首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Most vertebrates express two gonadotropin releasing hormone (GnRH) variants in brain tissue but there is an increasing number of fish species for which a third GnRH form has been detected. We characterized the precursors (cDNAs) of all three forms expressed in the brain of the pejerrey (silverside) fish, Odontesthes bonariensis (Atheriniformes): type I (GnRH-I; 440 bp), type II (GnRH-II; 529 bp), and type III (GnRH-III; 515 bp). The expression of these GnRHs precursors was also observed in peripheral tissues related to reproduction (gonads), visual and chemical senses (eye and olfactory epithelium), and osmoregulation (gill), suggesting that in teleost fish and possibly other vertebrates GnRH mediates directly or indirectly many other functions besides reproduction. We also present a comprehensive phylogenetic analysis including representatives of all chordate GnRH precursors characterized to date that supports the idea of two main paralogous GnRH lineages with different function. A “forebrain lineage” separates evolutionarily from the “midbrain lineage” as a result of an ancient duplication (ca. 600 million years ago). A third, fish-only clade of GnRH genes seems to have originated before the divergence of fish and tetrapods but retained only in fish. Phylogenetic analyses of GnRH precursors (DNA and protein sequences) under different optimality criteria converge on this result. Although alternative scenarios could not be statistically rejected in this study due to the relatively short size of the analyzed molecules, this hypothesis also receives support from chromosomal studies of synteny around the GnRH genes in vertebrates. [Reviewing Editor: Dr. Axel Meyer]  相似文献   

2.
The distribution of neuropeptide Y (NPY) in the central nervous system of the frog Rana ridibunda was determined by immunofluorescence using a highly specific antiserum. NPY-like containing perikarya were localized in the infundibulum, mainly in the ventral and dorsal nuclei of the infundibulum, in the preoptic nucleus, in the posterocentral nucleus of the thalamus, in the anteroventral nucleus of the mesencephalic tegmentum, in the part posterior to the torus semicircularis, and in the mesencephalic cerebellar nucleus. Numerous perikarya were also distributed in all cerebral cortex. Important tracts of immunoreactive fibers were found in the infundibulum, in the preoptic area, in the lateral amygdala, in the habenular region, and in the tectum. The cerebral cortex was also densely innervated by NPY-like immunoreactive fibers. A rich network of fibers was observed in the median eminence coursing towards the pituitary stalk. Scattered fibers were found in all other parts of the brain except in the cerebellum, the nucleus isthmi and the torus semicircularis, where no immunoreactivity could be detected. NPY-immunoreactive fibers were observed at all levels of the spinal cord, with particularly distinct plexus around the ependymal canal and in the distal region of the dorsal horn. At the electron microscope level, NPY containing perikarya and fibers were visualized in the ventral nuclei of the infundibulum, using the peroxidase-antiperoxidase and the immunogold techniques. NPY-like material was stored in dense core vesicles of 100 nm in diameter. A sensitive and specific radioimmunoassay was developed. The detection limit of the assay was 20 fmole/tube. The standard curves of synthetic NPY and the dilution curves for acetic acid extracts of cerebral cortex, infundibulum, preoptic region, and mesencephalon plus thalamus were strictly parallel. The NPY concentrations measured in these regions were (pmole/mg proteins) 163±8, 233±16, 151±12 and 60±13, respectively. NPY was not detectable in cerebellar extracts. After Sephadex G-50 gel filtration of acetic acid extracts from whole frog brain, NPY-like immunoreactivity eluted in a single peak. Reverse phase high performance liquid chromatography (HPLC) and radioimmunoassay were used to characterize NPY-like peptides in the frog brain. HPLC analysis revealed that infundibulum, preoptic area and telencephalon extracts contained a major peptide bearing NPY-like immunoreactivity. The retention times of frog NPY and synthetic porcine NPY were markedly different. HPLC analysis revealed also the existence, in brain extracts, of several other minor components cross-reacting with NPY antibodies. These results provide the first evidence for the presence of NPY in the brain of a non-mammalian chordate and indicate that the structure of NPY is preserved among the vertebrate phylum. The abundance of NPY producing neurons in the hypothalamus and telencephalon suggests that this peptide may play both neuroendocrine and neurotransmitter functions in amphibians.  相似文献   

3.
The presence of thyrotropin-releasing hormone (TRH) and neuropeptide Y (NPY) has been demonstrated in the neural lobe and in the intermediate lobe of the frog pituitary by immunocytochemistry on ultrathin sections of neurointermediate lobes obtained by cryoultramicrotomy. In the neural lobe, separate populations of TRH- or NPY-immunoreactive nerve fibers were observed. Both neuropeptides were contained in dense-core secretory vesicles about 200 nm in diameter. In intermediate lobe cells, TRH- and NPY-like immunoreactivities were observed in the cytoplasmic matrix and more sparsely in secretory granules. Occasionally, immunoreactive TRH could be visualized at the plasma membrane level. In the nucleus, both peptides were detected in the euchromatin, in the vicinity of the heterochromatin and in the nucleolus. Conversely, gonadotropin-releasing hormone-like immunoreactivity could not be detected. These results provide immunocytological evidence for the presence of endogenous TRH and NPY in frog melanotrophs indicating that these peptides may participate in the regulation of intermediate lobe secretion.  相似文献   

4.
According to recent immunocytochemical studies of anterior pituitary cells, it is obvious that the one cell-one hormone theory must be modified. Many pituitary morphologists have demonstrated that there are some cells that contain two hormones. In this study, we demonstrate by means of immuno-electronmicroscopy the co-existence of gonadotrophins (FSH and LH) and thyrotrophin (TSH) in the same anterior pituitary cells of the musk shrew. These cells were remarkably altered in their ultrastructural features by either gonadectomy or thyroidectomy. Double labeling for gonadotrophins and thyrotrophin was present not only in the same cells but also in the same secretory granules. Our ability to demonstrate co-existence of gonadotrophins and thyrotrophin in the same cell may be due to our selection of fixative and embedding media for electron-microscopic immunocytochemistry. Our conclusion that gonadotrophins and thyrotrophin are produced in a single cell type of the anterior pituitary gland in the musk shrew, i.e., thyrogonadotrophs, suggests the need to consider a modification of the classic scheme for classification of anterior pituitary cells.  相似文献   

5.
Acute effects of Ace, Meth and IL-1 on AChE activity, ACh and CRF mRNA levels in, and CRF-release from the hypothalamus were studied in vitro. The hypothalamus samples were dissected from the rat brain and were incubated in vitro with IL-1, Ace or Meth in the presence or absence of Dex, Atrop, PTL, PROP and GABA. Ace and Meth, but not IL-1, inhibited AChE activity, while all three compounds; (1) increased ACh and CRF mRNA levels in and CRF release from; (2) activated the CRE promoter region of CRF-gene in: and (3) increased cFos binding to the AP-1 region of the CRF-gene in the hypothalamus. Dex suppressed the effects of IL-1, possibly by inducing the nGRE regulatory sites of the CRF-gene. Dex, however, did not modulate the effects of Ace and Meth on the hypothalamus, which may be attributed to the failure of Dex to modulate the CRF-gene's nGRE regulatory sites. Atrop caused 80-90% inhibition of the effects of IL-1, but caused only 50-65% inhibition of the effects of Ace or Meth on CRF mRNA levels in and CRF release from the hypothalamus. PTL did not affect, while PROP slightly attenuated the effects of IL-1 and the insecticides on the hypothalamus. GABA attenuated the effects of the insecticides but not the effects of IL-1 on the hypothalamus. This suggests that the IL-1-induced augmentation of CRF synthesis in and release from the hypothalamus is mediated through a cholinergic pathway, while the insecticide-induced augmentation of CRF synthesis in and release from the hypothalamus is mediated through the cholinergic and GABAergic pathways. The insecticides, but not IL-1, disrupt feedback regulation of CRF synthesis in and release from the hypothalamus.  相似文献   

6.
Stressors that are chronic have clear suppressive effects on reproductive behaviors in both males and females. Stressors that are acute have effects on reproductive behavior that are less clear. We measured the effects of an acute bout of handling in laboratory-housed male and female Ocoee salamanders (Desmognathus ocoee), a species with a prolonged mating season. Handling resulted in decreased locomotory activity and elevated plasma corticosterone, a hallmark of the vertebrate stress response. Handling also decreased plasma testosterone in males and elevated plasma estradiol in females. Despite the handling-induced changes in hormone levels, handling had minimal impact on courtship and mating. Other species in which reproduction is insensitive to acute stressors may live in extreme environments with limited reproductive opportunities, whereas Ocoee salamanders live in a relatively temperate environment with multiple reproductive opportunities. Together, these data indicate that an allostatic response to a stressor can alter locomotory activity and elevate corticosterone without suppressing nonessential behaviors like courtship and mating in a species in which reproductive opportunities can occur over a period of multiple months. The lack of reproductive suppression in Ocoee salamanders might be due to the low energetic cost of courtship and mating in this species combined with potentially elevated energetic stores, highlighting the importance of considering energy budgets when making predictions about behavioral effects of acute stressors.  相似文献   

7.
8.
When competition for sex-specific resources overlaps in time with offspring production and care, trade-offs can occur. Steroid hormones, particularly testosterone (T), play a crucial role in mediating such trade-offs in males, often increasing competitive behaviors while decreasing paternal behavior. Recent research has shown that females also face such trade-offs; however, we know little about the role of T in mediating female phenotypes in general, and the role of T in mediating trade-offs in females in particular. Here we examine the relationship between individual variation in maternal effort and endogenous T in the dark-eyed junco, a common songbird. Specifically, we measure circulating T before and after a physiological challenge (injection of gonadotropin releasing hormone, GnRH), and determine whether either measure is related to provisioning, brooding, or the amount of T sequestered in egg yolk. We found that females producing more T in response to a challenge spent less time brooding nestlings, but provisioned nestlings more frequently, and deposited more T in their eggs. These findings suggest that, while T is likely important in mediating maternal phenotypes and female life history tradeoffs, the direction of the relationships between T and phenotype may differ from what is generally observed in males, and that high levels of endogenous T are not necessarily as costly as previous work might suggest.  相似文献   

9.
10.
Nahon JL 《Comptes rendus biologies》2006,329(8):623-38; discussion 653-5
A number of different neuropeptides exert powerful concerted controls on feeding behavior and energy balance, most of them being produced in hypothalamic neuronal networks under stimulation by anabolic and catabolic peripheral hormones such as ghrelin and leptin, respectively. These peptide-expressing neurons interconnect extensively to integrate the multiple opposing signals that mediate changes in energy expenditure. In the present review I have summarized our current knowledge about two key peptidic systems involved in regulating appetite and energy homeostasis, the melanocortin system (alpha-MSH, agouti and Agouti-related peptides, MC receptors and mahogany protein) and the melanin-concentrating hormone system (proMCH-derived peptides and MCH receptors) that contribute to satiety and feeding-initiation, respectively, with concurrent effects on energy expenditure. I have focused particularly on recent data concerning transgenic mice and the ongoing development of MC/MCH receptor antagonists/agonists that may represent promising drugs to treat human eating disorders on both sides of the energy balance (anorexia, obesity).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号