首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inhibition of covalent binding of the nascent C4b fragment of the human complement component to its natural target, immunoglobulin G, was studied. To this end, an immunoenzyme system was developed. In this ELISA method, the complement was activated on the sorbed IgG molecules and the resulting nascent C4b fragment acylated IgG or interacted with a competitive inhibitor added to the system. The inhibition constants for binding of the nascent C4b to its target were determined for immunoglobulins G1, G2, G3, G4, M, and A1, as well as for ferritin, yeast mannan, capsid polysaccharides of theNeisseria meningitidis A, B, and C serotypes, diphtheria anatoxin, epinephrine, and salicylic acid. On the basis of the experimental data, the immunoglobulin role at the activation stage of the complement regulation cascade, the relationship between the antigen immunogenicity and its ability to interact with C4b, and the direct effect of a number of therapeutic agents on the complement system were discussed. Lectins of various specificities were shown to inhibit the enzymic activation of C4 by the first complement component and the subsequent C4b sorption by its target, which allowed us to suggest that some oligosaccharide fragments of the C1s and C4 molecules are spatially close to the C1s active site and to the thioester bond of C4.  相似文献   

2.
Various nucleophilic agents (acceptors) react with thiolester group of nascent activated fragment (C3b) of the third complement component. The C3b-acceptors binding prevents transformation of C3 convertase to C5 convertase and results in inhibition of the cell-target lysis. A convenient method of monitoring the EAC142 to EAC1423 transformation was elaborated. Character of the inhibition suggests that the covalent binding follows a stage of the reversible C3b-acceptor complex formation. The method allows to determine the maximum of inhibition of the C5 convertase formation and the dissociation constant of the reversible C3b-acceptor complex, which reflects the C3b affinity to this acceptor.  相似文献   

3.
We identified Neisseria meningitidis lipooligosaccharide (LOS) as an acceptor for complement component C4b (C4b). Phosphoethanolamine (PEA) residues on the second heptose (HepII) residue in the LOS core structure formed amide linkages with C4b. PEA at the 6-position of HepII (6-PEA) was more efficient than 3-PEA in binding C4b. Strains bearing 6-PEA bound more C4b than strains with 3-PEA and were more susceptible to complement-mediated killing in serum bactericidal assays. Deleting 3-PEA from a strain that expressed both 3- and 6-PEA simultaneously on HepII did not decrease C4b binding. Glycose chain extension of the first heptose residue (HepI) influenced the nature of the C4b-LOS linkage. Predominantly ester C4b-LOS bonds were seen when lacto-N-neotetraose formed the terminus of the glycose chain extension of HepI with 3-PEA on HepII in the LOS core. Related LOS species with more truncated chain extensions from HepI bound C4b via amide linkages to 3-PEA on HepII. However, 6-PEA in the LOS core bound C4b even when the glycose chain from HepI bore lacto-N-neotetraose at the terminus. The C4A isoform exclusively formed amide linkages, whereas C4B bound meningococci preferentially via ester linkages. These data may serve to explain the preponderance of 3-PEA-bearing meningococci among clinical isolates, because 6-PEA enhances C4b binding that may facilitate clearance of 6-PEA-bearing strains resulting from enhanced serum killing by the classical pathway of complement.  相似文献   

4.
5.
1. One of the activation products of C4, C4b, was prepared, and the reactive thiol group on the alpha'-chain was radioactively labelled with iodo[2-14C]acetic acid. The alpha'-chain was isolated and the N-terminal amino acid sequence of the first 13 residues was determined. 2. C4b was cleaved by C3bINA in the presence of C4b-binding protein and C4d and C4c isolated. The radioactive label and therefore the reactive thiol group were located to C4d. 3. C4c was reduced and alkylated and the two alpha'-chain fragments of C4c were separated. 3. The molecular weights, amino acid analyses and carbohydrate content of the three alpha'-chain fragments were determined. C4d has a mol.wt. of 44500 and a carbohydrate content of 6%. The two alpha'-chain fragments of C4c have mol.wts. of 25000 (alpha 3) and 12000 (alpha 4) and carbohydrate contents of 10 and 22% respectively. 4. The N-terminal amino acid sequences of C4d, the alpha 3 and the alpha 4 fragments were determined for 18, 24 and 11 residues respectively and, by comparison with the N-terminal sequence of the C4b alpha'-chain, the 25000-mol.wt. fragment (alpha 3) was shown to be derived from the N-terminal part of the alpha'-chain. 5. C-Terminal analyses were done on the alpha'-chain and its three fragments. Arginine was found to be the C-terminal residue of C4d and of the alpha 3 fragment. The C-terminal residue of the alpha'-chain and of the alpha 4 fragment could not be identified. The order of the three fragments of the alpha'-chain is therefore: alpha 3(25000)--C4d(44500)--alpha 4(12000). The specificity of C3bINA is for an Arg--Xaa peptide bond.  相似文献   

6.
E Sim  A W Dodds    A Goldin 《The Biochemical journal》1989,259(2):415-419
D(-)-Penicillamine [D(-)-beta beta-dimethylcysteine] is an anti-arthritic drug, but its use is limited by adverse side effects, which include problems in immune-complex clearance. Complement is important as a source of inflammatory mediators in rheumatoid arthritis and is also involved in immune-complex clearance. Thus inhibition of the complement cascade would be likely to contribute to both the therapeutic and the toxic effects of penicillamine. It is shown that penicillamine and cysteine are potent inhibitors of the covalent binding of activated complement component C4 to immune complexes. [35S]Cysteine itself becomes covalently bound to C4b through the thioester site. Penicillamine and cysteine are more reactive with the C4A isotype than with the C4B isotype of the HLA class III protein C4. The limited amino acid sequence differences between C4A and C4B include a cysteine/serine interchange, and it is suggested that the cysteine residue in C4A contributes to the increased rate of reaction of C4A with the alpha-amino-beta-thiol compounds.  相似文献   

7.
We raised murine mAb against human C protein C2. The representative mAb 3A3.3 (IgG1 kappa) recognized an epitope on the C2b domain of C2, as determined by binding and inhibition of binding radioassays. The hemolytic activity of purified human C2 and of C2 in normal human serum was inhibited by the mAb. The rate of decay of the C3-convertase at 30 degrees C was not affected by the mAb. C2 binding to EAC4b was inhibited by intact IgG and the Fab fragment of the mAb; 50% inhibition required 1 microgram/ml of either. The data suggest the presence of a C4b-binding site on the C2b domain of C2 and that the mAb recognizes an epitope at, or adjacent to, this site. The C2b portion of the C2 molecule may be important in assembly of the classical pathway C3-convertase.  相似文献   

8.
Vitamin K-dependent protein S and the higher-molecular-weight form of C4b-binding protein (C4bp-high) interact, forming a 1:1 complex with a KD of approx. 1 X 10(-7) M [Dahlb?ck (1983) Biochem. J. 209, 847-856]. In the present study the effect of protein S on the degradation of C4b by Factor I (C3b inactivator) and C4bp was investigated both in fluid phase and on cell surfaces, with the use of highly purified components. Fluid-phase degradation of C4b was monitored on sodium dodecyl sulphate/polyacrylamide-slab-gel electrophoresis, and the effect on surface-bound C4b was estimated by haemolytic assay. No effect of protein S could be demonstrated in any of the systems used. Thus, although bound to C4bp, protein S is neither involved in, nor does it affect, the interaction between C4bp and C4b. This indicates that the binding sites on the C4bp molecule for protein S and for C4b are independent and different.  相似文献   

9.
Hepatitis C virus (HCV) is a leading cause of chronic viral hepatitis worldwide. The study of antibody-mediated virus neutralization has been hampered by the lack of an efficient and high-throughput cell culture system for the study of virus neutralization. The HCV structural proteins have been shown to assemble into noninfectious HCV-like particles (HCV-LPs). Similar to serum-derived virions, HCV-LPs bind and enter human hepatocytes and hepatoma cell lines. In this study, we developed an HCV-LP-based model system for a systematic functional analysis of antiviral antibodies from patients with acute or chronic hepatitis C. We demonstrate that cellular HCV-LP binding was specifically inhibited by antiviral antibodies from patients with acute or chronic hepatitis C in a dose-dependent manner. Using a library of homologous overlapping envelope peptides covering the entire HCV envelope, we identified an epitope in the N-terminal E2 region (SQKIQLVNTNGSWHI; amino acid positions 408 to 422) as one target of human antiviral antibodies inhibiting cellular particle binding. Using a large panel of serum samples from patients with acute and chronic hepatitis C, we demonstrated that the presence of antibodies with inhibition of binding activity was not associated with viral clearance. In conclusion, antibody-mediated inhibition of cellular HCV-LP binding represents a convenient system for the functional characterization of human anti-HCV antibodies, allowing the mapping of envelope neutralization epitopes targeted by naturally occurring antiviral antibodies.  相似文献   

10.
Tetrathiomolybdate inhibits iron-molybdenum cofactor (FeMo cofactor) binding to component I of nitrogenase. Molybdenum-iron cluster (a subcomponent of FeMo cofactor) and tetrathiomolybdate inhibited FeMo cofactor activation of inactive nitrogenase component I in extracts of Azotobacter vinelandii and Klebsiella pneumoniae mutant strains defective in the biosynthesis of FeMo cofactor. Addition of tetrathiotungstate, the tungsten analog of tetrathiomolybdate, to the mutant extracts had no significant inhibitory effect on subsequent activation by FeMo cofactor.  相似文献   

11.
12.
Polymorphism of human complement component C4   总被引:10,自引:0,他引:10  
An assessment has been made of the polymorphism of human complement component C4 by comparing derived amino acid sequences of cDNA and genomic DNA with limited amino acid sequences. In all, one complete and six partial sequences have been obtained from material from three individuals and include two C4A and two C4B alleles. Differences were found between the 4 alleles from 2 loci in only 15 of the 1722 amino acid residues, and 12 lie within one section of 230 residues, which in 1 allele also contains a 3-residue deletion. In three variable positions, an allelic difference in one C4 type was common to the other types. Three nucleotide differences were found in four introns. In spite of marked differences in their chemical reactivity, the many allelic forms appear to differ in less than 1% of their amino acid residue positions. This unusual pattern of polymorphism may be due to recent duplication of the C4 gene, or may have arisen by selection as a result of the biological role of C4, which interacts in the complement sequence with nine other proteins necessitating conservation of much of the surface structure.  相似文献   

13.
C4b-binding protein (C4BP) is a large complex assembly of eight subunits that functions as an inhibitor of the complement cascade. A portion of the C4BP in serum exists as a complex with protein S. This study demonstrated that another protein, serum amyloid P component (SAP), also formed a calcium-dependent complex with C4BP. The C4BP.SAP complex was detected by several methods including light scattering intensity, gel filtration, and sucrose density gradient ultracentrifugation. This complex was of high affinity relative to serum levels of these proteins so that no dissociation was detected at 3% of serum protein concentrations. The C4BP.SAP complex was also detected in normal serum and the results suggested that there was virtually no free SAP or uncomplexed C4BP in normal serum. In addition to its complex with C4BP, SAP underwent other calcium-dependent associations such as binding to phospholipid vesicles and self-aggregation. Self-aggregation was highly cooperative with kinetics corresponding to a reaction that was 6th-order with respect to calcium and required about 1.5 mM calcium. In contrast, formation of the SAP.C4BP complex and interaction of SAP with membranes required only about 0.4 and 1.0 mM calcium, respectively. Thus, selection of the correct conditions allowed study of the SAP.C4BP interaction without interference from self-aggregation. All three of these interactions of SAP were mutually exclusive and the SAP. C4BP interaction appeared to be favored over self-aggregation or binding of SAP to phospholipids. It seems likely that the biologically dominant interaction for SAP is with C4BP. The SAP.C4BP complex interacted with protein S and these binding sites appeared to be entirely independent. Furthermore, SAP had little or no effect on the ability of C4BP to bind C4b. Finally, the entire complex of proteins (C4BP, SAP, protein S, and C4b) could associate with membranes in the presence of calcium. Membrane binding occurred through the protein S component. This rather complicated assemblage of proteins probably functions in a regulatory role for the complement cascade or other biological systems. It is possible that elevated levels of SAP or nonequivalent levels of SAP and C4BP could contribute to certain pathological conditions.  相似文献   

14.
No decrease in iron-sulphur centers was found in cultured macrophage cells (J774) after the treatment with nitric oxide (10(-7) M NO/10(7) cells) during 5 min. The center content was controlled by the electron spin resonance (ESR) method. The macrophages pretreated with dithionite + methyl viologen showed the formation of dinitrosyl iron complexes (DNIC) with a characteristic ESR signal at g approximately 2.03. The data suggest that loosely bound nonheme iron (free iron) mostly contributes to the formation of these complexes. Iron from iron-containing proteins does not release from these centers under the direct action of nitric oxide. The iron-sulphur centers can be destroyed by the products of nitric oxide oxidation (NO2, N2O3, etc.) as oxidizing and acid agents.  相似文献   

15.
Like most cellular RNA enzymes, the bI5 group I intron requires binding by a protein cofactor to fold correctly. Here, we use single-molecule approaches to monitor the structural dynamics of the bI5 RNA in real time as it assembles with its CBP2 protein cofactor. These experiments show that CBP2 binds to the target RNA in two distinct modes with apparently opposite effects: a "non-specific" mode that forms rapidly and induces large conformational fluctuations in the RNA, and a "specific" mode that forms slowly and stabilizes the native RNA structure. The bI5 RNA folds though multiple pathways toward the native state, typically traversing dynamic intermediate states induced by non-specific binding of CBP2. These results suggest that the protein cofactor-assisted RNA folding involves sequential non-specific and specific protein-RNA interactions. The non-specific interaction potentially increases the local concentration of CBP2 and the number of conformational states accessible to the RNA, which may promote the formation of specific RNA-protein interactions.  相似文献   

16.
17.
In a previous study we demonstrated that the thioester-mediated transacylation of the human C4B isotype onto sheep erythrocytes (ES) was approximately fourfold more efficient than that of C4A. Moreover, although C4B formed predominantly ester linkages, C4A displayed a preference for amide bond formation. We therefore suggested that the relative functional activity observed for the two isotypes would be a combined reflection of their nucleophilic preference and the surface composition of the C1-bearing target. The present study tests this hypothesis. Chemical modification of amino groups on Es with ethylacetimidate produced a twofold decrease in the C1-dependent binding of C4A isotype, while having a negligible effect on C4B binding. Furthermore, with human erythrocytes and two human leukocyte cell lines, K562 and U937, the C4B to C4A deposition ratio decreased from greater than 4 with ES to between 1.5 and 2. Irrespective of the target, C4A and C4B maintained their preference for forming amide and ester bonds, respectively. Interestingly, SDS-PAGE profiles of radiolabeled C4A and C4B, which had been covalently deposited on the various cells, suggested a further degree of transacylation specificity, as the two isotypic alpha-chains sometimes bound to different membrane components. These differences were not easily accounted for by simple differences in the abundance of the preferred nucleophile for each isotype on a given surface constituent, nor were they due to the preferential binding of one isotype to the sensitizing antibody. We speculate that nascent C4B may contain a substrate binding site that facilitates productive attack on the thioester carbonyl by molecules containing the class of nucleophile preferred by each isotype.  相似文献   

18.
Many strains of Streptococcus pyogenes bind C4b-binding protein (C4BP), an inhibitor of complement activation. The binding is mediated by surface M proteins in a fashion that has been suggested to mimic the binding of C4b. We have previously shown that a positively charged cluster at the interface between complement control protein domains 1 and 2 of C4BP alpha-chain is crucial for the C4b-C4BP interaction. To extend this observation, and to investigate the interaction with M proteins, we constructed and characterized a total of nine mutants of C4BP. We identified a key recognition surface for M proteins that overlaps with the C4b binding site because substitution of R64 and H67 by Gln dramatically reduces binding to both ligands. However, the analysis of all mutants indicates that the binding sites for C4b and M proteins are only overlapping, but not identical. Furthermore, M proteins were able to displace C4BP from immobilized C4b, whereas C4b only weakly affected binding of C4BP to immobilized M proteins. We found that the molecular mechanisms involved in these two interactions differ because the binding between M proteins and C4BP is relatively insensitive to salt in contrast to the C4BP-C4b binding. In addition, six mAbs directed against the alpha-chain interfered with C4b-C4BP interaction, whereas only two of them efficiently inhibited binding of C4BP to M proteins. Collectively, our results suggest that binding between C4b and C4BP is governed mostly by electrostatic interactions, while additional noncovalent forces cause tight binding of C4BP to streptococcal M proteins.  相似文献   

19.
The complement component C4 of mammals.   总被引:6,自引:0,他引:6  
Human complement component C4 is coded by tandem genes located in the HLA class III region. The products of the two genes, C4A and C4B, are different in their activity. This difference is due to a degree of 'substrate' specificity in the covalent binding reactions of the two isotypes. Mouse also has a duplicated locus, but only one gene produces active C4, while the other codes for the closely related sex-limited protein (Slp). In order to gain some insight into the evolutionary history of the duplicated C4 locus, we have purified C4 from a number of other mammalian species, and tested their binding specificities. Like man, chimpanzee and rhesus monkey appear to produce two C4 types with reactivities similar to C4A and C4B. Rat, guinea pig, whale, rabbit, dog and pig each expresses C4 with a single binding specificity, which is C4B-like. Sheep and cattle express two C4 types, one C4B-like, the other C4A-like, in their binding properties. These results suggest that more than one locus may be present in these species. If this is so, then the duplication of the C4 locus is either very ancient, having occurred before the divergence of the modern mammals, or there have been three separate duplication events in the lines leading to the primates, rodents and ungulates.  相似文献   

20.
The chemotactic regulator CheY controls the direction of flagellar rotation in Escherichia coli. We have determined the crystal structure of BeF3--activated CheY from E. coli in complex with an N-terminal peptide derived from its target, FliM. The structure reveals that the first seven residues of the peptide pack against the beta4-H4 loop and helix H4 of CheY in an extended conformation, whereas residues 8-15 form two turns of helix and pack against the H4-beta5-H5 face. The peptide binds the only region of CheY that undergoes noticeable conformational change upon activation and would most likely be sandwiched between activated CheY and the remainder of FliM to reverse the direction of flagellar rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号