首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated the antioxidant role of peroxiredoxin 6 (Prdx6) in primary lung alveolar epithelial type II cells (AEC II) that were isolated from wild type (WT), Prdx6-/-, or Prdx6 transgenic (Tg) overexpressing mice and exposed to H(2)O(2) at 50-500 microM for 1-24 h. Expression of Prdx6 in Tg AEC II was sevenfold greater than WT. Prdx6 null AEC II exposed to H(2)O(2) showed concentration-dependent cytotoxicity indicated by decreased "live/dead" cell ratio, increased propidium iodide (PI) staining, increased annexin V binding, increased DNA fragmentation by TUNEL assay, and increased lipid peroxidation by diphenylpyrenylphosphine (DPPP) fluorescence. Compared to Prdx6 null cells, oxidant-mediated damage was significantly less in WT AEC II and was least in Prdx6 Tg cells. Thus, Prdx6 functions as an antioxidant enzyme in mouse AEC II. Prdx6 has been shown previously to reduce phospholipid hydroperoxides and we postulate that this activity is a major mechanism for the effectiveness of Prdx6 as an antioxidant enzyme.  相似文献   

2.
Autophagy, a self-eating process, is responsible for degradation of long-lived proteins and damaged cellular proteins/organelles. Double-membrane autophagosomes, formed during the process, engulf proteins/organelles and fuse with lysosomes to degrade the contents. It is important to maintain cell homeostasis and many physiological processes including cellular responses to oxidative stress. Oxidative stress induced by myocardial infarction is a major factor of heart failures. In this study, we examined how propofol modulates hydrogen peroxide (H2O2)-induced autophagic cell death in H9c2 cardiomyocytes. H2O2 dramatically induced cell death, which was similarly reduced in the presence of either propofol or autophagy inhibitors (e.g., wortmannin), suggesting that propofol has a protective effect in H2O2-induced autophagic cell death. Acidic autophagic vacuoles were elevated in H2O2-treated H9c2 cells, but they were largely decreased in the presence of propofol. Furthermore, many autophagy-related proteins such as LC3-II, ATG proteins, p62, AMPK, and JNK were activated in H2O2-treated H9c2 cells and were significantly deactivated in the presence of propofol. These results show that propofol regulates oxidative stress-induced autophagic cell death in cardiomyocytes. We further suggest that propofol can act as a cardioprotectant in heart diseases.  相似文献   

3.
Lee CS  Kim YJ  Han ES 《Life sciences》2007,80(19):1759-1767
The present study was designed to assess the preventive effect of licorice compounds glycyrrhizin and 18beta-glycyrrhetinic acid against mitochondrial damage and cell death in lung epithelial cells exposed to 3-morpholinosydnonime, a donor of nitric oxide and superoxide. Treatment of lung epithelial cells with 3-morpholinosydnonime resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species and depletion of GSH. Treatment of glycyrrhizin and 18beta-glycyrrhetinic acid attenuated the 3-morpholinosydnonime-induced mitochondrial damage, formation of reactive oxygen species and GSH depletion and revealed a maximal inhibitory effect at 10 and 1 muM, respectively; beyond these concentrations the inhibitory effect declined. Melatonin, carboxy-PTIO, rutin and uric acid reduced the 3-morpholinosydnonime-induced cell death. The results show that glycyrrhizin and 18beta-glycyrrhetinic acid seem to prevent the toxic effect of 3-morpholinosydnonime against lung epithelial cells by suppressing the mitochondrial permeability transition that leads to the release of cytochrome c and activation of caspase-3. The preventive effect may be ascribed to the inhibitory action on the formation of reactive oxygen species and depletion of GSH. The findings suggest that licorice compounds seem to prevent the nitrogen species-mediated lung cell damage.  相似文献   

4.
The present work examines the effect of membrane lipid composition on activation of extracellular signal-regulated protein kinases (ERK) and cell death following oxidative stress. When subjected to 50 microM docosahexaenoic acid (DHA, 22 : 6 n-3), cellular phospholipids of OLN 93 cells, a clonal line of oligodendroglia origin low in DHA, were enriched with this polyunsaturated fatty acid. In the presence of 1 mM N,N-dimethylethanolamine (dEa) a new phospholipid species analog was formed in lieu of phosphatidylcholine. Exposure of DHA-enriched cells to 0.5 mM H2O2, caused sustained activation of ERK up to 24 h. At this time massive apoptotic cell death was demonstrated by ladder and TUNEL techniques. H2O2-induced stress applied to dEa or DHA/dEa co-supplemented cells showed only a transient ERK activation and no cell death after 24 h. Moreover, while ERK was rapidly translocated into the nucleus in DHA-enriched cells, dEa supplements completely blocked ERK nuclear translocation. This study suggests that H2O2-induced apoptotic cell death is associated with prolonged ERK activation and nuclear translocation in DHA-enriched OLN 93 cells, while both phenomena are prevented by dEa supplements. Thus, the membrane lipid composition ultimately modulates ERK activation and translocation and therefore can promote or prevent apoptotic cell death.  相似文献   

5.
Apoptosis is known to be induced by direct oxidative damage due to oxygen-free radicals or hydrogen peroxide or by their generation in cells by the actions of injurious agents. Together with glutathione peroxidase and catalase, peroxiredoxin (Prx) enzymes play an important role in eliminating peroxides generated during metabolism. We investigated the role of Prx enzymes during cellular response to oxidative stress. Using Prx isoforms-specific antibodies, we investigated the presence of Prx isoforms by immunoblot analysis in cell lysates of the MCF-7 breast cancer cell line. Treatment of MCF-7 with hydrogen peroxide (H2O2) resulted in the dose-dependent expressions of Prx I and II at the protein and mRNA levels. To investigate the physiologic relevance of the Prx I and II expressions induced by H2O2, we compared the survivals of MCF10A normal breast cell line and MCF-7 breast cancer cell line following exposure to H2O2. The treatment of MCF10A with H2O2 resulted in rapid cell death, whereas MCF-7 was resistant to H2O2. In addition, we found that Prx I and II transfection enabled MCF10A cells to resist H2O2-induced cell death. These findings suggest that Prx I and II have important functions as inhibitors of cell death during cellular response to oxidative stress.  相似文献   

6.
Stroke is a debilitating disease and the third leading cause of death in the USA, where over 2000 new stroke cases are diagnosed every day. Treatment options for stroke-related brain damage are very limited and there is an urgent need for effective neuroprotective agents to treat these conditions. Comparison of the structures of several classes of neuroprotective natural products such as limonoids and cardiac glycosides revealed the presence of a common structural motif which may account for their observed neuroprotective activity. Several natural product mimics that incorporate this shared structural motif were synthesized and were found to possess significant neuroprotective activity. These compounds enhanced cell viability against H2O2 induced oxidative stress or cell death in PC12 neuronal cells. The compounds were also found to enhance and modulate Na+/K+-ATPase activity of PC12 cells, which may suggest that the observed neuroprotective activity is mediated, at least partly, through interaction with Na+/K+-ATPase.  相似文献   

7.
Tanshinone IIA is a lipophilic diterpene extracted from the Salvia miltiorrhiza bunge, possessing antiapoptotic and antioxidant activities. The purpose of this study was to explore the effects of Tanshinone IIA on age-related nuclear cataract. Human lens epithelial cell line SRA01/04 was subjected to H 2O 2 to mimic a cell model of cataract. Cell Counting Kit-8 assay, flow cytometer, and reactive oxygen species (ROS) detection were performed to evaluate the effect of Tanshinone IIA pretreatment on SRA01/04 cells injured by H 2O 2. Besides, the real-time quantitative polymerase chain reaction was used to assess the expression of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (ANRIL). Western blot analysis was performed to detect the expression of core proteins involved in cell survival and nuclear factor-κB (NF-κB) pathway. H 2O 2 significantly decreased SRA01/04 cells viability, whereas increased apoptosis and ROS generation. This phenomenon was coupled with the upregulated p53, p21, Bax, cleaved caspase-3, and the downregulated cyclinD1, CDK4, and Bcl-2. Tanshinone IIA pretreatment protected SRA01/04 cells against H 2O 2-induced injury. In the meantime, the expression of lncRNA ANRIL was upregulated by Tanshinone IIA. And, the protective effects of Tanshinone IIA on H 2O 2-stimulated SRA01/04 cells were abolished when lncRNA ANRIL was silenced. Moreover, the elevated expression of lncRNA ANRIL induced by Tanshinone IIA was abolished by BAY 11-7082 (an inhibitor of NF-κB). To conclude, Tanshinone IIA protects SRA01/04 cells from apoptosis triggered by H 2O 2. Tanshinone IIA confers its protective effects possibly via modulation of NF-κB signaling and thereby elevating the expression of lncRNA ANRIL.  相似文献   

8.
9.
10.
PAR [poly(ADP-ribose)] is a structural and regulatory component of multiprotein complexes in eukaryotic cells. PAR catabolism is accelerated under genotoxic stress conditions and this is largely attributable to the activity of a PARG (PAR glycohydrolase). To overcome the early embryonic lethality of parg-knockout mice and gain more insights into the biological functions of PARG, we used an RNA interference approach. We found that as little as 10% of PARG protein is sufficient to ensure basic cellular functions: PARG-silenced murine and human cells proliferated normally through several subculturing rounds and they were able to repair DNA damage induced by sublethal doses of H2O2. However, cell survival following treatment with higher concentrations of H2O2 (0.05-1 mM) was increased. In fact, PARG-silenced cells were more resistant than their wild-type counterparts to oxidant-induced apoptosis while exhibiting delayed PAR degradation and transient accumulation of ADP-ribose polymers longer than 15-mers at early stages of drug treatment. No difference was observed in response to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, suggesting a specific involvement of PARG in the cellular response to oxidative DNA damage.  相似文献   

11.
It is unknown which of the reactive oxygen species is primarily responsible for the cytotoxicity of 95% O2 for rat distal fetal lung epithelial cells in vitro. Incubation of cells with 25 U/ml polyethylene glycol (PEG)-conjugated SOD and 50 U/ml PEG-catalase, but not PEG-SOD or SOD mimics alone, significantly reduced 95% O2-mediated cytotoxicity. Liposome-entrapped catalase, without SOD, also significantly reduced 95% O2-mediated cytotoxicity. Increased formation of lipid hydroperoxides, as assessed by the formation of 8-isoprostane and aldehydes, was attenuated by both 100 microM Trolox, a vitamin E analogue, and by 5 microM U74389G, an amino steroid. Trolox, but not U74389G, prevented an increase in cell-derived H2O2, hydroxyl radical and 95% O2-mediated cytotoxicity. An increase in hydroxyl radical formation, but not cell death, observed in 95% O2, was prevented by 0.1 microM phenanthrolene, a cell permeant iron chelator. DNA extracts of rat distal fetal lung epithelial cells maintained under serum-free conditions had an electrophoretic pattern consistent with some degree of apoptosis. However, no increase in laddering was seen with exposure to 95% O2. These data are consistent with hydrogen peroxide, but not lipid hydroperoxides or hydroxyl radical, being a critical effector of O2-mediated necrotic cell death in distal lung epithelial cells.  相似文献   

12.
13.
Intracellular defence mechanisms against oxidative stress may play an important role in the progression of liver diseases, including cholangiopathies. The multifunctional anti-apoptotic hepatocyte growth factor (HGF) has been suggested to have antioxidant functions. The effect of HGF upon cell viability, the generation of ROS, the expression of genes that play a role in ROS defence, and the activation of caspase-3 were measured in bile duct epithelial (BDE) cells in the presence or absence of H(2)O(2). HGF reduced H(2)O(2)-induced loss of viability, diminished H(2)O(2)-mediated ROS generation and abrogated H(2)O(2)-triggered changes in GSH/GSSG ratio. Furthermore, HGF increased the gene-expression of gamma-glutamylcysteine synthetase (GCLC) and glutathione reductase (GSR), while no effect was seen upon the gene-expression of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase (GPX1), and glutathione synthetase (GSR). Finally, HGF diminished the proteolytical activation of the key mediator of apoptosis (caspase-3) after H(2)O(2) exposure. Together, HGF may improve viability in bile duct epithelia cells after H(2)O(2) induced toxicity by proliferation, strengthening the intrinsic antioxidant defences, and/or by an attenuation of apoptosis. These in vitro results support the evaluation of HGF as antioxidative factor in hepatobiliary pathologies.  相似文献   

14.
15.
16.
Hydrogen peroxide, produced by inflammatory and vascular cells, induces oxidative stress that may contribute to endothelial dysfunction. In smooth muscle cells, H2O2 induces production of O2 by activating NADPH oxidase. However, the mechanisms whereby H2O2 induces oxidative stress in endothelial cells are poorly understood. We examined the effects of H2O2 on O2 levels on porcine aortic endothelial cells (PAEC). Treatment with 60 μmol/L H2O2 markedly increased intracellular O2 levels (determined by conversion of dihydroethidium to hydroxyethidium) and produced cytotoxicity (determined by propidium iodide staining) in PAEC. Overexpression of human manganese superoxide dismutase in PAEC reduced O2 levels and attenuated cytotoxicity resulting from treatment with H2O2. L-NAME, an inhibitor of nitric oxide synthase (NOS), and apocynin, an inhibitor of NADPH oxidase, reduced O2 levels in PAEC treated with H2O2, suggesting that both NOS and NADPH oxidase contribute to H2O2-induced O2 in PAEC. Inhibition of NADPH oxidase using apocynin and NOS rescue with L-sepiapterin together reduced O2 levels in PAEC treated with H2O2 to control levels. This suggests interaction-distinct NOS and NADPH oxidase pathways to superoxide. We conclude that H2O2 produces oxidative stress in endothelial cells by increasing intracellular O2 levels through NOS and NADPH oxidase. These findings suggest a complex interaction between H2O2 and oxidant-generating enzymes that may contribute to endothelial dysfunction.  相似文献   

17.
Pancreatic beta cells are sensitive to reactive oxygen species and this may play an important role in type 1 diabetes and during transplantation. Beta cells contain low levels of enzyme systems that protect against reactive oxygen species. The weakest link in their protection system is a deficiency in the ability to detoxify hydrogen peroxide by the enzymes glutathione peroxidase and catalase. We hypothesize that the deficit in the ability to dispose of reactive oxygen species is responsible for the unusual sensitivity of beta cells and that increasing protection will result in more resistant beta cells. To test these hypotheses we have produced transgenic mice with increased beta cell levels of catalase. Seven lines of catalase transgenic mice were produced using the insulin promoter to direct pancreatic beta cell specific expression. Catalase activity in islets from these mice was increased by as much as 50-fold. Northern blot analysis of several tissues indicated that overexpression was specific to the pancreatic islet. Catalase overexpression had no detrimental effects on islet function. To test whether increased catalase activity could protect the transgenic islets we exposed them to hydrogen peroxide, streptozocin, and interleukin-1beta. Fifty-fold overexpression of catalase produced marked protection of islet insulin secretion against hydrogen peroxide and significantly reduced the diabetogenic effect of streptozocin in vivo. However, catalase overexpression did not provide protection against interleukin-1beta toxicity and did not alter the effects of syngeneic and allogenic transplantation on islet insulin content. Our results indicate that in the pancreatic beta cell overexpression of catalase is protective against some beta cell toxins and is compatible with normal function.  相似文献   

18.
Gene expression screening showed decreased ephrin-A1 expression in CD4+ T cells of asthma patients. Ephrin-A1 is the ligand of the Eph receptor family of tyrosine kinases, forming the largest family of receptor tyrosine kinases. Their immune regulatory properties are largely unknown. This study demonstrates significantly reduced ephrin-A1 expression in T cells of asthma patients using real time-PCR. Immunohistological analyses revealed strong ephrin-A1 expression in lung tissue and low expression in cortical areas of lymph nodes. It is absent in T cell/B cell areas of the spleen. Colocalization of ephrin-A1 and its receptors was found only in the lung, but not in lymphoid tissues. In vitro activation of T cells reduced ephrin-A1 at mRNA and protein levels. T cell proliferation, activation-induced, and IL-2-dependent cell death were inhibited by cross-linking ephrin-A1, and not by engagement of Eph receptors. However, anti-EphA1 receptor slightly enhances Ag-specific and polyclonal proliferation of PBMC cultures. Furthermore, activation-induced CD25 up-regulation was diminished by ephrin-A1 engagement. Ephrin-A1 engagement reduced IL-2 expression by 82% and IL-4 reduced it by 69%; the IFN-gamma expression remained unaffected. These results demonstrate that ephrin-A1 suppresses T cell activation and Th2 cytokine expression, while preventing activation-induced cell death. The reduced ephrin-A1 expression in asthma patients may reflect the increased frequency of activated T cells in peripheral blood. That the natural ligands of ephrin-A1 are most abundantly expressed in the lung may be relevant for Th2 cell regulation in asthma and Th2 cell generation by mucosal allergens.  相似文献   

19.
Loss of cardiomyocytes by apoptosis is proposed to cause ventricular remodeling and heart failure. Reactive oxygen species-induced apoptosis of cardiomyocytes has been reported to play an important role in many types of pathological processes of the heart. We investigated whether angiopoietin-1 (Ang1) has direct cytoprotective effects on cardiomyocytes against oxidative stress. Cultured H9c2 cells (cardiomyocytes) were treated with hydrogen peroxide (H(2)O(2)). Apoptosis was evaluated by flow cytometry, TUNEL assay and DNA laddering. The H(2)O(2) treatment caused typical apoptosis of H9c2 cells in a time-dependent manner. Transfection of recombinant adenovirus expressing Ang1 resulted in a sustained phosphorylation of AKT and inhibition of H(2)O(2)-induced apoptosis in H9c2 cells. This effect could be reversed by AKT inhibition. These results suggest that Ang1 protects cardiomyocytes from oxidative stress-induced apoptosis by regulating the activity of AKT.  相似文献   

20.
While the exact mechanism of H2O2-induced cytotoxicity is unknown, there is considerable evidence implicating DNA as a primary target. A recent study showed that a cell-impermeable nitroxide protected mammalian cells from H2O2-induced cell killing and suggested that the protection was mediated through cell membrane-bound or extracellular factors. To further define the protective properties of nitroxides, Chinese hamster V79 cells were exposed to H2O2 with or without cell-permeable and impermeable nitroxides and selected metal chelators. EPR spectroscopy and paramagnetic line broadening agents were used to distinguish between intra- and extracellular nitroxide distribution. To study the effectiveness of nitroxide protection, in the absence of a cell membrane, H2O2-mediated damage to supercoiled plasmid DNA was evaluated. Both deferrioxamine and Tempol cross the cell membrane, and inhibited H2O2-mediated cell killing, whereas the cell-impermeable DTPA and nitroxide, CAT-1, failed to protect. Similar protective effects of the chelators and nitroxides were observed when L-histidine, which enhances intracellular injury, was added to H2O2. In contrast, when damage to plasmid DNA was induced (in the absence of a cell membrane), both nitroxides were protective. Collectively, these results do not support a role for membrane-bound or extracellular factors in mediating H2O2 cytotoxicity in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号