabain effects in myofiber formation do not involve the MEK-ERK or the p38 signaling pathways, and therefore are probably related to the pump activity function of the Na+/K+-ATPase.  相似文献   

13.
Na+/K+-ATPase functions as both an ion pump and a signal transducer. Cardiac glycosides partially inhibit Na+/K+-ATPase, causing activation of multiple interrelated growth pathways via the Na+/K+-ATPase/c-Src/epidermal growth factor receptor complex. Such pathways include Ras/MEK/ERK and Ral/RalGDS cascades, which can lead to cardiac hypertrophy. In search of novel Ral-GTPase binding proteins, we used RalB as the bait to screen a human testes cDNA expression library using the yeast 2-hybrid system. The results demonstrated that 1 of the RalB interacting clones represented the C-terminal region of the beta1 subunit of Na+/K+-ATPase. Further analysis using the yeast 2-hybrid system and full-length beta1 subunit of Na+/K+-ATPase confirmed the interaction with RalA and RalB. In vitro binding and pull-down assays demonstrated that the beta1 subunit of Na+/K+-ATPase interacts directly with RalA and RalB. Ral-GTP pull-down assays demonstrated that short-term ouabain treatment of A7r5 cells, a rat aorta smooth muscle cell line, caused activation of Ral GTPase. Maximal activation was observed 10 min after ouabain treatment. Ouabain-mediated Ral activation was inhibited upon the stimulation of Na+/K+-ATPase activity by Ang II. We propose that Ral GTPase is involved in the signal transducing function of Na+/K+-ATPase and provides a possible molecular mechanism connecting Ral to cardiac hypertrophy during diseased conditions.  相似文献   

14.
Experiments with the reconstituted (Na+ + K+)-ATPase show that besides the ATP-dependent cytoplasmic Na(+)-K+ competition for Na+ activation there is a high affinity inhibitory effect of cytoplasmic K+. In contrast to the high affinity K+ inhibition seen with the unsided preparation at a low ATP especially at a low temperature, the high affinity inhibition by cytoplasmic K+ does not disappear when the ATP concentration an-or the temperature is increased. The high affinity inhibition by cytoplasmic K+ is also observed with Cs+, Li+ or K+ as the extracellular cation, but the fractional inhibition is much less pronounced than with Na+ as the extracellular cation. The results suggest that either there are two populations of enzyme, one with the normal ATP dependent cytoplasmic Na(+)-K+ competition, and another which due to the preparative procedure has lost this ATP sensitivity. Or that the normal enzyme has two pathways for the transition from E2-P to E1ATP. One on which the enzyme with the translocated ion binds cytoplasmic K+ with a high affinity but not ATP, and another on which ATP is bound but not K+. A kinetic model which can accommodate this is suggested.  相似文献   

15.
Activated B61.SF.1 and CTLL-2 T lymphocyte clones which are strictly dependent on interleukin-2 (IL-2) for growth were used to study the activation of Na+/K+-ATPase. 50% of [3H]thymidine maximal incorporation was obtained when the extracellular concentration of Na+ or K+ was reduced to 50 or 2 mM, respectively. 'Quiescent' CTL clones stimulated with IL-2 showed an increase of 48-380% in ouabain-sensitive 86Rb uptake. Furthermore, this stimulation was completely inhibited by a monoclonal antibody PC.61 directed at the IL-2 receptor. The activation of the pump was dependent on the dose of IL-2, took place at the same doses of IL-2 that were required to stimulate cell proliferation and was linear for at least 30 min.  相似文献   

16.
Na+/K+-ATPase during diabetes may be regulated by synthesis of its alpha and beta subunits and by changes in membrane fluidity and lipid composition. As these mechanisms were unknown in liver, we studied in rats the effect of streptozotocin-induced diabetes on liver Na+/K+-ATPase. We then evaluated whether fish oil treatment prevented the diabetes-induced changes. Diabetes mellitus induced an increased Na+/K+-ATPase activity and an enhanced expression of the beta1 subunit; there was no change in the amount of the alpha1 and beta3 isoenzymes. Biphasic ouabain inhibition curves were obtained for diabetic groups indicating the presence of low and high affinity sites. No alpha2 and alpha3 isoenzymes could be detected. Diabetes mellitus led to a decrease in membrane fluidity and a change in membrane lipid composition. The diabetes-induced changes are not prevented by fish oil treatment. The results suggest that the increase of Na+/K+-ATPase activity can be associated with the enhanced expression of the beta1 subunit in the diabetic state, but cannot be attributed to changes in membrane fluidity as typically this enzyme will increase in response to an enhancement of membrane fluidity. The presence of a high-affinity site for ouabain (IC50 = 10-7 M) could be explained by the presence of (alphabeta)2 diprotomeric structure of Na+/K+-ATPase or an as yet unknown alpha subunit isoform that may exist in diabetes mellitus. These stimulations might be related, in part, to the modification of fatty acid content during diabetes.  相似文献   

17.
Occlusion of K (+) in the Na (+)/K (+)-ATPase can be achieved under two conditions: during hydrolysis of ATP, in media with Na (+) and Mg (2+), after the K (+)-stimulated dephosphorylation of E2P (physiological route) or spontaneously, after binding of K (+) to the enzyme (direct route). We investigated the sidedness of spontaneous occlusion and deocclusion of Rb (+) in an unsided, purified preparation of Na (+)/K (+)-ATPase. Our studies were based on two propositions: (i) in the absence of ATP, deocclusion of K (+) and its congeners is a sequential process where two ions are released according to a single file mechanism, both in the absence and in the presence of Mg (2+) plus inorganic orthophosphate (Pi), and (ii) in the presence of Mg (2+) plus Pi, exchange of K (+) would take place through sites exposed to the extracellular surface of the membrane. The experiments included a double incubation sequence where one of the two Rb (+) ions was labeled as (86)Rb (+). We found that, when the enzyme is in the E2 conformation, the first Rb (+) that entered the enzyme in media without Mg (2+) and Pi was the last to leave after addition of Mg (2+) plus Pi, and vice-versa. This indicates that spontaneous exchange of Rb (+) between E2(Rb 2) and the medium takes place when the transport sites are exposed to the extracellular surface of the membrane. Our results open the question if occlusion and deocclusion via the direct route participates in any significant degree in the transport of K (+) during the ATPase activity.  相似文献   

18.
(1) Ethylenediamine is an inhibitor of Na+- and K+-activated processes of Na+/K+-ATPase, i.e. the overall Na+/K+-ATPase activity, Na+-activated ATPase and K+-activated phosphatase activity, the Na+-activated phosphorylation and the Na+-free (amino-buffer associated) phosphorylation. (2) The I50 values (I50 is the concentration of inhibitor that half-maximally inhibits) increase with the concentration of the activating cations and the half-maximally activating cation concentrations (Km values) increase with the inhibitor concentration. (3) Ethylenediamine is competitive with Na+ in Na+-activated phosphorylation and with the amino-buffer (triallylamine) in Na+-free phosphorylation. Significant, though probably indirect, effects can also be noted on the affinity for Mg2+ and ATP, but these cannot account for the inhibition. (4) Inhibition parallels the dual protonated or positively charged ethylenediamine concentration (charge distance 3.7 A). (5) Direct investigation of interaction with activating cations (Na+, K+, Mg+, triallylamine) has been made via binding studies. All these cations drive ethylenediamine from the enzyme, but K+ and Mg+ with the highest efficiency and specificity. Ethylenediamine binding is ouabain-insensitive, however. (6) Ethylenediamine neither inhibits the transition to the phosphorylation enzyme conformation, nor does it affect the rate of dephosphorylation. Hence, we provisionally conclude that ethylenediamine inhibits the phosphoryl transfer between the ATP binding and phosphorylation site through occupation of cation activation sites, which are 3-4 A apart.  相似文献   

19.
A long period of experimental work has led to the conclusion that Na+/K(+)-ATPase is the enzymatic version of the Na+/K+ pump. This enzymatic system is in charge of various important cell functions. Among them cationic equilibrium and recovering of resting membrane potential in neurons is relevant. A tetrameric ensemble of peptides conform the system known as alpha and beta subunits. The alpha subunit is subdivided in alpha 1, alpha 2 and alpha 3, according to different location and properties. Regulatory factors intrinsic to the Na+/K(+)-ATPase system are: ATP, Na+ and Mg2+ concentrations inside the cell, and K+ outside. The enzyme activity is also regulated by extrinsic factors like some hormones (insulin and thyroxine). Induction of gene expression or post-translational modifications of the preexisting pool of the enzyme are the basic mechanisms of regulation proposed. Other extrinsic factors that seem to regulate the enzyme activity are some neurotransmitters. Among them the most extensively studied are catecholamines, mainly norepinephrine (NE) and lately serotonin (5-HT). The mechanism suggested for NE activation of the enzyme seems to involve specific receptors or a non-specific chelating action related to the catechol group that would relieve the inhibition by divalent cations. Another possibility is that NE removes an endogenous inhibitory factor present in the cytoplasm. The Na+/K(+)-ATPase is activated also by 5-HT. In vivo pharmacological and nutriological manipulations of brain 5-HT are accompanied by parallel responses of Na+/K(+)-ATPase activity. Serotonin agonists do activate the enzyme and antagonists neutralize the activation. In vitro there is a different dose dependent activation, according to the brain region. The mechanism involved seems to implicate a specific receptor system. Serotonin-Na+/K(+)-ATPase interaction in the rat brain is probably of functional relevance because it disappears in amygdaloid kindling. Also it seems to influence the ionic regulation of the pigment transport mechanism in crayfish photoreceptors. In relation to other neurotransmitters, a weak response to histamine was observed with acetylcholine, GABA and glutamic acid, the results were negative.  相似文献   

20.
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μm ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nm) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1- or Na,K-ATPase β2-subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nm PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected with rat NKβ1- or rat NKβ2-subunit alone. However, in HeLa cells expressing rat NKα2/NKβ2, outward current was observed after pump activation by 20 mm K+ and a large membrane conductance increase occurred after 100 nm PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act on Na,K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号