首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The critical role that antibody responses to the V3 loop epitope play in human immunodeficiency virus type 1 (HIV-1) neutralization has caused this peptide to be used in many HIV-1 vaccine candidates. To enhance cross-reactivity toward several V3 sequences, a database of 50 peptides of the V3 region from HIV-1 subtype A was used to design both a consensus peptide and a combinatorial peptide (mixotope) library representative of these sequences. The two immunogens (consensus and mixotope) were incorporated into multiple antigen peptide (MAP) constructions, conjugated to a recombinant surface antigen from hepatitis B virus (HbsAg) carrier protein, and inoculated to mice in combination with a C4 (CD4-binding) peptide MAP construction, also conjugated to HBsAg. The respective responses and cross-reactivity to several V3 loop sequences of both types of immunogens were compared. Mice inoculated with the V3 consensus-MAP-HBsAg + C4-MAP-HBsAg mixture elicited higher antibody responses than those given the V3 mixotope-MAP-HBsAg + C4-MAP-HBsAg mixture. In addition, pooled serum from the first group of immunogens analyzed at dilution 1:100 had higher cross-reactivity against V3 peptides on cellulose membranes than those from mice given the combinatorial immunogen. Fine epitope mapping of both consensus and C4 peptide by the spot synthesis technique showed that sera of the first group strongly recognized both sequences in their entirety, whereas mice immunized with the mixotope library recognized only the N-terminal region of V3. These results seem to suggest that the V3 consensus peptide is superior to the combinatorial strategy in inducing potent and cross-reactive responses to HIV.  相似文献   

2.
The multiple antigenic peptide system (MAP) has been proposed as a novel and valuable approach for eliciting antibodies for peptides and developing synthetic vaccines. Multi-epitope polypeptides (MEP) have also been developed as an alternative to the recombinant approach for vaccines. The V3 loop from the HIV type 1 (HIV-1) external glycoprotein (gp120) contains the principal neutralization domain (PND). Antibodies against this region neutralize HIV-1 in vitro and in vivo. In this work, a novel presentation of di-epitope MAP was synthesized. A monomeric MAP carrying two identical JY1 V3 sequences as B-cell epitopes and the 830-843 region of tetanus toxoid as a T-helper cell epitope was synthesized. This basic structure was covalently linked to produce a four-JY1-branched homodimer (JY1-MAP4). Additionally, six different monomeric MAPs, bearing four copies of V3 from isolates LR150, JY1, RF, MN, BRVA and IIIB, were synthesized. These monomers were conveniently linked among themselves to produce homodimeric and heterodimeric MAPs of eight V3 branches (V3-MAP8). JY1-MAP8 elicited higher antibody titers in Balb/c mice than JY1-MAP4. The immunogenicity of two different, hexavalent V3-MAP8 mixtures and the MEP TAB9, which tandems the same six V3 sequences in a single molecule, were compared. The antibody response against the mixtures of the heterodimeric MAP showed a wider recognition pattern of the V3 region, while the homodimeric cocktail showed an intermediate pattern. Antibodies elicited by TAB9 recognized only the JY1, LR150 peptides. These results emphasize the influence of V3 epitope presentation upon the characteristics of the antibody response generated.  相似文献   

3.
The hypervariable domain of the HIV gp120, the V3 loop domain, represents a target for neutralizing antibodies and for HIV vaccine strategies. In this study, we have investigated in murine species the potential cross-reactivity of immune responses elicited by immunization either with individual V3 peptides, derived from distinct HIV sequences (BRU, RF, SF2, MN and ELI sequences), or with a V3 combinatorial peptide library. We observed that individual V3 peptides are immunogenic but elicit a specific B- and T-cell immune response that is mainly restricted to the sequence of the immunizing peptide. In particular, T-cell responses that depend on T-cell receptor recognition of peptides bound to the molecules encoded by the major histocompatibility complex were significantly influenced by small differences in the peptide amino acid sequence. The combinatorial V3 peptide library, previously described as B- and T-cell immunogens, induced a more broadly reactive immune response, specially when T-cell cytokine secretion was used as a readout for restimulation of T-cells with individual V3 peptides. These data suggest that amino acid variations in the sequence of an antigenic peptide could lead to the induction of different transducing signals in the primed T-cell population and to the activation of T-cells with distinct cytokine secretion properties. These observations may have implications in the understanding of antigenic variability and in the design of vaccine strategies.  相似文献   

4.
The CopB outer membrane protein has been considered a vaccine candidate for the prevention of infections due to Moraxella catarrhalis. Monoclonal antibody 10F3 recognizes whole cells of about 70% of clinical isolates, suggesting that this epitope is reasonably conserved. To determine whether CopB has other surface epitopes, we analyzed M. catarrhalis isolates using polyclonal sera against recombinant CopB proteins from a 10F3 positive isolate and a 10F3 negative isolate, and polyclonal sera against synthetic peptides that contained the sequence corresponding to the 10F3 epitope region of three different isolates. Extensive cross-reactivity was observed with the anti-CopB sera towards purified recombinant CopB proteins in Western blot and antigen ELISA, implying that antigenic regions common to both proteins were present. However, anti-CopB sera resembled anti-CopB peptide sera in exhibiting similar binding specificity to whole cells, segregating M. catarrhalis isolates into four CopB groups. We subsequently cloned and sequenced the copB genes from representative isolates. The deduced CopB amino acid sequences and the degree of sequence identity also demonstrated the existence of the same four CopB groups. Each of the four groups had a unique sequence in the 10F3 epitope region and a fifth group had the epitope deleted. The polymorphism of the major surface epitope prompts further consideration regarding the utility of CopB as a vaccine component as well as the design of an efficacious CopB-based vaccine to achieve broad protection against Moraxella infection.  相似文献   

5.
Peptides are of great interest to be used as vaccine antigens due to their safety, ease of manufacturing and specificity in generating immune response. There have been massive discoveries of peptide antigens over the past decade. However, peptides alone are poorly immunogenic, which demand co-administration with strong adjuvant to enhance their immunogenicity. Recently, fibril-forming peptides such as Q11 and lipoamino acid-based carrier have been identified to induce substantial immune responses when covalently linked to peptide epitope. In this study, we have incorporated either Q11 or lipoamino acids to a peptide epitope (J14) derived from M protein of group A streptococcus to develop self-adjuvanting vaccines. J14, Q11 and lipoamino acids were also conjugated together in a single vaccine construct in an attempt to evaluate the synergy effect of combining multiple adjuvants. Physicochemical characterization demonstrated that the vaccine constructs folded differently and self-assembled into nanoparticles. Significantly, only vaccine constructs containing double copies of lipoamino acids (regardless in conjugation with Q11 or not) were capable to induce significant dendritic cells uptake and subsequent J14-specific antibody responses in non-sizes dependent manners. Q11 had minimal impact in enhancing the immunogenicity of J14 even when it was used in combination with lipoamino acids. These findings highlight the impact of lipoamino acids moiety as a promising immunostimulant carrier and its number of attachment to peptide epitope was found to have a profound effect on the vaccine immunogenicity.  相似文献   

6.
Multiple Ag peptide (MAP) system without the use of a protein carrier was used as a vaccine model in three species of animals. Synthetic peptides from the V3 region of the gp120 of IIIB, RF and MN HIV-1 isolates were used as the Ag. MAP consisting of various chain lengths, from 11 to 24 residues, were prepared in a monoepitope configuration containing four repeats of each individual peptide. In parallel, they were synthesized in a diepitope configuration adding at the carboxyl-terminus of the V3 peptides a conserved sequence, known to be a Th cell epitope of gp120. The antibody response elicited by the monoepitope constructs was species-dependent. Rabbits produced immunity against all nine peptides, whereas mice were strongly reactive mainly to the longest sequence of the IIIB isolate. The immune response of guinea pigs was intermediate to those of rabbits and mice. Diepitope MAPs were immunogenic in all three species and elicited significantly higher titers than those raised by the immunization with the monoepitope MAPs. The response was type specific; the high-titered antibodies were reactive mostly against the isolate from which the peptides were derived, with a small cross-reactivity in ELISA between IIIB and RF strains. The dominant antigenic site of the B cell epitope, IIIB sequence, was located at the amino and central part of the MAP and a sequence overlapping the putative V3 reverse-turn was particularly reactive with the raised antibodies. Moreover, sera from the immunized animals inhibited virus-dependent cell fusion. These results show that MAP, with a chemically defined structure and without the use of a protein carrier, can be potentially useful for the design of synthetic HIV-1 vaccine candidates.  相似文献   

7.
To identify the major antigenic determinant of native Salmonella flagella of antigenic type d, we constructed a series of mutated fliCd genes with deletions and amino acid alterations in hypervariable region IV and in region of putative epitopes as suggested by epitope mapping with synthetic octameric peptides (T.M. Joys and F. Schödel, Infect. Immun. 59:3330-3332, 1991). The expressed product of most of the mutant genes, with deletions of up to 92 amino acids in region IV, assembled into functional flagella and conferred motility on flagellin-deficient hosts. Serological analysis of these flagella with different anti-d antibodies revealed that the peptide sequence centered at amino acids 229 to 230 of flagellin was a dominant B-cell epitope at the surface of d flagella, because replacement of these two amino acids alone or together with their flanking sequence by a tripeptide specified by a linker sequence eliminated most reactivity with antisera against wild-type d flagella as tested by enzyme-linked immunosorbent assay or by Western immunoblot. Functional analysis of the mutated flagellin genes with or without an insert suggested that amino acids 180 to 214 in the 5' part of hypervariable region IV (residues 181 to 307 of the total of 505) is important to the function of flagella. The hybrid proteins formed by insertion of peptide sequence pre-S1 12-47 of hepatitis B virus surface antigen into the deleted flagellins assembled into functional flagella, and antibody to the pre-S1 sequence was detected after immunization of mice with the hybrid protein. This suggests that such mutant flagellins containing heterologous epitopes have potential as vaccines.  相似文献   

8.
Streptococcus pyogenes (group A streptococcus, GAS) is a Gram-positive bacterial pathogen responsible for a wide variety of diseases. To date, GAS vaccine development has focused primarily on the M-protein. The M-protein is highly variable at the amino (N)-terminus (determining serotype) but is conserved at the carboxyl (C)-terminus. Previously a 29 amino acid peptide (named J14) from the conserved region of the M-protein was identified as a potential vaccine candidate. J14 was capable of eliciting protective antibodies that recognized many GAS serotypes when co-administered with immuno-stimulants. This minimal epitope however showed no immunogenicity when administered alone. In an attempt overcome this immunological non-responsiveness, we developed a self-adjuvanting vaccine candidate composed of three components: the B-cell epitope (J14), a universal helper T-cell epitope (P25) and a lipid moiety consisting of lipoamino acids (Laas) which target Toll-like receptor 2 (TLR2). Immunological evaluation in B10.BR (H-2k) mice demonstrated that the epitope attachment to the point of lipid moiety, and the length of the Laa alkyl chain have a profound effect on vaccine immunogenicity after intranasal administration. It was demonstrated that a vaccine featuring C-terminal lipid moiety containing alkyl chains of 16 carbons, with P25 located at the N-terminus, and J14 attached to the side chain of a central lysine residue was capable of inducing optimal antibody response. These findings have considerable relevance to the development of a broad spectrum J14-based GAS vaccine and in particular provided a rational basis for peptide vaccine design based on this self-adjuvanting lipopeptide technology.  相似文献   

9.
Regulatory mechanisms governing B cell responses to the trypanosome variant surface glycoprotein (VSG) molecule currently are being studied. As a fundamental basis for examining such regulation, the epitope specificities and idiotypic profiles of murine mAb produced to the VSG of Trypanosoma brucei rhodesiense clone LouTat 1.5 were determined. Variant specific mAb were used to probe VSG proteolytic peptides in Western blot analysis, to serve as competitive inhibitors in RIA analyses with purified VSG molecules, and to examine membrane-binding patterns of labeled trypanosome cells in order to evaluate epitope specificities. By using these approaches, a conformational epitope expressed only on the VSG 1.5 surface coat of viable trypanosomes was detected, and two nonconformationally determined epitope clusters were recognized within the subsurface V region of the VSG 1.5 molecule. The subsurface epitope clusters may be repeated on the VSG molecule because each was present on more than one proteolytic VSG peptide fragment. Idiotypic profiles of selected VSG-specific mAb subsequently were determined with xenogeneic antiidiotypic typing sera. Results from competitive inhibition RIA analyses using these reagents demonstrated that varying levels of idiotypic cross-reactivity exist among the subsurface VSG epitope-specific mAb; this cross-reactivity extended to idiotope(s) expressed by a mAb recognizing a surface conformational epitope of the VSG 1.5 molecule. Analysis of complementary idiotypic/antiidiotypic antibody pairs revealed that these specific interactions were inhibited by purified VSG 1.5 but not by purified VSG 1.9, which was derived from a heterologous variant antigenic type. The model mAb described here, and reagents recognizing their idiotypic markers, comprise a foundation for analysis of idiotypic regulation of VSG-specific B cell responses during infection.  相似文献   

10.
The protein Ag, tobacco mosaic virus protein, (TMVP) and its tryptic peptide number 8 (residues 93-112 of the protein) exhibit cross-reactivity on the T cell level in some strains of mice (e.g., C3H.SW, C57BL/10); these strains are termed cross-reactive (CR). In other strains such as A/J or B10.BR, no cross-reactivity is exhibited; these strains are termed non-cross-reactive (NCR). Genetic experiments indicated that the cross-reactivity is dominant and that it is mapped to the I-A or I-E region of the MHC, with cross-reactivity exhibited by the I-Ab haplotype but not by I-Ak or I-Ek. Cell reconstitution experiments have indicated that the non-cross-reactivity is associated with the inability of the NCR APC to present Ag. Analysis of the area(s) on peptide 8 which serve(s) as epitope revealed that both strains recognize an overlapping area consisting of 11 amino acid residues in the middle of peptide 8 (residues 97-107), which by itself is nonstimulatory to TMVP- or peptide 8-immune T cells of the CR or the NCR strains. However, the addition of a few amino acid residues of the sequence of peptide 8 to this area converts it to a complete stimulatory epitope. Additivity experiments revealed that the CR strain contains two major T cell populations each recognizing this middle region of peptide 8 when elongated by a few amino acids N-terminally and C-terminally, respectively. In contrast, the NCR strain contains one major T cell population recognizing elongation only N-terminally. Because TMVP (but not peptide 8) requires processing before presentation to T cells, it is postulated that, during processing of TMVP, there occur alterations in the area of the proximal three or four N-terminal amino acids of the region consisting of peptide 8, destroying the only region containing the T cell epitope recognized by the NCR strain, hence TMVP and peptide 8 do not exhibit cross-reactivity in this strain. The same alterations of TMVP still leave intact an epitope consisting of amino acid residues C-terminal to the altered area which is recognized by the CR strain, hence the cross-reactivity exhibited by this strain. The results suggest that the difference in cross-reactivity on the T cell level between TMVP and peptide 8 exhibited by the strains may be due to differences in the orientation of presentation and the subsequent cell recognition of an epitope contained within peptide 8.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Polyclonal sera obtained from African children with acute measles were used to screen a panel of 15-mer overlapping peptides representing the sequence of measles virus (MV) fusion (F) protein. An immunodominant antigenic region from the F protein (p32; amino acids 388 to 402) was found to represent an amino acid sequence within the highly conserved cysteine-rich domain of the F protein of paramyxoviruses. Epitope mapping of this peptide indicated that the complete 15-amino-acid sequence was necessary for high-affinity interaction with anti-MV antibodies. Immunization of two strains of mice with the p32 peptide indicated that it was immunogenic and could induce antipeptide antibodies which cross-reacted with and neutralized MV infectivity in vitro. Moreover, passive transfer of antipeptide antibodies conferred significant protection against fatal rodent-adapted MV-induced encephalitis in susceptible mice. These results indicate that this epitope represents a candidate for inclusion in a future peptide vaccine for measles.  相似文献   

12.

Background

Cytotoxic T cell (CTL) cross-reactivity is believed to play a pivotal role in generating immune responses but the extent and mechanisms of CTL cross-reactivity remain largely unknown. Several studies suggest that CTL clones can recognize highly diverse peptides, some sharing no obvious sequence identity. The emerging realization in the field is that T cell receptors (TcR) recognize multiple distinct ligands.

Principal Findings

First, we analyzed peptide scans of the HIV epitope SLFNTVATL (SFL9) and found that TCR specificity is position dependent and that biochemically similar amino acid substitutions do not drastically affect recognition. Inspired by this, we developed a general model of TCR peptide recognition using amino acid similarity matrices and found that such a model was able to predict the cross-reactivity of a diverse set of CTL epitopes. With this model, we were able to demonstrate that seemingly distinct T cell epitopes, i.e., ones with low sequence identity, are in fact more biochemically similar than expected. Additionally, an analysis of HIV immunogenicity data with our model showed that CTLs have the tendency to respond mostly to peptides that do not resemble self-antigens.

Conclusions

T cell cross-reactivity can thus, to an extent greater than earlier appreciated, be explained by amino acid similarity. The results presented in this paper will help resolving some of the long-lasting discussions in the field of T cell cross-reactivity.  相似文献   

13.
The third hypervariable domain V3 of the human immunodeficiency virus type 1 gpl20 envelope glycoprotein contains neutralizing epitopes and plays an important role in the diagnosis of HIV infection . Neutralizing antibodies bind to conserved epitope with sequence GPG of V3 loop. The effect of sequence variation on the antigenic properties of the V3 epitope gp120 was studied using five synthetic peptides. The amino acid sequence of the peptide corresponding to the V3 region gp120 of HIV-1 subtype C showed the highest immunoreactivity. The DNA fragment encoding V3-C region gp120 was synthesized by polymerase chain reaction and cloned into pET41b vector. The recombinant plasmid was expressed in the E. coli cells, and recombinant protein was purified using glutathione-S sepharose affinity chromatography. The serological activity of the recombinant protein was tested using ELISA and compared to activity of similar synthetic peptide. The results of this study showed that most immunoreactive agent was the amino acid sequence of V3 region gp120 of HIV-1 subtype C. The recombinant antigen comprising this sequence was more antigenic than synthetic peptide with the same sequence. The evaluation of this antigen shows that this protein is a good candidate for the immunoassay development.  相似文献   

14.
A major problem in designing vaccine for the dengue virus has been the high antigenic variability in the envelope protein of different virus strains. In this study, a computational approach was adopted to identify a multi-epitope vaccine candidate against dengue virus that may be suitable for large populations in the dengue-endemic regions. Different bioinformatics tools were exploited that helped the identification of a conserved immunological hot-spot in the dengue envelope protein. The tools also rendered the prediction of immunogenicity and population coverage to the proposed 'in silico' vaccine candidate against dengue. A peptide region, spanning 19 amino acids, was identified in the envelope protein which found to be conserved in all four types of dengue viruses. Ten proteasomal cleavage sites were identified within the 19-mer conserved peptide sequence and a total of 8 overlapping putative cytotoxic T cell (CTL) epitopes were identified. The immunogenicity of these epitopes was evaluated in terms of their binding affinities to and dissociation half-time from respective human leukocyte antigen (HLA) molecules. The HLA allele frequencies were studied among populations in the dengue endemic regions and compared with respect to HLA restriction patterns of the overlapping epitopes. The cumulative population coverage for these epitopes as vaccine candidates was high ranging from approximately 80% to 92%. Structural analysis suggested that a 9-mer epitope fitted well into the peptide-binding groove of HLA-A*0201. In conclusion, the 19-mer epitope cluster was shown to have the potential for use as a vaccine candidate against dengue.  相似文献   

15.
Our group have produced in Escherichia coli and evaluated the immunogenicity of different multi-epitope polypeptides (MEPs) bearing one copy of V3 loop sequential B cell epitopes from several isolates of human immunodeficiency virus type 1 (HIV-1) gp120. One of these MEPs called TAB9 comprises the 15 central amino acids of the V3 loop from isolates LR150, JY1, RF, MN, BRVA and IIIB in this order. Antibodies against all V3 regions were elicited after immunization of rabbits, macaques and humans with TAB9. In contrast, mice immunized with this protein only developed antibodies against epitopes JY1, LR150 and MN in that order (JY1>LR150>MN>RF, BRVA, IIIB) resembling an immunodominant gradient from the N-terminus to the C-terminal portion of this construction. To assess what role the location of the V3 epitopes in TAB9 could play, we constructed the protein TAB16, by altering the position of V3 epitopes in TAB9 primary structure and compared the pattern of antibodies elicited by both MEPs in H-2(d) Balb/c mice. The MEP TAB16 elicited antibody titers comparable to that of the sera from mice immunized with TAB9. There were no statistical differences in antibody titers between both groups (P>0.05). JY1, LR150 and MN V3 epitopes were again immunodominant in mice immunized with TAB16 fusion protein. The highest antibody titers detected in both groups among V3 epitopes corresponded to JY1, now located at the C-terminus of the permuted chimera. Antibodies against V3 epitopes RF, BRVA and IIIB were again not detected. Additionally, the MN V3 epitope showed to be significantly more immunogenic in its new orientation in TAB16, possibly as a result of a higher degree of accessibility in the surface of the protein. The results of the present investigation strongly suggest that the sequential order or the intramolecular position of V3 epitopes inside the primary structure of TAB9 and TAB16 MEPs does not interfere with the global immunogenicity or with the hierarchy of immunodominance of these regions.  相似文献   

16.
Shigella flexneri 3a is one of the five major strains of the Shigella genus responsible for dysentery, especially among children, in regions of high poverty and poor sanitation. The outer membrane proteins (OMP) of this bacterium elicit immunological responses and are considered a prime target for vaccine development. When injected into mice they elicit a protective immunological response against a lethal dose of the pathogen. The OMPs from S. flexneri 3a were isolated and resolved by two-dimension-SDS-PAGE. Two 38-kDa spots were of particular interest since in our earlier studies OMPs of such molecular mass were found to interact with umbilical cord sera. These two spots were identified as OmpC by ESI-MS/MS spectrometry. By DNA sequencing, the ompC gene from S. flexneri 3a was identical to ompC from S. flexneri 2a [Gene Bank: 24113600]. A 3D model of OmpC was built and used to predict B-cell type (discontinuous) antigenic epitopes. Six epitopes bearing the highest score were selected and the corresponding peptides were synthesized. Only the peptides representing loop V of OmpC reacted strongly with the umbilical cord serum immunoglobulins. To determine which amino acids are essential for the antigenic activity of the epitope, the loop V was scanned with a series of dodecapeptides. The peptide RYDERY was identified as a minimal sequence for the loop V epitope. Truncation at either the C- or N-terminus rendered this peptide inactive. Apart from C-terminal tyrosine, substitution of each of the remaining five amino acids with glycine, led to a precipitous loss of immunological activity. This peptide may serve as a ligand in affinity chromatography of OmpC-specific antibodies and as a component of a vaccine designed to boost human immune defenses against enterobacterial infections.  相似文献   

17.
Antibodies raised against the synthetic peptide corresponding to the carboxy-terminal 24 amino acids (305-328) of the heavy chain of the hemagglutinin molecule of influenza virus A/X-31 (H3) bind this peptide at three antigenic sites. These sites were identified by assaying binding of polyclonal BALB/c mouse antipeptide sera to the complete set of all possible di-, tri, tetra-, penta-, hexa-, hepta-, and octapeptides homologous with the 24-residue sequence. Individual epitopes were defined and essential residues identified by testing the binding of monoclonal antibodies to sets of peptide analogues in which every one of the homologous residues was replaced in turn by each of the 19 alternative genetically coded amino acids. The immunodominant epitope was shown to be a linear sequence of five amino acids, 314LKLAT318. Replacement of any one of these residues with any other amino acid resulted in loss of antibody binding, indicating that all five are essential to the interaction and that they are probably contact residues. Another antigenic site contains at least two overlapping epitopes: polyclonal sera recognize predominantly an epitope or epitopes encompassed by the linear sequence 320MRNVPEKQT328, whereas the epitope defined by a particular monoclonal antibody comprises the seven amino acids 322NVPEKQT328, of which N322, E325, and Q327 were implicated as contact residues.  相似文献   

18.
Antigenic profiles of post-2002 H5N1 viruses representing major genetic clades and various geographic sources were investigated using a panel of 17 monoclonal antibodies raised from five H5N1 strains. Four antigenic groups from seven clades of H5N1 virus were distinguished and characterized based on their cross-reactivity to the monoclonal antibodies in hemagglutination inhibition and cell-based neutralization assays. Genetic polymorphisms associated with the variation of antigenicity of H5N1 strains were identified and further verified in antigenic analysis with recombinant H5N1 viruses carrying specific mutations in the hemagglutinin protein. Modification of some of these genetic variations produced marked improvement to the immunogenicity and cross-reactivity of H5N1 strains in assays utilizing monoclonal antibodies and ferret antisera raised against clade 1 and 2 H5N1 viruses, suggesting that these sites represent antigenically significant amino acids. These results provide a comprehensive antigenic profile for H5N1 virus strains circulating in recent years and will facilitate the recognition of emerging antigenic variants of H5N1 virus and aid in the selection of vaccine strains.  相似文献   

19.
To test the immunogenicity of GPGRAFY-epitope-based candidate vaccines, a peptide with four repetitive GPGRAFY epitopes, V3-P1 [C-(GPGRAFY)4], and a peptide (PND) of the principal neutralizing domain (V3 loop: amino acid 301-328: C-TRPNNNTRKSIRIQRGPGRAFYTIGKI) on gp120 were synthesized and covalently coupled to a carrier protein BSA. Immunization of BALB/c mice and New Zealand White Rabbits with these conjugate vaccines engendered strong antibody responses against the PND (mouse serum titer by 1:12,800-25,600; rabbit serum titer by 1:6,400-12,800). Interestingly, the V3-P1-BSA conjugates and the PND-BSA conjugates could induce high levels of GPGRAFY-epitope-specific antibodies in the mice and rabbits (mouse serum titer by 1:25,600; rabbit serum titer by 1:12,800-25,600), while a recombinant gp160 subunit vaccine induced a low level of GPGRAFY-epitope-specific antibodies (serum titer by 1:400-1,600 in mice and rabbits). To confirm the above results, GPGRAFY-epitope-specific antibodies were isolated from rabbit sera induced by V3-P1-BSA, PND-BSA conjugates and rgp160 vaccine. In fact, 23-38 and 13-22 microg epitope-specific antibodies per milliliter serum were isolated from rabbit sera induced by V3-P1-BSA and PND-BSA conjugate, respectively, while 1.34 microg epitope-specific antibodies per milliliter serum were identified in rabbit serum induced by rgp160 vaccine. In the control group, only 0.069 microg proteins per milliliter serum were found in pooled pre-immune serum (normal serum). These results from mouse and rabbit experiments indicate that epitope and peptide vaccines both induce high levels of GPGRAFY-epitope-specific antibodies in comparison with rgp160 subunit vaccine, suggesting that epitope/peptide vaccines may be a new strategy to induce protective activity.  相似文献   

20.
We synthesized one V3 peptide each from HTLV-IIIB, Thai A and Thai B, conjugating then to the T cell epitope of the env region, and we also synthesized a p17 protein peptide of the gag region (HGP-30). These peptide were then coupled to 8-lysine copolymers using N-succinimidyl maleimido carboxylate (Mr = ca 60 000). We designated this the branched lysine oligopeptide method. The large peptide complexes constructed from these four macromolecular peptide were used with aluminium hydroxide or complete Freund's adjuvant to immunize mice and rabbits four times. ELISA assay with aluminium hydroxide or complete Freund's adjuvant to immunize mice and rabbits four times. ELISA assay showed high titres of anti-peptide antibodies to each V3loop peptide and the HGP-30 peptide. Strong inhibition of CD4+ dependent cell fusion was obtained with these antisera when IIIb, Thai A and Thai B strains of human immunodeficiency virus (HIV) were used. Strong anti-fusion inhibition was also observed with two other HIV strains. In addition, an increase of the anti-HIV effect was observed when we used sera obtained by multicomponent vaccine immunization. The same kind of inhibition was also observed in p24 assay systems using these immunized antisera. Activation of IL-2 production in lymphocytes was observed in p24 assay systems using these immunized antisera. Activation of IL-2 production in lymphocytes was observed in mice immunized with this vaccine. These results suggest that immunization with macromolecular peptide complexes can result in strong immunogenicity towards HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号