首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo bilateral microdialysis in the rat striatum was used to investigate hydroxyl radical formation under basal conditions and after intrastriatal administration of the neurotoxin, 1-methyl-4-phenylpyridinium (MPP+). After a short equilibration period, 4-hydroxybenzoate (4HBZ), which scavenges hydroxyl radicals to produce 3,4-dihydroxybenzoate (34DHB), was injected intraperitoneally 15 min before infusion of MPP+. To evaluate the enzymatic contribution to hydroxyl radical formation, two other series of microdialyses were performed following administration of monoamine oxidase B inhibitors, either 1-deprenyl (selegiline) or MDL 72,974A [(E)-2-(4-fluorophenethyl)-3-fluoroallylamine hydrochloride]. Microdialysate samples were analyzed by high-performance liquid chromatography for catecholamines, 3,4-dihydroxyphenylacetate (DOPAC), homovanillate (HVA), along with the hydroxyl radical adduct, 34DHB and its precursor, 4HBZ. MPP+ administration resulted in a massive release of dopamine along with a decrease in DOPAC and HVA in all three groups. A striking effect in all three groups was noted in which MPP+ resulted in a decrease in interstitial 4HBZ to < 50% of the non-MPP+ -treated side. In absolute terms, the amount of 34DHB produced was low but similar in all three groups, even after unilateral MPP+ infusion. When 34DHB was normalized to 4HBZ release to account for differences in precursor availability, there were no significant differences in the 34DHB/4HBZ ratios either with or without MAO inhibitor treatment or after local MPP+ infusion. Systemic 4HBZ administration appears to result predominantly in intra-cellular sampling of hydroxyl radicals which produces different results from local infusion of trapping agents such as salicylate.  相似文献   

2.
B Salmons  B Groner  R Friis  D Muellener  R Jaggi 《Gene》1986,45(2):215-220
We have attempted to reverse the transformed phenotype of cells expressing the H-ras oncogene. A plasmid in which the first exon of the H-ras oncogene was coupled to the SV40 early promoter in an anti-sense orientation was constructed. This construct was introduced into a clone of H-ras-transformed NIH/3T3 cells. Simultaneous expression of both the SV40 anti-sense construct and H-ras was observed. Anti-sense RNA was present in a 10-20-fold excess over sense H-ras RNA. Only a small fraction of the cytoplasmic RNA was present in a sense: anti-sense duplexed form. The expression of anti-sense H-ras RNA was not accompanied by a phenotypic reversion of transformed cells. The only phenotypic reversion we observed was accompanied by a loss of transfected H-ras sequences. The loss of transfected H-ras sequences occurs with a high frequency in cells supertransfected with the SV40 anti-sense construct.  相似文献   

3.
4.
Effects of yohimbine (YHMB, an alpha 2-antagonist) and desipramine (DMI, a neuronal uptake inhibitor) were compared on cardiac noradrenaline (NA) release either upon left ansa subclavia nerve stimulation during acute occlusion of the left anterior descending coronary artery (LAD) or upon subsequent LAD reperfusion without stimulation in anesthetized dogs. In control dogs, before LAD occlusion, coronary sinus (CS) NA output increased from 5.4 +/- 1.0 to 26.8 +/- 4.0 ng/min (p less than 0.05) upon stimulation (2 Hz, 30 s). The response to stimulation remained unchanged 25 min after LAD occlusion. During reperfusion 60 min after occlusion, the output of CS-NA and lactate increased from 6.1 +/- 0.8 to 51.3 +/- 19.4 ng/min (p less than 0.05) and from 2.7 +/- 0.5 to 6.7 +/- 1.3 mg/min (p less than 0.05), respectively. In dogs treated with YHMB, the stimulation-induced increase in NA output was potentiated at least fourfold (p less than 0.05) either before or during LAD occlusion, but not during reperfusion. In dogs receiving DMI, stimulation-induced CS-NA output was enhanced to a similar extent (approximately twofold, p less than 0.05) either before or during occlusion, while reperfusion-induced NA output was markedly potentiated by approximately ninefold (p less than 0.05). Maximum dP/dt of left ventricular pressure remained unchanged upon reperfusion in all groups. The total arrhythmic ratio in the drug-treated groups did not significantly differ from the ratio in control dogs upon either stimulation or reperfusion. The data suggest that an abrupt increase in NA output upon reperfusion may result from a washout of NA locally accumulated in the ischemic and (or) peri-ischemic region during the preceding occlusion period, and that NA thus released does not have substantial hemodynamic effects. The results indicate that in the presence of YHMB or DMI, the potentiated increase in NA release in response to either nerve stimulation during LAD occlusion or to reperfusion without stimulation did not aggravate ventricular arrhythmia, most probably owing to the antiarrhythmic properties of these substances.  相似文献   

5.
HNS-32 (N1,N1-dimethyl-N2-(2-pyridylmethyl)-5-isopropyl-3, 8-dimethylazulene-1-carboxamidine: CAS 186086-10-2) is a newly synthesized compound, and possesses antiarrhythmic properties with vasodilator action in dog hearts. The aim of this study was to investigate the dose-dependent effects of HNS-32 on ischemia- and/or reperfusion-induced ventricular arrhythmias in anesthetized rats in vivo and compared with those of mexiletine. Saline or drugs were administered intravenously 5 min prior to coronary artery occlusion. On the ischemia-induced ventricular arrhythmias, HNS-32 showed dose-dependent reduction of total number of premature ventricular complexes (PVC) from 2091 ± 225 to 656 ± 116 and 286 ± 69 beats/30 min (p < 0.05), the ventricular tachycardia (VT) duration from 183 ± 33 to 28 ± 9 and 4 ± 2 sec (p < 0.05), the incidence of VT from 100 to 90 (n.s.) and 40% (p < 0.05), and the incidence of ventricular fibrillation (VF) from 50 to 0 and 0% (p < 0.05) with 3 and 5 mg/kg, respectively. Mexiletine also reduced these parameters to 936 ± 159 beats/30 min (p < 0.05), 39 ± 22 sec (p < 0.05), 90% (n.s.) and 10% (n.s.), respectively. HNS-32 completely suppressed the late reperfusion-induced arrhythmias, however mexiletine did not affect them. On the early reperfusion-induced ventricular arrhythmias, HNS-32 showed dose-dependent reduction of VT duration from 126 ± 34 to 37 ± 12 and 3 ± 2 sec (p < 0.05), incidence of VT from 100 to 90 (n.s.) and 40% (p < 0.05), incidence of VF from 100 to 10 and 0% (p < 0.05), and mortality rate from 90 to 0 and 0% (p < 0.05), with 3 and 5 mg/kg, respectively. Mexiletine also reduced these parameters to 16 ± 9 sec (p < 0.05), 80 (n.s.), 50 (p < 0.05), and 10% (p < 0.05), respectively. HNS-32 significantly reduced the heart rate in a dose-dependent manner, from 399 ± 14 to 350 ± 8 and 299 ± 10 beats/min (p < 0.05) with 3 and 5 mg/kg, respectively. The antiarrhythmic effects of HNS-32 were more potent than that of the similar dose of mexiletine against occlusion-induced and reperfusion-induced arrhythmias in in vivo rats.  相似文献   

6.
7.
Numerous hormones activate cells through receptor-regulated hydrolysis of phosphoinositides resulting in elevated cellular diacylglycerol (DAG), an activator of protein kinase C (PKC). Our previous studies showed that thyrotropin-releasing hormone (TRH) treatment of GH3 cells stimulated a rapid (less than 10 s) but transient (less than 60 s) association of cytosolic PKC with the membrane. In this study, we investigated the roles of hormone-stimulated Ca2+ and DAG levels in initiating and terminating the membrane association of PKC. The initial effects of TRH were not mimicked by elevating CA2+ levels, however, inhibiting TRH-stimulated Ca2+ increases blocked hormone-stimulated PKC translocation. Hence, the TRH stimulation of both Ca2+ and DAG levels were essential for the initial PKC translocation. The termination of PKC membrane association could not be attributed to proteolysis of PKC nor to limiting Ca2+ levels. Treatment of cells with phorbol diesters potentiated and prolonged the effects of TRH on PKC translocation, suggesting that DAG levels limited the membrane association of PKC. Since TRH stimulated a sustained increase in DAG levels, DAG composition was analyzed. There was a marked shift in DAG from tetraenoic (at 15 s) to more saturated DAGs at longer times. In addition, increases in plasma membrane DAG in response to TRH were transient rather than sustained. We propose that the TRH stimulation of PKC translocation is short-lived due to the metabolism of plasma membrane DAGs which are effective in promoting PKC activation. In contrast, DAGs which accumulate in intracellular membranes during the sustained phase of TRH treatment appear to be ineffective as activators of PKC.  相似文献   

8.
The translation enhancing ability of cis-acting 3′-terminal untranslated region (3′-UTR) of brome mosaic virus (BMV) was examined. Two chimeric mRNA constructs translated in rabbit reticulocyte lysates contained the BMV coat protein (CP) gene and NPTI gene, respectively. It was shown that the 3′-UTR of BMV RNA enhanced the translational efficiency of uncapped but not capped messages.  相似文献   

9.
Nitrogen (N) limitation reduces leaf growth and photosynthetic rates of maize (Zea mays), and constrains photosynthate translocation to developing ears. Additionally, the period from about 1 week before to 2 weeks after silking is critical for establishing the reproductive sink capacity necessary to attain maximum yield. To investigate the influence of carbohydrate availability in plants of differing N status, a greenhouse study was performed in which exogenous sucrose (Suc) was infused around the time of silking into maize stems grown under different N regimes. N deficiency significantly reduced leaf area, leaf longevity, leaf chlorophyll content and photosynthetic rate. High N‐delayed leaf senescence, particularly of the six uppermost leaves, compared to the other two N treatments. While N application increased ear leaf soluble protein concentration, it did not influence glucose and suc concentrations. Interestingly, ear leaf starch concentration decreased with increasing N application. Infusion of exogenous suc tended to increase non‐structural carbohydrate concentrations in the developing ears of all N treatments at silking and 6 days after silking. However, leaf photosynthetic rates were not affected by suc infusion, and suc infusion failed to increase grain yield in any N treatment. The lack of an effect of suc infusion on ear growth and the high ear leaf starch concentration of N‐deficient maize, suggest that yield reduction under N deficiency may not be due to insufficient photosynthate availability to the developing ear during silking, and that yield reduction under N deficiency may be determined at an earlier growth stage.  相似文献   

10.
11.
12.
Overexpression of a truncated Kv1.1 or Kv2.1 channel polypeptide in the heart (Kv1DN or Kv2DN) resulted in mice with a prolonged action potential duration (APD) due to marked attenuation of rapidly activating, slowly inactivating K+ current (I(K,slow1)) or slowly inactivating outward K(+) current (I(K,slow2)) in ventricular myocytes. ECG monitoring, optical mapping, and programmed electrical stimulation of Kv1DN mice revealed spontaneous and inducible reentrant ventricular tachycardia due to spatial dispersion of repolarization and refractoriness. Recently, we demonstrated upregulation of I(K,slow2) in apical cardiomyocytes derived from Kv1DN mice. We therefore hypothesized that the selective upregulation of Kv2.1-encoded currents underlies the apex-to-base dispersion of repolarization and the reentrant arrhythmias. To test this hypothesis, the Kv1DN line was crossbred with the Kv2DN line to produce Kv1/Kv2DN lines. Whole cell voltage-clamp recordings from left ventricular cells of Kv1/Kv2DN confirmed that the 4-aminopyridine- and tetraethylammonium-sensitive components of IK,slow were eliminated, resulting in marked APD prolongation compared with wild-type, Kv1DN, and Kv2DN cells. Telemetric ECG recordings revealed prolongation of the corrected QT in Kv1/Kv2DN compared with Kv1DN and Kv2DN mice. However, attenuation of Kv2.1-encoded currents in Kv1DN mice did not suppress the arrhythmias. Thus, the elimination of I(K,slow2) prolongs APD and the QT intervals, but does not have an antiarrhythmic effect.  相似文献   

13.
14.
The activation of protein synthesis by mitogens in quiescent (G0) mammalian cells is obligatory for progression from G0 through G1 to DNA synthesis in S phase. When the activation of the Na+/H+ antiporter which occurs in mitogen-stimulated Swiss 3T3 fibroblasts or murine fibroblasts is completely blocked by dimethylamiloride, there is little or no effect on the phosphorylation of the ribosomal protein S6 or the activation of protein synthesis assayed by [35S]methionine incorporation. Furthermore, the accumulation of the protein product of the activated c-myc gene is unaffected by dimethylamiloride in 3T3 fibroblasts. The data show that there is no requirement for activation of the Na+/H+ antiporter for the activation of S6 phosphorylation or protein synthesis by mitogens but do not preclude the possibility that activation of the antiporter is necessary for some other response(s) obligatory for DNA synthesis. These data are contrasted with previous reports for Chinese hamster lung fibroblasts that the increase in intracellular pH which results from activation of the Na+/H+ antiporter in bicarbonate-free media is necessary for S6 phosphorylation, protein synthesis, and hence, for subsequent DNA synthesis (Pouyssegur, J., Chambard, J. C., Franchi, A., Paris, S., and Van Obberghen-Schilling, E. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 3935-3939; Chambard, J.C., and Pouyssegur, J. (1986) Exp. Cell Res. 164, 282-294).  相似文献   

15.
Experimental observations suggested that the length of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA 3' end has a role in regulating rates of translation in the parasitic protists Trypanosoma brucei, Leishmania donovani, and Trichomonas vaginalis. Using a PCR assay for poly(A) tail length, we measured the size of the RNA 3' end under different growth conditions in all three species. Our results showed that the combined 3' untranslated region and poly(A) tail of GAPDH mRNA do not vary with different rates of translation.  相似文献   

16.
17.
Adult male mice were given a continuous infusion of about 0.5 muCi of 3H-thymidine per gram body weight per day for periods varying from 1 to 60 days. Semithin sections of descending colon were cut from/plastic-embedded blocks and stained by a method combining silver impregnation and iron hematoxylin, by which argentaffin entero-endocrine cells and caveolated cells could be identified. From radioautographs, the labeling index of these cells was determined. One to three days after the beginning of 3H-thymidine infusion, label is observed in some of the stained entero-endocrine cells in the bottom of the crypts; the apices of these cells reach the crypt lumen and are joined to neighboring cells by terminal bars (junctional complexes). After five to seven days, labeled entero-endocrine cells are seen on the sides of the crypts, where their base stretches along the basement membrane and their apex has lost its terminal bar connections to neighboring cells. Finally, by 13 and 24 days, labeled cells are observed within the epithelium at the mucosal surface. The turnover time, which is taken to be equal to the mean time required for migration from site of origin to site of loss on the mucosal surface, has been estimated at 23.3 days. This is much longer than the 4.6 days required by the two main cell types of the epithelium -- vacuolated-columnar and mucous cells -- to travel the same route. It is likely that, after entero-endocrine cells lose their terminal bar attachment to other epithelial cells, they migrate independently and very slowly. Labeled caveolated cells are first seen in the crypt bottom one day after the beginning of 3H-thymidine infusion. By three to five days, they are on the sides of the crypts; their base is stretched along the basement membrane, but their apex retains its attachment to neighboring cells by terminal bars. By seven days, labeled caveolated cells are on the mucosal surface. Their turnover time has been assessed at 8.2 days. This is, again, longer than for the two main types to which they are bound by terminal bars throughout migration. The discrepancy is explained by the caveolated cells arising deeper in the crypts than most vacuolated-columnar and mucous cells.  相似文献   

18.
《Life sciences》1996,58(8):PL139-PL146
Rats were treated chronically with 20 mg/kg/day cocaine (by intraperitoneal injection) for 16 days, followed by 7 days of cocaine wash-out. On the next day, rats were challenged with an acute dose of cocaine administered by one of two routes (systemic or intracranial), and extracellular dopamine (DA) in the nucleus accumbens (Acb) was measured by in vivo microdialysis. Rats acutely challenged systemically with 20 mg/kg cocaine showed enhanced Acb extracellular DA levels (compared to control rats that had not previously received chronic cocaine). However, rats acutely challenged with intracranial cocaine by perfusion of 10−5 M cocaine directly into the Acb did not. It is suggested that both the development and triggering of cocaine sensitization, as manifested by enhanced Acb DA content to subsequent acute cocaine challenge, may involve more than just neural mechanisms occurring locally within the Acb.  相似文献   

19.

Background

Hypothyroidism is a prevalent endocrine condition. Individuals with this disease are commonly managed through supplementation with synthetic thyroid hormone, with the aim of alleviating symptoms and restoring normal thyroid stimulating hormone levels. Generally this management strategy is effective and well tolerated. However, there is research to suggest that a significant proportion of hypothyroid sufferers are being inadequately managed. Furthermore, hypothyroid patients are more likely to have a decreased sense of well-being and more commonly experience constitutional and neuropsychiatric complaints, even with pharmacological intervention. The current management of hypothyroidism follows a biomedical model. Little consideration has been given to a biopsychosocial approach to this condition. Within the chiropractic profession there is growing support for the use of a biopsychosocial-based intervention called Neuro-Emotional Technique (NET) for this population.

Methods/Design

A placebo-controlled, single-blinded, randomised clinical pilot-trial has been designed to assess the influence of Neuro-Emotional Technique on a population with primary overt hypothyroidism. A sample of 102 adults (≥18 years) who meet the inclusion criteria will be randomised to either a treatment group or a placebo group. Each group will receive ten treatments (NET or placebo) over a six week period, and will be monitored for six months. The primary outcome will involve the measurement of depression using the Depression, Anxiety and Stress Scale (DASS). The secondary outcome measures to be used are; serum thyroid stimulating hormone, serum free-thyroxine, serum free-triiodothyronine, serum thyroid peroxidase auto-antibodies, serum thyroglobulin auto-antibodies as well as the measurement of functional health and well-being using the Short-Form-36 Version 2. The emotional states of anxiety and stress will be measured using the DASS. Self-measurement of basal heart rate and basal temperature will also be included among the secondary outcome measures. The primary and secondary measures will be obtained at commencement, six weeks and six months. Measures of basal heart rate and basal temperature will be obtained daily for the six month trial period, with recording to commence one week prior to the intervention.

Discussion

The study will provide information on the influence of NET when added to existing management regimens in individuals with primary overt hypothyroidism.

Trial Registration

ANZCTR Number: 12607000040460  相似文献   

20.
Temperature-sensitive (ts) mutants of rat 3Y1 fibroblasts representing four separate complementation groups (3Y1tsD123, 3Y1tsF121, 3Y1tsG125, and 3Y1tsH203) are arrested mainly in the G1 phase when cells of randomly proliferating population at 33.8 degrees C are shifted to 39.8 degrees C (temperature arrest). We examined the time lag of the cellular entry into the S phase after release at 33.8 degrees C, both from the temperature arrest and from the arrest at 33.8 degrees C at a confluent cell density (density arrest). In the temperature-arrested cells, as the duration of temperature arrest increased, the time lag of entry into S phase after shift down to 33.8 degrees C was prolonged, in all four mutants. These observations suggest that the four different functional lesions, each causing arrest in the G1 phase, are also responsible for prolongation of the time lag of entry into the S phase in cells arrested in the G1 phase. The prolongation of the time lag in the temperature-arrested cultures was accelerated at a higher cell density, in medium supplemented with a lower concentration of serum, and at a higher restrictive temperature. In the density-arrested cells, as the duration of pre-exposure to 39.8 degrees C was increased, the time lag of entry into S phase at 33.8 degrees C after release from the arrest was drastically prolonged, in all four mutants. In 3Y1tsF121, 3Y1tsG125, and 3Y1tsH203, when the density-arrested cells were prestimulated by serum at 39.8 degrees C for various periods of time, the time lag of entry into S phase after release from the density arrest at 33.8 degrees C was initially shortened, and then, prolonged progressively as the period of prestimulation increased. These findings, taken together with other data, show that all four ts defects affect cells in states ranging from the deeper resting to mid- or late-G1 phase. It is suggested that events represented by these four mutants are required for entry into the S phase and normally operate in parallel but not in sequence in cells in states ranging from the deeper resting to the mid- or late-G1 phases, though they may affect each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号