首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced orthostatic tolerance following 4 h head-down tilt   总被引:2,自引:0,他引:2  
The cardiovascular responses to a 10-min 1.22 rad (70 degrees) head-up tilt orthostatic tolerance test (OST) was observed in eight healthy men following each of a 5-min supine baseline (control), 4 h of 0.1 rad (6 degrees) head-down tilt (HDT), or 4 h 0.52 rad (30 degrees) head-up tilt (HUT). An important clinical observation was presyncopal symptoms in six of eight subjects following 4 h HDT, but in no subjects following 4 h HUT. Immediately prior to the OST, there were no differences in heart rate, stroke volume, cardiac output, mean arterial pressure and total peripheral resistance for HDT and HUT. However, stroke volume and cardiac output were greater for the control group. Mean arterial pressure for the control group was less than HDT but not HUT. Over the full 10-min period of OST, the mean arterial pressure was not different between groups. Heart rate increased to the same level for all three treatments. Stroke volume decreased across the full time period for control and HDT, but only at 3 and 9 min for HUT. There was a higher total peripheral resistance in the HDT group than control or HUT. The pre-ejection period to left ventricular ejection time ratio was less in HDT than for control or HUT groups. These data indicate a rapid adaptation of the cardiovascular system to 4 h HDT that appears to be inappropriate on reapplication of a head to foot gravity vector. We speculate that the cause of the impaired orthostatic tolerance is decreased tone in venous capacitance vessels so that venous return is inadequate.  相似文献   

2.
Elevated calf compliance may contribute to orthostatic intolerance following space flight and bed rest. Calf venous compliance is measured conventionally with venous occulusion plethysmography in supine subjects. With this well-established technique, subjects undergo inflation of a pressure cuff around the thigh just above the knee, which increases calf venous pressure. A plethysmograph simultaneously measures calf volume elevation. Compliance equals calf volume elevation per mm Hg thigh occlusion (calf venous) pressure in relaxed legs of the supine subjects. Compliance may also be measured during stepwise head-up tilt (HUT) as calf volume elevation per mm Hg gravitational venous pressure elevation produced by HUT. However, during HUT on a tilt table with a footplate, calf muscles activate to counteract gravity: this is an obvious and natural response to gravitational force. Such muscle activation conceivably could reduce calf compliance, yet relatively little calf muscle activation occurs during HUT and orthostasis (<10% of maximal voluntary levels). Also, this activation produces minimal calf volume change (<0.3%). Therefore, we hypothesized that calf compliance measured with HUT equals that measured with supine venous occlusion.  相似文献   

3.
To test the hypothesis that altered hemodynamic responses to postural changes are associated with aging, cardiovascular responses to head-up tilt (HUT) and head-down tilt (HDT) were examined in 12 healthy young (average age, 24.6 +/- 1.7 years) and 12 healthy elderly (average age, 68.6 +/- 2.2 years) men. Subjects were passively tilted from supine to 30 degrees, 60 degrees, and 90 degrees HUT and HDT. Responses to these perturbations were determined 5 min after tilting with measures of heart rate (HR), blood pressure (SBP, DBP), and echocardiographically determined left ventricular diameter in systole and diastole (LVIDs, LVIDd). In HUT there were no significant age effects. In both young and elderly, SBP decreased significantly (p less than 0.05), and DBP and HR increased significantly. Ejection fraction (EF), mean arterial blood pressure (MABP), and rate-pressure product (RPP) were unchanged in both groups. In HDT, the hemodynamic responses of the young and elderly were in opposite directions and significant age effects were found for SBP, DBP, HR, LVIDs, EF, MABP, and RPP. In HDT, the young appear to increase cardiac output primarily due to an increase in EF and end-diastolic volume (LVIDd), while HR is unchanged and SBP is decreased. MABP is unchanged, suggesting a small decrease in total peripheral resistance. The elderly may increase cardiac output slightly, owing to an increase in LVIDd with no change in EF, and a large increase in HR. Afterload increased markedly, therefore attenuating any increase in cardiac output.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We tested the reliability of noninvasive cardiac output (CO) measurement in different body positions by pulse contour analysis (CO(pc)) by using a transmission line model (K. H. Wesseling, B. De Wit, J. A. P. Weber, and N. T. Smith. Adv. Cardiol. Phys. 5, Suppl. II: 16-52, 1983). Acetylene rebreathing (CO(rebr)) was used as a reference method. Twelve subjects (age 21-34 yr) were studied: 1) six in whom CO(rebr) and CO(pc) were measured in the standing and 6 degrees head-down tilt (HDT) postures and 2) six in whom CO was measured in the 30 degrees HDT, supine, 30 degrees head up-tilt (HUT), and 70 degrees HUT postures on a tilt table. The CO(rebr)-to-CO(pc) ratio in (near) the supine position during rebreathing was used as the calibration factor for CO(pc) measurements. Calibrated CO(pc) (CO(cal sup)) consistently overestimated CO in the upright posture. The drop in CO with upright posture was underestimated by approximately 50%. CO(cal sup) and CO(rebr) values did not differ in the 30 degrees HDT position. Changes in the CO(rebr)-to-CO(pc) ratio are highly variable among subjects in response to a change in posture. Therefore, CO(pc) must be recalibrated for each subject in each posture.  相似文献   

5.
Exposure to actual or simulated microgravity is known to result in changes in lower limb venous compliance or distensibility which may play a role in post-bedrest or postflight orthostatic intolerance. Venous deconditioning has only been described in terms of changes in vascular compliance or distensibility. But a complete understanding of changes in venous hemodynamics and cardiovascular regulation occurring under these conditions has to take into account changes in emptying capacities of the veins which influence venous return, cardiac filling, and cardiac output regulation. Moreover, few data are available about the course of changes in venous hemodynamics for periods of simulated microgravity longer than 4 weeks. The purpose of this investigation was to measure parameters of venous compliance and venous emptying before, during, and after a 42-day period of bedrest at -6 degrees head-down tilt for a better understanding of long term venous physiological adaptation to microgravity.  相似文献   

6.
Effect of posture on arterial baroreflex control of heart rate in humans   总被引:1,自引:0,他引:1  
Altered baroreflex function may contribute to the cardiovascular changes associated with weightlessness. Since central blood volume (CBV) increases during simulated weightlessness we have examined the possibility that acute changes in CBV may modify baroreceptor function. We used graded head-up tilt (HUT) and head-down tilt (HDT) to induce changes in CBV, and neck suction to stimulate carotid baroreceptors, in 6 subjects. The increase in pulse interval induced by a negative pressure of 8.2 kPa (62 mm Hg) imposed for 10 s while supine was compared with the increase while tilted for 8 min at +/- 15 degrees, +/- 30 degrees and +/- 45 degrees. During HDT at 15 degrees the pulse interval over the first 5 cardiac cycles following suction onset was 51 +/- (SEM) 18 ms longer (p less than 0.05), at 30 degrees it was 61 +/- 20 ms longer (p less than 0.05), and at 45 degrees it was 74 +/- 35 ms longer (p less than 0.01), compared with supine. During HUT at 15 degrees the pulse interval was 25 +/- 9 ms shorter (p less than 0.05) than when supine, but was not significantly different at 30 degrees and 45 degrees. These responses occurred independently of changes in brachial blood pressure. Attenuation was also observed after 5 min (56 +/- 17 ms; less than 0.05), and after 40 min (25 +/- 9 ms; p less than 0.05) of 60 degrees HUT compared with supine. We conclude that posture does modify arterial baroreflex control of heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Hemodynamic consequences of rapid changes in posture in humans.   总被引:1,自引:0,他引:1  
Tolerance to +G(z) gravitational stress is reduced when +G(z) stress is preceded by exposure to hypogravity (fraction, 0, or negative G(z)). For example, there is an exaggerated fall in eye-level arterial pressure (ELAP) early on during +G(z) stress (head-up tilt; HUT) when this stress is immediately preceded by -G(z) stress (head-down tilt; HDT). The aims of the present study were to characterize the hemodynamic consequences of brief HDT on subsequent HUT and to test the hypothesis that an elevation in leg vascular conductance induced by -G(z) stress contributes to the exaggerated fall in ELAP. Young healthy subjects (n = 3 men and 4 women) were subjected to 30 s of 30 degrees HUT from a horizontal position and to 30 s of 30 degrees HUT when HUT was immediately preceded by 20 s of -15 degrees HDT. Four bouts of HDT-HUT were alternated between five bouts of HUT in a counterbalanced designed to minimize possible time effects of repeated exposure to gravitational stress. One minute was allowed for recovery between tilts. Brief exposure to HDT elicited an exaggerated fall in ELAP during the first seconds of the subsequent HUT (-17.9 +/- 1.4 mmHg) compared with HUT alone (-12.4 +/- 1.2 mmHg, P <0.05) despite a greater rise in stroke volume (Doppler ultrasound) and cardiac output over this brief time period in the HDT-HUT trials compared with the HUT trials (thereafter stroke volume fell under both conditions). The greater fall in ELAP was associated with an exaggerated increase in leg blood flow (femoral artery Doppler ultrasound) and was therefore largely (70%) attributable to an exaggerated rise in estimated leg vascular conductance, confirming our hypotheses. Thus brief exposure to -G(z) stress leads to an exaggerated fall in ELAP during subsequent HUT, owing to an exaggerated increase in estimated leg vascular conductance.  相似文献   

8.
Orthostasis is characterized by translocation of blood from the upper body and thorax into dependent venous structures. Although active splanchnic venoconstriction is known to occur, active limb venoconstriction remains controversial. Based on prior work, we initially hypothesized that active venoconstriction does occur in the extremities during orthostasis in response to baroreflex activation. We investigated this hypothesis in the arms and legs of 11 healthy volunteers, aged 13-19 yr, using venous occlusion strain gauge plethysmography to obtain the forearm and calf blood flows and to compute the capacitance vessel volume-pressure compliance relation. Subjects were studied supine and at -10, +20, and +35 degrees to load the baroreflexes. With +20 degrees of tilt, blood flow decreased and limb arterial resistance increased significantly (P < 0.05) compared with supine. With +35 degrees of tilt, blood flow decreased, limb arterial resistance increased, and heart rate increased, indicating parasympathetic withdrawal and sympathetic activation with arterial vasoconstriction. The volume-pressure relation was unchanged by orthostatic maneuvers. The results suggest that active venoconstriction in the limbs is not important to mild orthostatic response.  相似文献   

9.
In this study, we tested the hypothesis that carotid arteries undergo rapid changes in distensibility on moving from the supine to head-up tilt (HUT) postures and, subsequently, that this change in carotid distensibility (cDa) might be associated with concurrent reductions in cardiovagal baroreflex sensitivity (BRS). Thus the effect of posture on carotid vascular mechanics and cardiovagal BRS with consideration for altered central hemodynamics (i.e., stroke volume; Doppler ultrasound) was examined. Carotid pulse pressure (cPP; Millar transducer) and contralateral B-mode ultrasound images were assessed at the carotid artery during supine and 60 degrees HUT postures. From these measures, cDa was calculated at 5-mmHg pressure increments experienced during the cardiac cycle (n = 6). cPP (n = 9) was not different in the two postures. A smaller stroke volume being ejected into a smaller carotid artery in HUT explained the maintenance of cPP in HUT. Also, compared with supine, cDa was reset to a lower level in HUT (main effect of posture; P < 0.05). Cardiovagal BRS (sequence method) was diminished in HUT vs. supine (P < 0.05). A positive correlation was observed between the tilt-induced changes in maximal cDa (in early systole) and cardiovagal BRS (r2 = 0.75; P < 0.05), but there was little predictive relationship between changes in cPP, systolic vessel dimensions, or average cDa and the corresponding change in BRS. The present results indicate that HUT elicits rapid changes in carotid artery mechanics and further suggest that reductions in the maximal cDa measured in early systole contribute to reduced cardiovagal BRS with HUT.  相似文献   

10.
Arterial hypocapnia has been associated with orthostatic intolerance. Therefore, we tested the hypothesis that hypocapnia may be detrimental to increases in muscle sympathetic nerve activity (MSNA) and total peripheral resistance (TPR) during head-up tilt (HUT). Ventilation was increased approximately 1.5 times above baseline for each of three conditions, whereas end-tidal PCO(2) (PET(CO(2))) was clamped at normocapnic (Normo), hypercapnic (Hyper; +5 mmHg relative to Normo), and hypocapnic (Hypo; -5 mmHg relative to Normo) conditions. MSNA (microneurography), heart rate, blood pressure (BP, Finapres), and cardiac output (Q, Doppler) were measured continuously during supine rest and 45 degrees HUT. The increase in heart rate when changing from supine to HUT (P < 0.001) was not different across PET(CO(2)) conditions. MSNA burst frequency increased similarly with HUT in all conditions (P < 0.05). However, total MSNA and the increase in total amplitude relative to baseline (%DeltaMSNA) increased more when changing to HUT during Hypo compared with Hyper (P < 0.05). Both BP and Q were higher during Hyper than both Normo and Hypo (main effect; P < 0.05). Therefore, the MSNA response to HUT varied inversely with levels of PET(CO(2)). The combined data suggest that augmented cardiac output with hypercapnia sustained blood pressure during HUT leading to a diminished sympathetic response.  相似文献   

11.
Head-up tilt (HUT) induces a reduction in preload, which is thought to be restored through sympathetic venoconstriction, reducing unstressed volume (V(u)) and venous compliance (VeC). In this study, we assessed venous inflow and outflow responses and their reproducibility and determined the relation with autonomic function during HUT. Eight healthy non-pregnant women were subjected to 20 degrees head-down tilt to 60 degrees HUT at 20 degrees intervals. At each rotational step, we randomly assessed forearm pressure-volume (P-V) curves (venous occlusion plethysmography) during inflow (VeC(IN)) and outflow [venous emptying rate (VER(OUT))]. VeC(IN) was defined as the ratio of the slope of the volume-time curve and pressure-time curve, with direct intravenous pressure measurement. VER(OUT) was determined using the derivate of a quadratic regression model using cuff pressure. We defined V(u) as the y-intercept of the P-V curve. We calculated, for both methods, the coefficients of reproducibility (CR) and variation (CV). Vascular sympathetic activity was determined by spectral analysis. VeC(IN) decreased at each rotational step compared with the supine position (P<0.05), whereas VER(OUT) increased. CR of VeC(IN) was higher in the supine position than VER(OUT) but lower during HUT. CV varied between 19% and 25% (VeC(IN)) and between 12% and 21% (VER(OUT)). HUT decreased V(u). The change in VeC(IN) and VER(OUT) correlated with the change in vascular sympathetic activity (r= -0.36, P<0.01, and r=0.48, P<0.01). This is the first study in which a reproducible reduction in VeC(IN) and V(u) and a rise in VER(OUT) during HUT are documented. The alterations in venous characteristics relate to changes in vascular sympathetic activity.  相似文献   

12.
Mechanisms involved in the control of arterial pressure during postural changes were studied by analysis of the dynamic time course of cardiovascular changes during head-up tilt (HUT) and tilt back to supine position (TB). Beat-to-beat values of cardiovascular variables were recorded continuously before, during, and after passive HUT to 30 degrees in seven healthy humans. Left cardiac stroke volume (SV, Doppler ultrasound), mean arterial blood pressure (MAP), heart rate (HR), cardiac output (CO), and total peripheral conductance (TPC) were recorded. During HUT, MAP at the level of the carotid baroreceptors decreased by approximately 5 mmHg. There was a striking asymmetry between the time courses of cardiovascular changes on HUT and on TB. Adjustments generally took up to 30 s after HUT, whereas most changes were completed during the first 10 s after TB. Cardiovascular reflex adjustments of HR and TPC were more symmetrical. After HUT, SV was maintained during the first 4-6 s and then decreased steadily during the next 30 s to a stable level approximately 25% below its pretilt value. However, after TB, SV increased rapidly to its pretilt value in <10 s. This asymmetry in SV dynamics may be explained in part by a more rapid change in left cardiac filling after TB than after HUT. On TB, there must be a rapid inflow of stagnant blood from the legs, whereas venous valves will impede backward filling of veins in the lower body on HUT. In conclusion, we have revealed a characteristic asymmetry in cardiovascular responses to inverse variations in gravity forces in humans. This asymmetry can be explained in part by nonlinear, hydrodynamic factors, such as the one-way effect of venous valves in the lower part of the body.  相似文献   

13.
We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males (n = 9) and females (n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20 degrees, 40 degrees, and 60 degrees ). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SV(i)) to calculate the index of cardiac output (Q(i)), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males (P < 0.001) and SV(i) and Q(i) decreased similarly in both groups. Mean arterial pressure (MAP) increased to a lesser extent in females versus males in the HUT (P < 0.01) but increases in TPR during HUT were similar. MSNA burst frequency was lower in females versus males in supine (P < 0.03) but increased similarly during HUT. Average amplitude/burst increased in 60 degrees HUT for males but not females. Both males and females demonstrated an increase in MAP as well as MSNA burst frequency, mean burst amplitude, and total MSNA during the CPT. However, compared with females, males demonstrated a greater neural response (DeltaTotal MSNA) due to a larger increase in mean burst amplitude (P < 0.05). Therefore, these data point to gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females.  相似文献   

14.
Venous compliance is lower in older adults compared with younger adults. It is possible that alterations in venous smooth muscle tone and responsiveness may contribute to the age-related differences in venous compliance. To determine the effects of sympathetic activation [cold pressor test (cold pressor test); rhythmic ischemic handgrip (rhythmic ischemic handgrip)] and endothelium-independent decreases in smooth muscle tone [sublingual nitroglycerin (nitroglycerin)] on venous compliance in young and older adults, forearm and calf venous compliance was measured in 12 young (22 +/- 1 yr) and 12 old (65 +/- 1 yr) supine subjects using venous occlusion plethysmography. Venous compliance was assessed at baseline, during the cold pressor test and rhythmic ischemic handgrip tests, and after nitroglycerin administration. All pressure-volume relationships were modeled with a quadratic regression equation, and beta1 and beta2 were used as indexes of venous compliance. A repeated-measures ANOVA was used to determine the effect of the age and trial on venous compliance. Calf regression parameters beta1 (0.0639 +/- 0.0126 vs. 0.0503 +/- 0.0059, young vs. older; P < 0.05) and beta2 (-0.00054 +/- 0.00011 vs. -0.00041 +/- 0.00005, young vs. older; P < 0.05) were significantly less in older adults at baseline. Similarly, forearm regression parameters, beta1 and beta2 were lower in older adults at baseline. Venous compliance was not effected by the cold pressor test test, rhythmic ischemic handgrip, or sublingual nitroglycerin in either group. Data suggest that forearm and calf venous compliance is lower in older adults compared with young. However, this difference probably cannot be explained by alterations in smooth muscle tone or responsiveness.  相似文献   

15.
Changes in cerebral hemodynamics, during and after head down tilt (HDT), were examined by means of transcranial Doppler technique (TCD) and near infrared spectroscopy (NIRS) in humans, and laser Doppler flowmetry (LDF) in rabbits. Mean cerebral blood flow (CBF) velocity measured by TCD increased during the first 6 h of HDT compared with the pre-HDT value. NIRS experiments demonstrated that brain oxygenation and hemoglobin concentration increased with postural change from upright to supine. These results suggest that exposure to HDT increases CBF during the early phase of HDT in humans. In rabbits anesthetized with alpha chloralose, on the other hand, 45 degrees HDT did not change CBF significantly in the parietal cortex during 1 h after the onset of HDT. The discrepancy may be explained by the difference in species, tilt angle, or the brain region where CBF has been measured.  相似文献   

16.
Splanchnic hemodynamics and tilt table tolerance were assessed after an infusion of placebo or octreotide acetate, a somatostatin analog whose vascular effects are largely confined to the splanchnic circulation. We hypothesized that reductions in splanchnic blood flow (SpBF) and splanchnic vascular conductance (SpVC) would be related to improvements in tilt table tolerance. In randomized, double-blind, crossover trials, hemodynamic variables were collected in 14 women and 16 men during baseline, 70° head-up tilt (HUT), and recovery. A repeated-measures analysis of variance was used to compare changes from baseline with respect to sex and condition. HUT elicited an increase in heart rate and decreases in mean arterial pressure, cardiac index, stroke index, and systemic vascular conductance. Additionally, SpVC and non-SpVC were lower during HUT. Octreotide reduced SpBF and SpVC and increased systemic vascular conductance and non-SpVC. Changes in SpBF and SpVC between supine and HUT were smaller in women (P < 0.05). Tilt table tolerance was increased after administration of octreotide [median tilt time: 15.7 vs. 37.0 min (P < 0.05) and 21.8 vs. 45.0 min (P < 0.05) for women and men, respectively]. A significant relationship existed between change (Δ) in SpBF (placebo-octreotide) and Δtilt time in women (Δtilt time = 2.5-0.0083 ΔSpBF, P < 0.01), but not men (Δtilt time = 3.41-0.0008 ΔSpBF, P = 0.59). In conclusion, administration of octreotide acetate improved tilt table tolerance, which was associated with a decrease in SpVC. In women, but not men, the magnitude of reduction in SpBF was positively associated with improvements in tilt tolerance.  相似文献   

17.
The purpose of the present study was to investigate the changes of orthostatic tolerance and cardiac function during 21 d head-down tilt (HDT) bed rest and effect of lower body negative pressure in the first and the last week in humans. Twelve healthy male volunteers were exposed to -6 degrees HDT bed rest for 21 d. Six subjects received -30 mmHg LBNP sessions for 1 h per day from the 1st to the 7th day and from the 15th to the 21st day of the HDT, and six others served as control. Orthostatic tolerance was assessed by means of standard tilt test. Stroke volume (SV), cardiac output (CO), preejection period (PEP) and left ventricular ejection time (LVET) were measured before and during HDT. Before HDT, all the subjects in the two groups completed the tilt tests. After 10 d and 21 d of HDT, all the subjects of the control group and one subject of the LBNP group could not complete the tilt test due to presyncopal or syncopal symptoms. The mean upright time in the control group (15.0 +/- 3.2 min) was significantly shorter than those in the LBNP group (19.7 +/- 0.9 min). SV and CO decreased significantly in the control group on days 3 and 10 of HDT, but remained unchanged throughout HDT in the LBNP group. A significant increase in PEP/LVET was observed on days 3 and 14 of HDT in both groups. The PEP/LVET in the LBNP group was significantly lower on day 3 of HDT, while LVET in the LBNP group was significantly higher on days 3, 7 and 14 of HDT than those in the control group. The results of this study suggest that brief daily LBNP sessions used in the first and the last weeks of 21 d HDT bed rest were effective in diminished the effect of head-down tilt on orthostatic tolerance, and LBNP might partially improve cardiac pumping function and cardiac systole function.  相似文献   

18.
This study was undertaken to identify combinations ('neutral points', NP) of orthostatic (tilt: head-down = HDT, head-up = HUT) and pseudo-orthostatic (lower body pressure: positive = LBPP, negative = LBNP) stimuli able to compensate one another in their effect on hemodynamic variables, electrical thoracic impedance (TI), hematocrit and plasma mass density (PD), and blood hormone concentrations. We asked if NP's exist for tested variables (hypothesis 1), if NP's differ with variables (hypothesis 2), and if NP's change as a function of time (hypothesis 3). For the blood volume sensitive variables (PD, plasma total protein concentration, and hematocrit) we found a NP at > or = 30 degrees HDT at LBNP-35 and -15 degrees HUT with LBPP+35. There was no clear PD / total plasma protein concentration effect with various degrees of LBNP-15 / HDT. NP's could be derived for some hemodynamic variables: With LBNP-35, a NP for heart rate was derived at -25 degrees HDT and for MAP at -30 degrees HDT. Heart rate intersected at > or = 30 degrees HDT with LBNP-15 (extrapolated), stroke volume index (SVI) at -20 degrees HDT. With LBPP+35, SVI had its NP at 11 degrees HUT. The hormonal responses displayed a pattern where plasma renin activity (PRA) NP's were logically scattered with LBNP intensity, whereas aldosterone displayed similar NP's with both LBNP intensities.  相似文献   

19.
Recent studies have indicated that plantar-based vibration may be an effective approach for the prevention and treatment of osteoporosis. We addressed the hypothesis of whether the plantar vibration operated by way of the skeletal muscle pump, resulting in enhanced blood and fluid flow to the lower body. We combined plantar stimulation with upright tilt table testing in 18 women aged 46-63 yr. We used strain-gauge plethysmography to measure calf blood flow, venous capacitance, and the microvascular filtration relation, as well as impedance plethysmography to examine changes in leg, splanchnic, and thoracic blood flow while supine at a 35 degrees upright tilt. A vibrating platform was placed on the footboard of a tilt table, and measurements were made at 0, 15, and 45 Hz with an amplitude of 0.2 g point to point, presented in random order. Impedance-measured supine blood flows were significantly (P = 0.05) increased in the calf (30%), pelvic (26%), and thoracic regions (20%) by plantar vibration at 45 Hz. Moreover, the 25-35% decreases in calf and pelvic blood flows associated with upright tilt were reversed by plantar vibration, and the decrease in thoracic blood flow was significantly attenuated. Strain-gauge measurements showed an attenuation of upright calf blood flow. In addition, the microvascular filtration relation was shifted with vibration, producing a pronounced increase in the threshold for edema, P(i), due to enhanced lymphatic flow. Supine values for P(i) increased from 24 +/- 2 mmHg at 0 Hz to 27 +/- 3 mmHg at 15 Hz, and finally to 31 +/- 2 mmHg at 45 Hz (P < 0.01). Upright values for P(i) increased from 25 +/- 3 mmHg at 0 Hz, to 28 +/- 4 mmHg at 15 Hz, and finally to 35 +/- 4 mmHg at 45 Hz. The results suggest that plantar vibration serves to significantly enhance peripheral and systemic blood flow, peripheral lymphatic flow, and venous drainage, which may account for the apparent ability of such stimuli to influence bone mass.  相似文献   

20.
Central venous blood pressure (P(ven)) increases in response to hypoxia in rainbow trout (Oncorhynchus mykiss), but details on the control mechanisms of the venous vasculature during hypoxia have not been studied in fish. Basic cardiovascular variables including P(ven), dorsal aortic blood pressure, cardiac output, and heart rate were monitored in vivo during normoxia and moderate hypoxia (P(W)O(2) = approximately 9 kPa), where P(W)O(2) is water oxygen partial pressure. Venous capacitance curves for normoxia and hypoxia were constructed at 80-100, 90-110, and 100-120% of total blood volume by transiently (8 s) occluding the ventral aorta and measure P(ven) during circulatory arrest to estimate the mean circulatory filling pressure (MCFP). This allowed for estimates of hypoxia-induced changes in unstressed blood volume (USBV) and venous compliance. MCFP increased due to a decreased USBV at all blood volumes during hypoxia. These venous responses were blocked by alpha-adrenoceptor blockade with prazosin (1 mg/kg body mass). MCFP still increased during hypoxia after pretreatment with the adrenergic nerve-blocking agent bretylium (10 mg/kg body mass), but the decrease in USBV only persisted at 80-100% blood volume, whereas vascular capacitance decreased significantly at 90-110% blood volume. In all treatments, hypoxia typically reduced heart rate while cardiac output was maintained through a compensatory increase in stroke volume. Despite the markedly reduced response in venous capacitance after adrenergic blockade, P(ven) always increased in response to hypoxia. This study reveals that venous capacitance in rainbow trout is actively modulated in response to hypoxia by an alpha-adrenergic mechanism with both humoral and neural components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号