首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated whether arachidonic acid could regulate tissue transglutaminase (tTGase) via intracellular reactive oxygen species (ROS) in NIH3T3 cells. tTGase was identified in NIH3T3 cells by Western blot and confocal microscopy. Arachidonic acid elevated in situ tTGase activity in dose- and time-dependent manners with a maximal level at 1h, and ROS scavengers, N-(2-mercaptopropionyl)glycine and catalase, blocked the tTGase activation by arachidonic acid. The activation of tTGase by arachidonic acid was largely inhibited by transfection of tTGase siRNA. The role of intracellular ROS in the activation of in situ tTGase was supported by the activation of in situ tTGase by exogenous H(2)O(2). Arachidonic acid stimulated the formation of stress fibers in a dose- and time-dependent manner, and the ROS scavengers suppressed the arachidonic acid-induced formation of stress fibers. These results suggested that the activation of in situ tTGase and stress fiber formation by arachidonic acid was mediated by intracellular ROS in NIH3T3 cells.  相似文献   

2.
The stimulation of inositol phosphate generation by bombesin and GTP analogues was studied in Swiss 3T3 cells permeabilized by electroporation. Bombesin-stimulated inositol phosphate generation is potentiated by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and inhibited by guanosine 5'-[beta-thio]diphosphate at all peptide concentrations tested, with no change in the EC50 value (concn. giving half-maximal response) for the agonist. Kinetic analysis showed that, although bombesin-stimulated [3H]InsP3 generation in [3H]inositol-labelled cells was rapid (maximal by 5-10 s), the response to GTP[S] alone displayed a distinct lag time of 20-30 s. This lag time was significantly decreased by the addition of bombesin, suggesting that in this system agonist-stimulated GTP/GDP exchange occurs. In addition, bombesin-stimulated generation of Ins(1,4,5)P3 mass at 10 s was enhanced by GTP[S] in the absence of a nucleotide response alone, a result consistent with this proposal. Pretreatment of the cells with phorbol 12-myristate 13-acetate (PMA) resulted in a dose-dependent inhibition of bombesin-, but not GTP[S]-, stimulated inositol phosphate generation. Furthermore, although PMA pretreatment did not affect the lag time for InsP3 formation in response to GTP[S] alone, the degree of synergy between bombesin and the nucleotide was severely decreased at early time points. The results therefore demonstrate that the high-affinity bombesin receptor is coupled via a G-protein to phospholipase C in a manner consistent with a general model for receptor-G-protein interactions and that this coupling is sensitive to phosphorylation by protein kinase C.  相似文献   

3.
To ensure that a constant number of T cells are preserved in the peripheral lymphoid organs, the production and proliferation of T cells must be balanced out by their death. Newly generated T cells exit the thymus and are maintained as resting T cells. Transient disruption of homeostasis occurs when naïve T cells undergo antigen-induced expansion, a process involving intracellular signaling events that lead to T cell proliferation, acquisition of effector functions, and, ultimately, either apoptosis or differentiation into long-lived memory cells. The last decision point (death vs. differentiation) is a crucial one: it resets lymphoid homeostasis, promotes protective immunity, and limits autoimmunity. Despite its importance, relatively little is known about the molecular mechanisms involved in this cell fate decision. Although multiple mechanisms are likely involved, recent data suggest an underlying regulatory role for reactive oxygen species in controlling the susceptibility of T cells to apoptosis. This review focuses on recent advances in our understanding of how reactive oxygen species modulate T-cell apoptosis.  相似文献   

4.
The effects of catechin, a well-known in vitro antioxidant, on 3T3 Swiss fibroblasts are studied under different conditions of oxidative stress leading to cell proliferation or cytotoxicity. Various levels of reactive oxygen species (ROS), generated extracellularly by the xanthine-xanthine oxidase (X-XO) system, are at the origin of the biphasic effect on DNA synthesis by 3T3 Swiss fibroblasts. The addition of 10?2 U XO/mL, in the absence of exogenous X, catalyzes the production of low levels of $O_2 ^{\dot - } $ and H2O2 in the extracellular medium, which stimulate DNA synthesis and cell division. The increase in the level of ROS, by addition of increasing X concentrations, did not enhance this effect proportionally. On the contrary, high levels of ROS inhibit DNA synthesis, the cytotoxicity induced being proportional to the level of H2O2 generated by the enzyme system. Catechin does not significantly modify DNA synthesis induced by low levels of ROS, but protects in a dose-dependent manner against the cytoxicity of high levels of ROS.  相似文献   

5.
6.
The existence of hypoxia-induced reactive oxygen species (ROS) production remains controversial. However, numerous observations with a variety of methods and in many cells and tissue types are supportive of this idea. Skeletal muscle appears to behave much like heart in that in the early stages of hypoxia there is a transient elevation in ROS, whereas in chronic exposure to very severe hypoxia there is evidence of ongoing oxidative stress. Important remaining questions that are addressed in this review include the following. Are there levels of PO2 in skeletal muscle, typical of physiological or mildly pathophysiological conditions, that are low enough to induce significant ROS production? Does the ROS associated with muscle contractile activity reflect imbalances in oxygen uptake and demand that drive the cell to a more reduced state? What are the possible molecular mechanisms by which ROS may be elevated in hypoxic skeletal muscle? Is the production of ROS in hypoxia of physiological significance, both with respect to cell signaling pathways promoting cell function and with respect to damaging effects of long-term exposure? Discussion of these and other topics leads to general conclusions that hypoxia-induced ROS may be a normal physiological response to imbalance in oxygen supply and demand or environmental stress and may play a yet undefined role in normal response mechanisms to these stimuli. However, in chronic and extreme hypoxic exposure, muscles may fail to maintain a normal redox homeostasis, resulting in cell injury or dysfunction.  相似文献   

7.
The rat hepatocyte catalyzed oxidation of 2',7'-dichlorofluorescin to form the fluorescent 2,7'-dichlorofluorescein was used to measure endogenous and xenobiotic-induced reactive oxygen species (ROS) formation by intact isolated rat hepatocytes. Various oxidase substrates and inhibitors were then used to identify the intracellular oxidases responsible. Endogenous ROS formation was markedly increased in catalase-inhibited or GSH-depleted hepatocytes, and was inhibited by ROS scavengers or desferoxamine. Endogenous ROS formation was also inhibited by cytochrome P450 inhibitors, but was not affected by oxypurinol, a xanthine oxidase inhibitor, or phenelzine, a monoamine oxidase inhibitor. Mitochondrial respiratory chain inhibitors or hypoxia, on the other hand, markedly increased ROS formation before cytotoxicity ensued. Furthermore, uncouplers of oxidative phosphorylation inhibited endogenous ROS formation. This suggests endogenous ROS formation can largely be attributed to oxygen reduction by reduced mitochondrial electron transport components and reduced cytochrome P450 isozymes. Addition of monoamine oxidase substrates increased antimycin A-resistant respiration and ROS formation before cytotoxicity ensued. Addition of peroxisomal substrates also increased antimycin A-resistant respiration but they were less effective at inducing ROS formation and were not cytotoxic. However, peroxisomal substrates readily induced ROS formation and were cytotoxic towards catalase-inhibited hepatocytes, which suggests that peroxisomal catalase removes endogenous H(2)O(2) formed in the peroxisomes. Hepatocyte catalyzed dichlorofluorescin oxidation induced by oxidase substrates, e.g., benzylamine, was correlated with the cytotoxicity induced in catalase-inhibited hepatocytes.  相似文献   

8.
Activated peritoneal macrophages exhibiting phagocytosing capacity produced an electron-dense precipitate of formazan in contact sites of macrophage plasmalemma and phagocytosed yeast cells. No production of formazan occurred, when non-opsonized latex particles were ingested by macrophages. Formazan precipitation could be prevented by anaerobiosis but not by addition of cyanide.  相似文献   

9.
Here we report on the marked protective effect of resveratrol on 4-hydroxynonenal (4-HNE) induced oxidative stress and apoptotic death in Swiss 3T3 fibroblasts. 4-HNE, one of the major aldehydic products of the peroxidation of membrane w-6 polyunsaturated fatty acids, has been suggested to contribute to oxidant stress mediated cell injury. Indeed, in vitro treatment of 3T3 fibroblasts with 4-HNE induced a condition of oxidative stress as monitored by the oxidation of dichlorofluorescein diacetate; this reaction was prevented when cells were pretreated with resveratrol. Further, 4-HNE-treated fibroblasts eventually underwent apoptotic death as determined by differential staining and internucleosomal DNA fragmentation. Resveratrol pretreatment also prevented 4-HNE induced DNA fragmentation and apoptosis. These observations are consistent with a potential role of lipid peroxidation-derived products in programmed cell death and demonstrate that resveratrol can counteract this effect by quenching cell oxidative stress.  相似文献   

10.
Using the patch-clamp technique (cell-attached patches), we found that bombesin, a Ca-mobilizing peptide mitogen, activates large-conductance Cl channels in Swiss 3T3 fibroblasts. The channel activation required a lag period of about 50 s and was equally observed whether bombesin was applied to the patch-pipette or to the bath. A23187 (10(-6)M) in the bath induced the similar currents with almost identical current-voltage relationship as bombesin: their slope conductances were 292 +/- 15 (bombesin) and 318 +/- 42 (A23187) pS. In inside-out patches, the induced channels were selective to Cl over gluconate (11:1). These observations strongly suggest that in Swiss 3T3 fibroblasts bombesin activates the Cl channels through a mechanism involving an increase in the intracellular free Ca concentration.  相似文献   

11.
Acidification of the endosomal pathway is important for ligand and receptor sorting, toxin activation, and protein degradation by lysosomal acid hydrolases. Fluorescent probes and imaging methods were developed to measure pH to better than 0.2 U accuracy in individual endocytic vesicles in Swiss 3T3 fibroblasts. Endosomes were pulse labeled with transferrin (Tf), alpha 2-macroglobulin (alpha 2M), or dextran, each conjugated with tetramethylrhodamine and carboxyfluorescein (for pH 5-8) or dichlorocarboxyfluorescein (for pH 4-6); pH in individual labeled vesicles was measured by ratio imaging using a cooled CCD camera and novel image analysis software. Tf-labeled endosomes acidified to pH 6.2 +/- 0.1 with a t1/2 of 4 min at 37 degrees C, and remained small and near the cell periphery. Dextran- and alpha 2M-labeled endosomes acidified to pH 4.7 +/- 0.2, becoming larger and moving toward the nucleus over 30 min; approximately 15% of alpha 2M-labeled endosomes were strongly acidic (pH less than 5.5) at only 1 min after labeling. Replacement of external Cl by NO3 or isethionate strongly and reversibly inhibited acidification. Addition of ouabain (1 mM) at the time of labeling strongly enhanced acidification in the first 5 min; Tf-labeled endosomes acidified to pH 5.3 without a change in morphology. Activation of phospholipase C by vasopressin (50 nM) enhanced acidification of early endosomes; activation of protein kinase C by PMA (100 nM) enhanced acidification strongly, whereas elevation of intracellular Ca by A23187 (1 microM) had no effect on acidification. Activation of protein kinase A by CPT-cAMP (0.5 mM) or forskolin (50 microM) inhibited acidification. Lysosomal pH was not affected by ouabain or the protein kinase activators. These results establish a methodology for quantitative measurement of pH in individual endocytic vesicles, and demonstrate that acidification of endosomes labeled with Tf and alpha 2M (receptor-mediated endocytosis) and dextran (fluid-phase endocytosis) is sensitive to intracellular anion composition, Na/K pump inhibition, and multiple intracellular second messengers.  相似文献   

12.
Xanthine oxidase stimulates [3H]thymidine incorporation by 3T3 cells even in the absence of any added xanthine, but in the presence of, and synergistically with, insulin or various other growth-stimulating factors. Optimal stimulation was obtained with 2-3 mU enzyme/ml and higher concentrations were toxic. Xanthine oxidase also stimulated human peripheral blood lymphocytes in the presence of phytohemagglutinin and xanthine.  相似文献   

13.
Bae YS  Oh H  Rhee SG  Yoo YD 《Molecules and cells》2011,32(6):491-509
Reactive oxygen species (ROS) including superoxide anion and hydrogen peroxide (H2O2) are thought to be byproducts of aerobic respiration with damaging effects on DNA, protein, and lipid. A growing body of evidence indicates, however, that ROS are involved in the maintenance of redox homeostasis and various cellular signaling pathways. ROS are generated from diverse sources including mitochondrial respiratory chain, enzymatic activation of cytochrome p450, and NADPH oxidases further suggesting involvement in a complex array of cellular processes. This review summarizes the production and function of ROS. In particular, how cytosolic and membrane proteins regulate ROS generation for intracellular redox signaling will be detailed.  相似文献   

14.
Semighini CP  Harris SD 《Genetics》2008,179(4):1919-1932
In fungal hyphae, apical dominance refers to the suppression of secondary polarity axes in the general vicinity of a growing hyphal tip. The mechanisms underlying apical dominance remain largely undefined, although calcium signaling may play a role. Here, we describe the localized accumulation of reactive oxygen species (ROS) in the apical region of Aspergillus nidulans hyphae. Our analysis of atmA (ATM) and prpA (PARP) mutants reveals a correlation between localized production of ROS and enforcement of apical dominance. We also provide evidence that NADPH oxidase (Nox) or related flavoproteins are responsible for the generation of ROS at hyphal tips and characterize the roles of the potential Nox regulators NoxR, Rac1, and Cdc42 in this process. Notably, our genetic analyses suggest that Rac1 activates Nox, whereas NoxR and Cdc42 may function together in a parallel pathway that regulates Nox localization. Moreover, the latter pathway may also include Bem1, which we propose represents a p40phox analog in fungi. Collectively, our results support a model whereby localized Nox activity generates a pool of ROS that defines a dominant polarity axis at hyphal tips.  相似文献   

15.
Mitochondrial morphology is determined by the balance between the opposing processes of fission and fusion, each of which is regulated by a distinct set of proteins. Abnormalities in mitochondrial dynamics have been associated with a variety of diseases, including neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dominant optic atrophy. Although the genetic determinants of fission and fusion are well recognized, less is known about the mechanism(s) whereby altered morphology contributes to the underlying pathophysiology of these disease states. Previous work from our laboratory identified a role for mitochondrial dynamics in intracellular pH homeostasis in both mammalian cell culture and in the genetic model organism Caenorhabditis elegans. Here we show that the acidification seen in mutant animals that have lost the ability to fuse their mitochondrial inner membrane occurs through a reactive oxygen species (ROS)-dependent mechanism and can be suppressed through the use of pharmacological antioxidants targeted specifically at the mitochondrial matrix. Physiological approaches examining the activity of endogenous mammalian acid-base transport proteins in rat liver Clone 9 cells support the idea that ROS signaling to sodium-proton exchangers contributes to acidification. Because maintaining pH homeostasis is essential for cell function and viability, the results of this work provide new insight into the pathophysiology associated with the loss of inner mitochondrial membrane fusion.  相似文献   

16.
Endothelial migration is a crucial aspect of a variety of physiologic and pathologic conditions including atherosclerosis and vascular repair. Reactive oxygen species (ROS) function as second messengers during endothelial migration. Multiple intracellular sources of ROS are regulated by cellular context, external stimulus, and the microenvironment. However, the predominant source of ROS during endothelial cell (EC) migration and the mechanisms by which ROS regulate cell migration are incompletely understood. In this study, we tested the hypothesis that mitochondria-derived ROS (mtROS) regulate EC migration. In cultured human umbilical vein endothelial cells, VEGF increased mitochondrial metabolism, promoted mtROS production, and induced cell migration. Either the targeted mitochondrial delivery of the antioxidant, vitamin E (Mito-Vit-E), or the depletion of mitochondrial DNA abrogated VEGF-mediated mtROS production. Overexpression of mitochondrial catalase also inhibited VEGF-induced mitochondrial metabolism, Rac activation, and cell migration. Furthermore, these interventions suppressed VEGF-stimulated EC migration and blocked Rac1 activation in endothelial cells. Constitutively active Rac1 reversed Mito-Vit-E-induced inhibition of EC migration. Mito-Vit-E also attenuated carotid artery reendothelialization in vivo. These results provide strong evidence that mtROS regulate EC migration through Rac-1.  相似文献   

17.
Reactive oxygen species (ROS) have been regarded as harmful molecules that damage various molecules inside cells by oxidation and are responsible for ageing and various human diseases. However, recent studies have revealed an opposite aspect of ROS that these are actively generated in cells and mediate physiological intracellular signalling as second messengers. Several proteins have been shown to function as effectors for ROS, which are sensitively and reversibly oxidized by ROS. Such ROS-effector proteins commonly possess a highly reactive cysteine (Cys) residue, of which oxidation changes the protein function, thus enabling signal transmission to downstream targets. Among the ROS effectors, protein tyrosine phosphatase (PTP), thioredoxin (TRX) and peroxiredoxin (PRX) family proteins possess special domains/motifs to maintain the reactivity of Cys and utilize them to respond to ROS. Progressively advancing identification of ROS-effector proteins reveals the pleiotropic functions of ROS in physiological and pathological cell biology.  相似文献   

18.
19.
1-Monooleoylglycerol (MOG), a recently reported diacylglycerol kinase inhibitor (Bishop, W. R., Ganong, B. R., and Bell, R. M. (1986) J. Biol. Chem. 261, 6993-7000), exerts potent stimulatory effects on [3H]thymidine incorporation into DNA and glucose transport in Swiss 3T3 fibroblasts. MOG induces a rapid and sustained 2.5-fold increase in the cellular 1,2-diacylglycerol (1,2-DG) content, and phosphorylation of an acidic 80-kDa protein, a putative substrate for the protein kinase C (Ca2+/phospholipid-dependent protein kinase). The effect of MOG is additive to that of bombesin in terms of both an increase in tissue diacylglycerol content and phosphorylation of the 80-kDa proteins. In addition to these effects, MOG potently stimulates release of arachidonic acid from phospholipids. Inhibitors of cyclooxygenase and lipoxygenase have little effect, if any, on MOG-induced stimulation of glucose transport and DNA synthesis, while exogenously applied arachidonic readily stimulates both of these cellular responses. Furthermore, arachidonic acid, at its biologically active concentrations, is found to induce a rapid and sustained increase in cellular 1,2-DG content and stimulate the phosphorylation of the 80-kDa protein, although to a lesser extent than MOG. Prolonged pretreatment of the cells with phorbol 12,13-dibutyrate, which reduces the cellular protein kinase C content, markedly attenuates the effects of both MOG and arachidonic acid on glucose transport and DNA synthesis. These data indicate that MOG increases endogenous 1,2-DG content and thereby acts as a potent activator of protein kinase C, and that activation of protein kinase C is a crucial step in MOG-induced stimulation of mitogenesis and glucose transport.  相似文献   

20.
A peptide mitogen bombesin, which activates the phospholipase C-protein kinase C signaling pathway, induces a mepacrine-sensitive, dose-dependent increase in the release of [3H]arachidonic acid and its metabolites ([3H]AA) from prelabeled Swiss 3T3 fibroblasts. The effect is temporally composed of two phases, i.e. an initial transient burst that is essentially independent of extracellular Ca2+, and a following sustained phase that is absolutely dependent on the extracellular Ca2+. The initial transient [3H]AA liberation occurs concomitantly with bombesin-induced 45Ca efflux from prelabeled cells: both responses being substantially attenuated by loading cells with a Ca2+ chelator quin2. However, bombesin-induced intracellular Ca2+ mobilization by itself is not sufficient as a signal for the initial transient [3H]AA liberation, since A23187 potently stimulates 45Ca efflux to an extent comparable to bombesin but fails to induce [3H]AA release in the absence of extracellular Ca2+. The second sustained phase of the bombesin-induced [3H]AA release is abolished by reducing extracellular Ca2+ to 0.03 mM, although bombesin effects on phospholipase C and protein kinase C activation are barely affected by the same procedure. A protein kinase C activator phorbol 12,13-dibutyrate induces an extracellular Ca(2+)-dependent, slowly developing sustained increase in [3H]AA release, and markedly potentiates both phases of bombesin-induced [3H]AA release. Down-regulation of cellular protein kinase C completely abolishes all of the effects of phorbol dibutyrate, and partially inhibits the second but not the first phase of bombesin-induced [3H]AA release. These results indicate that bombesin-induced receptor-mediated activation of phospholipase A2 involves multiple mechanisms, including intracellular Ca2+ mobilization for the first phase, protein kinase C activation plus Ca2+ influx for the second phase, and as yet unknown mechanism(s) independent of intracellular Ca2+ mobilization or protein kinase C for both of the phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号