首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GXXXG motif is a frequently occurring sequence of residues that is known to favor helix-helix interactions in membrane proteins. Here we show that the GXXXG motif is also prevalent in soluble proteins whose structures have been determined. Some 152 proteins from a non-redundant PDB set contain at least one alpha-helix with the GXXXG motif, 41 +/- 9% more than expected if glycine residues were uniformly distributed in those alpha-helices. More than 50% of the GXXXG-containing alpha-helices participate in helix-helix interactions. In fact, 26 of those helix-helix interactions are structurally similar to the helix-helix interaction of the glycophorin A dimer, where two transmembrane helices associate to form a dimer stabilized by the GXXXG motif. As for the glycophorin A structure, we find backbone-to-backbone atomic contacts of the C alpha-H...O type in each of these 26 helix-helix interactions that display the stereochemical hallmarks of hydrogen bond formation. These glycophorin A-like helix-helix interactions are enriched in the general set of helix-helix interactions containing the GXXXG motif, suggesting that the inferred C alpha-H...O hydrogen bonds stabilize the helix-helix interactions. In addition to the GXXXG motif, some 808 proteins from the non-redundant PDB set contain at least one alpha-helix with the AXXXA motif (30 +/- 3% greater than expected). Both the GXXXG and AXXXA motifs occur frequently in predicted alpha-helices from 24 fully sequenced genomes. Occurrence of the AXXXA motif is enhanced to a greater extent in thermophiles than in mesophiles, suggesting that helical interaction based on the AXXXA motif may be a common mechanism of thermostability in protein structures. We conclude that the GXXXG sequence motif stabilizes helix-helix interactions in proteins, and that the AXXXA sequence motif also stabilizes the folded state of proteins.  相似文献   

2.
Apolipophorin III (apoLp-III) from the silkmoth, Bombyx mori, has been over-expressed in Escherichia coli, purified and characterized. Far-UV CD spectroscopic analysis revealed 65% alpha-helix secondary structure. Near-UV CD spectra obtained in buffer or complexed with dimyristoylglycerophosphocholine (DMPC), provided evidence that apoLp-III alpha-helices reorient upon interaction with lipid, indicative of a protein conformational change. In guanidine hydrochloride (GdnHCl) denaturation studies, a transition midpoint of 0.33 M was observed, corresponding to a DeltaGDH2O = 2.46 kcal. mol-1. Fluorescence studies of the sole tryptophan residue (Trp40) in apoLp-III revealed an emission lambdamax = 327 nm. Compared to free tryptophan, Stern-Volmer constants (KSV) for acrylamide and KI quenching of Trp40 fluorescence were decreased by 20-fold and sevenfold, respectively. In studies of apoLp-III-DMPC disc complexes, far-UV CD spectroscopy revealed an increase in alpha-helix content to approximately 85% and a ninefold increase in the GdnHCl-induced denaturation transition midpoint to 3 M. In studies of lipid interaction, apoLp-III was shown to disrupt both negatively charged and zwitterionic phospholipid bilayer vesicles, transforming them into discoidal complexes. Characterization of apoLp-III-DMPC discs, using 5-doxyl or 12-doxyl stearic acid as lipid-based quenching agents, revealed that Trp40 localizes near the phospholipid polar head groups. KSV values for acrylamide and KI quenching of intrinsic fluorescence of apoLp-III-DMPC discs indicate that Trp40 is embedded in the lipid milieu, with little or no accessibility to the aqueous quenchers. Given the large amount of alpha-helix in apoLp-III, the data presented support a model in which amphipathic alpha-helical segments are stabilized by helix-helix interactions and lipid association induces a protein conformational change which results in substitution of helix-helix interactions for helix-lipid contacts.  相似文献   

3.
We previously reported cloning of the Taenia solium annexin B1 gene from a metacestode cDNA expression library and demonstrated that it acts as a protective antigen for effective vaccine development against cysticercosis. In the present study we produced recombinant annexin B1 and antiserum against the protein to investigate its structural and functional properties. Western blotting of metacestode fractions indicated that T. solium annexin B1, similar to vertebrate annexins, associates with acid phospholipids in the presence of Ca(2+). This property was confirmed by the recognition of apoptotic cells by labeled annexin B1. CD spectroscopy results demonstrated that alpha-helices are the main secondary structures of the protein. Ca(2+) binding increases the alpha-helix content and causes significant thermal stabilization with a melting temperature increase of approximately 10 degrees C. Functional Ca(2+)-dependent phospholipid binding sites of annexin B1 were investigated using mutant proteins. By changing a conserved acidic amino acid residue that putatively combines Ca(2+) in each domain of annexin B1 singly or in combination, we found that Ca(2+) binding in the first domain is more important than that at the other Ca(2+) binding sites. Annexin B1 is a metacestode stage-specific antigen, with the protein being mainly localized in the teguments and surrounding cyst wall of T. solium metacestodes, suggesting a role in the parasite-host interaction.  相似文献   

4.
The three-dimensional structures of the two peptides plantaricin E (plnE; 33 residues) and plantaricin F (plnF; 34 residues) constituting the two-peptide bacteriocin plantaricin EF (plnEF) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles. PlnE has an N-terminal alpha-helix (residues 10-21), and a C-terminal alpha-helix-like structure (residues 25-31). PlnF has a long central alpha-helix (residues 7-32) with a kink of 38+/-7 degrees at Pro20. There is some flexibility in the helix in the kink region. Both helices in plnE are amphiphilic, while the helix in plnF is polar in its N-terminal half and amphiphilic in its C-terminal half. The alpha-helical content obtained by NMR spectroscopy is in agreement with CD studies. PlnE has two GxxxG motifs which are putative helix-helix interaction motifs, one at residues 5 to 9 and one at residues 20 to 24, while plnF has one such motif at residues 30 to 34. The peptides are flexible in these GxxxG regions. It is suggested that the two peptides lie parallel in a staggered fashion relative to each other and interact through helix-helix interactions involving the GxxxG motifs.  相似文献   

5.
Sequence specificity in the dimerization of transmembrane alpha-helices.   总被引:25,自引:0,他引:25  
While several reports have suggested a role for helix-helix interactions in membrane protein oligomerization, there are few direct biochemical data bearing on this subject. Here, using mutational analysis, we show that dimerization of the transmembrane alpha-helix of glycophorin A in a detergent environment is spontaneous and highly specific. Very subtle changes in the side-chain structure at certain sensitive positions disrupt the helix-helix association. These sensitive positions occur at approximately every 3.9 residues along the helix, consistent with their comprising the interface of a closely fit transmembranous supercoil of alpha-helices. By contrast with other reported cases of interactions between transmembrane helices, the set of interfacial residues in this case contains no highly polar groups. Amino acids with aliphatic side chains define much of the interface, indicating that precise packing interactions between the helices may provide much of the energy for association. These data highlight the potential general importance of specific interactions between the hydrophobic anchors of integral membrane proteins.  相似文献   

6.
The circular dichroism (CD) of cytochrome oxidase in solution indicates the presence of both alpha-helix (approximately 37%) and B-sheet (approximately 18%). In oriented films generated by the isopotential spin-dry method, the CD measured normal to the film shows a marked decrease in the negative bands at 222 and 208 nm, and a decrease and red shift in the positive band near 195 nm, relative to solution spectra. These features are characteristic of alpha-helices oriented with their helix axes along the direction of light propagation. A quantitative estimate of the orientation, based on the ratio of the rotational strengths of the 208-nm band in the film and in solution, leads to an average angle between the helix axis and the normal to the film, phi alpha of approximately 39 degrees. A method for analyzing infrared (IR) linear dichroism is developed that can be applied to proteins with comparable amounts of alpha-helix and beta-sheet. From analysis of the amide I band, phi alpha is found to lie between 20 and 36 degrees, depending on the angle that the amide I transition moment forms with the helix axis. A survey of the literature on the amide I transition moment direction indicates that a value of approximately 27 degrees is appropriate for standard alpha-helical systems, such as those in cytochrome oxidase. A larger value, near 40 degrees, is reasonable for systems that have distorted alpha-helices, as evidenced by amide I frequencies above 1,660 cm-1, as is the case of bacteriorhodopsin. This conclusion supports phi alpha approximately 36 degrees from IR linear dichroism, in agreement with the CD results. Linear dichroism in the amide I and amide II region indicates that the beta-sheet in cytochrome oxidase is oriented with the carbonyl groups nearly parallel to the plane of the membrane and the chain direction inclined at approximately 40 degrees to the normal. Comparison of these results with tentative identification of transmembrane helices from sequence data suggests that either some of the transmembrane helices are inclined at an unexpectedly large angle to the normal, or the number of such helices has been overestimated. Some putative transmembrane helices may be beta-strands spanning the membrane.  相似文献   

7.
The conformational preferences and the solution structure of AnxII(N31), a peptide corresponding to the full-length sequence (residues 1-31) of the human annexin II N-terminal tail domain, were investigated by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. CD results showed that AnxII(N31) adopts a mainly alpha-helical conformation in hydrophobic or membrane-mimetic environments, while a predominantly random structure is adopted in aqueous buffer. In contrast to previous results of the annexin I N-terminal domain peptide [Yoon et al. (2000) FEBS Lett. 484, 241-245], calcium ions showed no effect on the structure of AnxII(N31). The NMR-derived structure of AnxII(N31) in 50% TFE/water mixture showed a horseshoe-like fold comprising the N-terminal amphipathic alpha-helix, the following loop, and the C-terminal helical region. Together, the results establish the first detailed structural data on the N-terminal tail domain of annexin II, and suggest the possibility of the domain to undergo Ca(2+)-independent membrane-binding.  相似文献   

8.
Fang Y  Gursky O  Atkinson D 《Biochemistry》2003,42(22):6881-6890
Apolipoprotein A-I (apoA-I) plays an important structural and functional role in lipid transport and metabolism. This work is focused on the central region of apoA-I (residues 60-183) that is predicted to contain exclusively amphipathic alpha-helices. Six N- and/or C-terminally truncated mutants, delta(1-41), delta(1-59), delta(198-243), delta(209-243), delta(1-41,185-243), and delta(1-59,185-243), were analyzed in their lipid-free state in solution at pH 4.7-7.8 by far- and near-UV CD spectroscopy. At pH 7.8, all mutants show well-defined secondary structures consisting of 40-52% alpha-helix. Comparison of the alpha-helix content in the wild type and mutants suggests that deletion of either the N- or C-terminal region induces helical unfolding elsewhere in the structure, indicating that the terminal regions are important for the integrity of the solution conformation of apoA-I. Near-UV CD spectra indicate significant tertiary and/or quaternary structural changes resulting from deletion of the N-terminal 41 residues. Reduction in pH from 7.8 to 4.7 leads to an increase in the mutant helical content by 5-20% and to a large increase in thermal unfolding cooperativity. Van't Hoff analysis of the mutants at pH 4.7 indicates melting temperatures T(m) ranging from 51 to 59 degrees C and effective enthalpies deltaH(v)(T(m)) = 35 +/- 5 kcal/mol, similar to the values for plasma apoA-I at pH 7.8 (T(m) = 57 degrees C, deltaH(v) = 32 kcal/mol). Our results provide the first report of the pH effects on the secondary, tertiary, and/or quaternary structure of apoA-I variants and indicate the importance of the electrostatic interactions for the solution conformation of apoA-I.  相似文献   

9.
Aggregation of proteins is a problem with serious medical implications and economic importance. To develop strategies for preventing aggregation, the mechanism(s) and pathways by which proteins aggregate must be characterized. In this study, the thermally induced aggregation processes of three alpha-helix proteins (myoglobin, cytochrome c, and lysozyme) in the presence and absence of 1.0 m guanidine hydrochloride (GdnHCl) were investigated by means of infrared spectroscopy. In the absence of GdnHCl, intensities of the alpha-helix bands (approximately 1656 cm(-1)) decrease as a function of temperature at above 50 degrees C. With myoglobin and cytochrome c, the loss of helix bands was accompanied by the appearance of two new bands at 1694 and 1623 cm(-1), indicative of the formation of intermolecular beta-sheet aggregates. For lysozyme, bands indicative of intermolecular beta-sheet aggregates did not appear in any significant intensity. In the presence of 1.0 m GdnHCl, two major intermediate states rich in 3(10)-helix (represented by the band at 1663 cm(-1)) and beta-turn structure (represented by the band at 1667 cm(-1)), respectively, were observed. These findings demonstrated that IR spectroscopic studies of protein aggregation using a combination of thermal and chemical denaturing factors could provide a means to populate and characterize aggregation intermediates.  相似文献   

10.
Paired helical filaments (PHFs) isolated from patients with Alzheimer's disease (AD) mainly consist of the microtubule-associated protein tau in a hyperphosphorylated form. It has been found that PHFs are the first example of pathological protein aggregation associated with formation of alpha-helices [Biochemistry (2002) 41, 7150-5]. In an effort to investigate the interplay between phosphorylation and the putative role of short regions of alpha-helix in the polymerization of tau, we have focused on the region of tau encompassing residues 317 to 335. This region is able to form protein fibrils in vitro and has two serines that are often found phosphorylated in PHFs. Using trifluoroethanol as an indicator of the alpha-helix, we find that the stability of the alpha-helix conformation is enhanced by phosphorylation. Circular dichroism data show that the phosphorylated peptide in water presents a content in alpha-helix similar to the unphosphorylated peptide at 40% of trifluoroethanol. Phosphorylation also stimulates the effect of juglone in promoting the in vitro polymerization. Furthermore, Fourier transformed infrared spectroscopy of samples of phosphorylated peptide polymerized with juglone renders a spectrum with maxima at approximately 1665 and approximately 1675 cm(-1), which are suggestive of a mixture of turns and alpha-helix conformations. Our results provide a direct mechanistic connection between phosphorylation and polymerization in tau. The connection between phosphorylation and polymerization appears to involve formation of alpha-helix structure.  相似文献   

11.
Wang SL  Lin SY  Li MJ  Wei YS  Hsieh TF 《Biophysical chemistry》2005,114(2-3):205-212
In order to investigate the thermal stability of human serum albumin (HAS) in three different states (aqueous solution, cast film, and solid powder), Fourier transform infrared (FTIR) spectroscopy was applied to determine the protein secondary structural changes of these HSA samples under non-isothermal or isothermal condition. The structural similarity of HSA before and after thermal treatment was also studied to estimate the thermo-reversible property of the HSA in these different states. The results indicate that with the increase of temperature, the maximum peaks at 1652 and 1547 cm(-1) (alpha-helix) shifted to 1647 and 1542 cm(-1) (random coil), respectively. An additional peak at 1620 cm(-1) assigned to intermolecular beta-sheet structure clearly appeared with temperature. The alpha-helix content was found to be reduced in favor of the formation of intermolecular hydrogen-bonded antiparallel beta-sheet structure beyond 60 degrees C in the heating process. From the data of structural similarity, HSA sample whether in solid powder or cast film form exhibited a better thermo-reversible property than HSA in aqueous solution even heating to 200 degrees C.  相似文献   

12.
The vacuum-ultraviolet circular dichroism (VUVCD) spectra of 16 globular proteins (insulin, lactate dehydrogenase, glucose isomerase, lipase, conalbumin, transferrin, catalase, subtilisin A, alpha-amylase, staphylococcal nuclease, papain, thioredoxin, carbonic anhydrase, elastase, avidin, and xylanase) were successfully measured in aqueous solutions at 25 degrees C from 260 to 160 nm under a high vacuum using a synchrotron-radiation VUVCD spectrophotometer. These proteins exhibited characteristic CD spectra below 190 nm that were related to their different secondary structures, which could not be detected with a conventional CD spectrophotometer. The component spectra of alpha-helices, beta-strands, turns, and unordered structures were obtained by deconvolution analysis of the VUVCD spectra of 31 reference proteins including the 15 proteins reported in our previous paper [Matsuo, K. et al. (2004) J. Biochem. 135, 405-411]. Prediction of the secondary-structure contents using the SELCON3 program was greatly improved, especially for alpha-helices, by extending the short-wavelength limit of CD spectra to 160 nm and by increasing the number of reference proteins. The numbers of alpha-helix and beta-strand segments, which were calculated from the distorted alpha-helix and beta-strand contents, were close to those obtained on X-ray crystallography. These results demonstrate the usefulness of synchrotron-radiation VUVCD spectroscopy for the secondary structure analysis of proteins.  相似文献   

13.
The 247-260 and 289-299 alpha-helices of Bacillus subtilis neutral protease have a lysine in their N-terminal turn. These lysines were replaced by Ser or Asp in order to improve electrostatic interactions with the alpha-helix dipole. After replacing Lys by Ser at positions 249 or 290, the thermostability of the enzyme was increased by 0.3 and 1.0 degrees C, respectively. The Asp249 and Asp290 mutants exhibited a stabilization of 0.6 and 1.2 degrees C, respectively. The results show the feasibility of stabilizing enzymes by introducing favourable residues at the end of alpha-helices.  相似文献   

14.
Annexins are calcium‐dependent phospholipid‐binding proteins involved in calcium signaling and intracellular membrane trafficking among other functions. Vesicle aggregation is a crucial event to make possible the membrane remodeling but this process is energetically unfavorable, and phospholipid membranes do not aggregate and fuse spontaneously. This issue can be circumvented by the presence of different agents such as divalent cations and/or proteins, among them some annexins. Although human annexin A5 lacks the ability to aggregate vesicles, here we demonstrate that its highly similar chicken ortholog induces aggregation of vesicles containing acidic phospholipids even at low protein and/or calcium concentration by establishment of protein dimers. Our experiments show that the ability to aggregate vesicles mainly resides in the N‐terminus as truncation of the N‐terminus of chicken annexin A5 significantly decreases this process and replacement of the N‐terminus of human annexin A5 by that of chicken switches on aggregation; in both cases, there are no changes in the overall protein structure and only minor changes in phospholipid binding. Electrostatic repulsions between negatively charged residues in the concave face of the molecule, mainly in the N‐terminus, seem to be responsible for the impairment of dimer formation in human annexin A5. Taking into account that chicken annexin A5 presents a high sequence and structural similarity with mammalian annexins absent in birds, as annexins A3 and A4, some of the physiological functions exerted by these proteins may be carried out by chicken annexin A5, even those that could require calcium‐dependent membrane aggregation.  相似文献   

15.
Ye M  Zhang QL  Li H  Weng YX  Wang WC  Qiu XG 《Biophysical journal》2007,93(8):2756-2766
The infrared (IR) absorption of the amide I band for the loop structure may overlap with that of the alpha-helices, which can lead to the misassignment of the protein secondary structures. A resolution-enhanced Fourier transform infrared (FTIR) spectroscopic method and temperature-jump (T-jump) time-resolved IR absorbance difference spectra were used to identify one specific loop absorption from the helical IR absorption bands of horse heart cytochrome c in D2O at a pD around 7.0. This small loop consists of residues 70-85 with Met-80 binding to the heme Fe(III). The FTIR spectra in amide I' region indicate that the loop and the helical absorption bands overlap at 1653 cm(-1) at room temperature. Thermal titration of the amide I' intensity at 1653 cm(-1) reveals that a transition in loop structural change occurs at lower temperature (Tm=45 degrees C), well before the global unfolding of the secondary structure (Tm approximately 82 degrees C). This loop structural change is assigned as being triggered by the Met-80 deligation from the heme Fe(III). T-jump time-resolved IR absorbance difference spectra reveal that a T-jump from 25 degrees C to 35 degrees C breaks the Fe-S bond between the Met-80 and the iron reversibly, which leads to a loop (1653 cm(-1), overlap with the helical absorption) to random coil (1645 cm(-1)) transition. The observed unfolding rate constant interpreted as the intrachain diffusion rate for this 16 residue loop was approximately 3.6x10(6) s(-1).  相似文献   

16.
The amyloidogenic prefibrillar partially denatured intermediate of human lysozyme, prepared by heating the native protein to 57 degrees C at pH 2.0, was studied using Raman optical activity (ROA). A positive band in the room temperature ROA spectrum of the native protein at approximately 1345 cm(-1), assigned to a hydrated form of alpha-helix, is not present in that of the prefibrillar intermediate, where a new strong positive band at approximately 1318 cm(-1) appears instead that is assigned to the poly(l-proline) II (PPII)-helical conformation. A sharp negative band at approximately 1241 cm(-1) in the native protein, assigned to beta-strand, shows little change in the ROA spectrum of the prefibrillar intermediate. The disappearance of a positive ROA band at approximately 1551 cm(-1) assigned to vibrations of tryptophan side-chains indicates that major conformational changes have occurred among the five tryptophan residues present in human lysozyme, four of which are located in the alpha-domain. The various ROA data suggest that a substantial loss of tertiary structure has occurred in the prefibrillar intermediate and that this is located more in the alpha-domain than in the beta-domain. There is no evidence for any increase in beta-structure. The ROA spectrum of hen lysozyme, which does not form amyloid fibrils so readily, remains much more native-like on heating to 57 degrees C at pH 2.0. The thermal behaviour of the alanine-rich alpha-helical peptide AK21 in aqueous solution was found to be similar to that of human lysozyme. Hydrated alpha-helix therefore appears to readily undergo a conformational change to PPII structure on heating, which may be a key step in the conversion of alpha-helix into beta-sheet in the formation of amyloid fibrils in human lysozyme. Since it is extended, flexible, lacks intrachain hydrogen bonds and is fully hydrated in aqueous solution, PPII helix has the appropriate characteristics to be implicated as a critical conformational element in many conformational diseases. Disorder of the PPII type may be a sine qua non for the formation of regular fibrils; whereas the more dynamic disorder of the random coil may lead only to amorphous aggregates.  相似文献   

17.
The three-dimensional structures of the two peptides, lactococcin G-alpha (LcnG-alpha; contains 39 residues) and lactococcin G-beta (LcnG-beta, contains 35 residues), that constitute the two-peptide bacteriocin lactococcin G (LcnG) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles and TFE. In DPC, LcnG-alpha has an N-terminal alpha-helix (residues 3-21) that contains a GxxxG helix-helix interaction motif (residues 7-11) and a less well defined C-terminal alpha-helix (residues 24-34), and in between (residues 18-22) there is a second somewhat flexible GxxxG-motif. Its structure in TFE was similar. In DPC, LcnG-beta has an N-terminal alpha-helix (residues 6-19). The region from residues 20 to 35, which also contains a flexible GxxxG-motif (residues 18-22), appeared to be fairly unstructured in DPC. In the presence of TFE, however, the region between and including residues 23 and 32 formed a well defined alpha-helix. The N-terminal helix between and including residues 6 and 19 seen in the presence of DPC, was broken at residues 8 and 9 in the presence of TFE. The N-terminal helices, both in LcnG-alpha and -beta, are amphiphilic. We postulate that LcnG-alpha and -beta have a parallel orientation and interact through helix-helix interactions involving the first GxxxG (residues 7-11) motif in LcnG-alpha and the one (residues 18-22) in LcnG-beta, and that they thus lie in a staggered fashion relative to each other.  相似文献   

18.
The secondary structure of the catalytic domain from protein kinase C zeta was studied using IR spectroscopy. In the presence of the substrate MgATP, there was a significant change in the secondary structure. After heating to 80 degrees C, a 14% decrease in the alpha-helix component was observed, accompanied by a 6% decrease in the beta-pleated sheet; no change was observed in the large loops or in 3(10)-helix plus associated loops. The maximum increase with heating was observed in the aggregated beta-sheet component, with an increase of 14%. In the presence of MgATP, and compared with the sample heated in its absence, there was a substantial decrease in the 3(10)-helix plus associated loops and an increase in alpha-helix. Synchronous 2D-IR correlation showed that the main changes occurred at 1617 cm(-1), which was assigned to changes in the intermolecular aggregated beta-sheet of the denaturated protein. This increase was mainly correlated with the change in alpha-helix. In the presence of MgATP, the main correlation was between aggregated beta-sheet and the large loops component. The asynchronous 2D-correlation spectrum indicated that a number of components are transformed in intermolecularly aggregated beta-sheet, especially the alpha-helix and beta-sheet components. It is interesting that changes in 3(10)-helix plus associated loops and in alpha-helix preceded changes in large loops, which suggests that the open loops structure exists as an intermediate state during denaturation. In summary, IR spectroscopy revealed an important effect of MgATP on the secondary structure and on the thermal unfolding process when this was induced, whereas 2D-IR correlation spectroscopy allowed us to show the establishment of the denaturation pathway of this protein.  相似文献   

19.
Winter A  Yusof AM  Gao E  Yan HL  Sun SH  Hofmann A 《The FEBS journal》2006,273(14):3238-3247
Annexin B1 from Cysticercus cellulosae has recently been identified using immunological screening in an attempt to find novel antigens for vaccine development against cysticercosis. The protein possesses anticoagulant activity and carries significant therapeutic potential due to its thrombus-targeting and thrombolytic properties. We investigated the biochemical properties of annexin B1 using liposome and heparin Sepharose copelleting assays, as well as CD spectroscopy. The calcium-dependent binding to acidic phospholipid membranes is reminiscent of other mammalian annexins with a clear preference for high phosphatidylserine content. A unique property of annexin B1 is its ability to bind to liposomes with high phosphatidylserine content in the absence of calcium, which might be due to the presence of several basic residues on the convex protein surface that harbours the membrane-binding loops. Annexin B1 demonstrates lectin properties and binds to heparin Sepharose in a cooperative, calcium-dependent manner. Although this binding is reversible to a large extent, a small fraction of the protein remains bound to the glycosaminoglycan even in the presence of high concentrations of EDTA. Analogous to annexin A5, we propose a model of heparin wrapped around the protein thereby engaging in calcium-dependent and calcium-independent interactions. Although the calcium-independent heparin-binding sites identified in annexin A5 are not conserved, we hypothesize three possible sites in annexin B1. Results from CD spectroscopy and thermal denaturation indicate that, in solution, the protein binds calcium with a low affinity that leads to a slight increase in folding stability.  相似文献   

20.
The secondary structure for two murine recombinant proteins, interleukins 1 alpha and 1 beta (rmIL-1 alpha and -1 beta), has been analyzed by Fourier transform infrared (IR) spectroscopy and then compared to results obtained by X-ray diffraction, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy. The IR results obtained here for rmIL-1 alpha and -1 beta suggested that their secondary structures consisted predominantly of beta-sheets or strands. However, the analysis also revealed a significant absorption band near 1656 cm-1, which is typically assigned to alpha-helical or random structures. When these same murine polypeptides were analyzed by CD, no evidence of alpha-helical structures was observed. Further, published X-ray diffraction and NMR studies characterizing the human forms of IL-1 alpha and -1 beta indicate the absence of alpha-helices and that the human proteins are composed mainly of beta-strands (i.e., greater than 55%), with approximately 24% of the amino acids involved in large loops connecting the strands. The murine IL-1 proteins, when compared to their respective human counterparts, each show greater than 80% sequence homology. Given this fact, the CD analyses, and the result that this IR band amounted to 21% of the overall integrated area, the absorption peak at 1656 cm-1 was attributed to the presence of large loops rather than to alpha-helical or random structures. Such a structural assignment appears reasonable and is totally consistent with the established existence of large loops in the human forms as well as in other proteins found to fold similarly (viz., human bFGF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号