首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Major histocompatibility complex (MHC) class I cross-presentation is thought to involve two pathways, one of which depends on both the TAP transporters and the proteasome and the other on neither. We found that preincubation of TAP-deficient dendritic cells at low temperature increases the density of MHC class I at the surface and fully restores cross-presentation of phagocytosed antigen, but not of soluble antigen internalized through receptors. Restoration of cross-presentation by TAP-deficient cells requires antigen degradation by the proteasome. Thus, TAP might mainly be required for recycling cell surface class I molecules during cross-presentation of phagocytosed antigens. Furthermore, phagosomes-but not endosomes-seem to have a TAP-independent mechanism to import peptides generated by cytosolic proteasome complexes.  相似文献   

2.
Influenza A virus (IAV) infection is normally controlled by adaptive immune responses initiated by dendritic cells (DCs). We investigated the consequences of IAV infection of human primary DCs on their ability to function as antigen-presenting cells. IAV was internalized by both myeloid DCs (mDCs) and plasmacytoid DCs but only mDCs supported viral replication. Although infected mDCs efficiently presented endogenous IAV antigens on MHC class II, this was not the case for presentation on MHC class I. Indeed, cross-presentation by uninfected cells of minute amounts of endocytosed, exogenous IAV was ∼300-fold more efficient than presentation of IAV antigens synthesized by infected cells and resulted in a statistically significant increase in expansion of IAV-specific CD8 T cells. Furthermore, IAV infection also impaired cross-presentation of other exogenous antigens, indicating that IAV infection broadly attenuates presentation on MHC class I molecules. Our results suggest that cross-presentation by uninfected mDCs is a preferred mechanism of antigen-presentation for the activation and expansion of CD8 T cells during IAV infection.  相似文献   

3.
Herpes simplex virus (HSV) has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP) 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC) class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis.  相似文献   

4.
The immune defences of our organism against pathogens and malignant transformation rely to a large extent on surveillance by cytotoxic T lymphocytes. This surveillance in turn depends on the antigen processing system, which provides peptide samples of the cellular protein composition to MHC (major histocompatibility complex) class I molecules displayed on the cell surface. To continuously and almost in real time provide a representative sample of the array of proteins synthesized by the cell, this system exploits some fundamental pathways of the cellular metabolism, with the help of several dedicated players acting exclusively in antigen processing. Thus, a key element in the turnover of cellular proteins, protein degradation by cytosolic proteasome complexes, is exploited as source of peptides, by recruiting a minor fraction of the produced peptides as ligands for MHC class I molecules. These peptides can be further processed and adapted to the precise binding requirements of allelic MHC class I molecules by enzymes in the cytosol and endoplasmic reticulum. The latter compartment is equipped with several dedicated players helping peptide assembly with class I molecules. These include the TAP (transporter associated with antigen processing) membrane transporter pumping peptides into the ER, and tapasin, a chaperone with a structure similar to MHC molecules that tethers class I molecules awaiting peptide loading to the TAP transporter, and mediates optimization of MHC class I ligand by a still somewhat mysterious mechanism. Additional "house-keeping" chaperones that are known to act in concert in ER quality control, assist and control correct folding, oxidation and assembly of MHC class I molecules. While this processing system handles exclusively endogenous cellular proteins in most cells, dendritic cells employ one or several special pathways to shuttle exogenous, internalized proteins into the system, in a process referred to as cross-presentation. Deciphering the cell biological mechanism creating the link between the endosomal and secretory pathways that enables cross-presentation is one of the challenges faced by contemporary research in the field of MHC class I antigen processing.  相似文献   

5.
The induction of strong CD8(+) T-cell responses against infectious diseases and cancer has remained a major challenge. Depending on the source of antigen and the infectious agent, priming of CD8(+) T cells requires direct and/or cross-presentation of antigenic peptides on major histocompatibility complex (MHC) class I molecules by professional antigen-presenting cells (APCs). However, both pathways show distinct preferences concerning antigen stability. Whereas direct presentation was shown to efficiently present peptides derived from rapidly degraded proteins, cross-presentation is dependent on long-lived antigen species. In this report, we analyzed the role of antigen stability on DNA vaccination and recombinant vaccinia virus (VV) infection using altered versions of the same antigen. The long-lived nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) can be targeted for degradation by N-terminal fusion to ubiquitin or, as we show here, to the ubiquitin-like modifier FAT10. Direct presentation by cells either transfected with NP-encoding plasmids or infected with recombinant VV in vitro was enhanced in the presence of short-lived antigens. In vivo, however, the highest induction of NP-specific CD8(+) T-cell responses was achieved in the presence of long-lived NP. Our experiments provide evidence that targeting antigens for proteasomal degradation does not improve the immunogenicity of DNA vaccines and recombinant VVs. Rather, it is the long-lived antigen that is superior for the efficient activation of MHC class I-restricted immune responses in vivo. Hence, our results suggest a dominant role for antigen cross-priming in DNA vaccination and recombinant VV infection.  相似文献   

6.
CyaA, the adenylate cyclase toxin from Bordetella pertussis, can deliver its N-terminal catalytic domain into the cytosol of a large number of eukaryotic cells and particularly into professional antigen-presenting cells. We have previously identified within the primary structure of CyaA several permissive sites at which insertion of peptides does not alter the ability of the toxin to enter cells. This property has been exploited to design recombinant CyaA toxoids capable of delivering major histocompatibility complex (MHC) class I-restricted CD8(+) T-cell epitopes into antigen-presenting cells and to induce specific CD8(+) cytotoxic T-lymphocyte (CTL) responses in vivo. Here we have explored the capacity of the CyaA vector carrying several different CD8(+) T-cell epitopes to prime multiple CTL responses. The model vaccine consisted of a polyepitope made of three CTL epitopes from lymphocytic choriomeningitis virus (LCMV), the V3 region of human immunodeficiency virus gp120, and chicken ovalbumin, inserted at three different sites of the catalytic domain of genetically detoxified CyaA. Each of these epitopes was processed on delivery by CyaA and presented in vitro to specific T-cell hybridomas. Immunization of mice by CyaA toxoids carrying the polyepitope lead to the induction of specific CTL responses for each of the three epitopes, as well as to protection against a lethal viral challenge. Moreover, mice primed against the vector by mock CyaA or a recombinant toxoid were still able to develop strong CTL responses after subsequent immunization with a recombinant CyaA carrying a foreign CD8(+) CTL epitope. These results highlight the potency of the adenylate cyclase vector for induction of protective CTL responses with multiple specificity and/or broad MHC restriction.  相似文献   

7.
To investigate the in vivo role of interleukin-10 (IL-10) in viral infection, we compared infections with a recombinant vaccinia virus (VV) expressing IL-10 (VV-IL10) under control of the VV P7.5 promoter and a control virus (VV-beta gal) in normal and severe combined immunodeficient mice. In normal mice, VV-IL10 infection resulted in less natural killer cell activity at 3 days postinfection and less VV-specific cytotoxic T-cell activity at 6 or 7 days postinfection than VV-beta gal infection. However, the use of dermal scarification or intraperitoneal, intranasal, or intracerebral inoculation into immunocompetent mice resulted in no difference between VV-IL10 and VV-beta gal in visible lesions, mortality, protective immunity to a 100-fold lethal VV challenge, or VV-specific antibody response. In the immunodeficient mice, VV-IL10 infection resulted in greater natural killer cell activity and lower virus replication than VV-beta gal infection. These in vivo effects were subtler and more complex than had been anticipated. From the VV-IL10 murine model, the Epstein-Barr virus-encoded homolog of human IL-10, BCRF1, may provide a selective advantage by blunting the early human natural killer cell and cytotoxic T-cell responses so that Epstein-Barr virus can establish a well-contained latent infection in B lymphocytes.  相似文献   

8.
Retrovirus infection of murine fibroblasts was found to alter the expression of major histocompatibility complex (MHC) antigens. Fibroblasts infected with Moloney murine leukemia virus (M-MuLV) exhibited up to a 10-fold increase in cell surface expression of all three class I MHC antigens. Increases in MHC expression resulted in the increased susceptibility of M-MuLV-infected cells to lysis by allospecific cytotoxic T lymphocytes (CTL). M-MuLV appears to exert its effect at the genomic level, because mRNA specific for class I antigens, as well as beta 2-microglobulin, show a fourfold increase. Fibroblasts infected with the Moloney sarcoma virus (MSV):M-MuLV complex show no increase in MHC antigen expression or class I mRNA synthesis, suggesting that co-infection with MSV inhibits M-MuLV enhancement of MHC gene expression. Quantitative differences in class I antigen expression on virus-infected cells were also found to influence the susceptibility of infected cells to lysis by H-2-restricted, virus-specific CTL. Differential lysis of infected cells expressing varied levels of class I antigens by M-MuLV-specific bulk CTL populations and CTL clones suggests that individual clones may have different quantitative requirements for class I antigen expression. The MSV inhibition of MHC expression could be reversed by interferon-gamma. Treatment of MSV:M-MuLV-infected fibroblasts with interferon-gamma increased their susceptibility to lysis by both allogeneic and syngeneic CTL. The data suggest that interferon-gamma may function in the host's immune response to viral infections by enhancing MHC antigen expression, thereby increasing the susceptibility of virus-infected cells to lysis by H-2-restricted, virus-specific CTL.  相似文献   

9.
CD8+ T cells can be primed by peptides derived from endogenous proteins (direct presentation), or exogenously acquired protein (cross-presentation). However, the relative ability of these two pathways to prime CD8+ T cells during a viral infection remains controversial. Cytomegaloviruses (CMVs) can infect professional antigen presenting cells (APCs), including dendritic cells, thus providing peptides for direct presentation. However, the viral immune evasion genes profoundly impair recognition of infected cells by CD8+ T cells. Nevertheless, CMV infection elicits a very strong CD8+ T cell response, prompting its recent use as a vaccine vector. We have shown previously that deleting the immune evasion genes from murine cytomegalovirus (MCMV) that target class I MHC presentation, has no impact on the size or breadth of the CD8+ T cell response elicited by infection, suggesting that the majority of MCMV-specific CD8+ T cells in vivo are not directly primed by infected professional APCs. Here we use a novel spread-defective mutant of MCMV, lacking the essential glycoprotein gL, to show that cross-presentation alone can account for the majority of MCMV-specific CD8+ T cell responses to the virus. Our data support the conclusion that cross-presentation is the primary mode of antigen presentation by which CD8+ T cells are primed during MCMV infection.  相似文献   

10.
Xu D  Walker CM 《Journal of virology》2011,85(22):12083-12086
Recombinant adeno-associated virus (rAAV) vectors establish persistent transgene expression in the skeletal muscle of mice. How dendritic cells acquire encoded antigens for CD8(+) T-cell priming is unknown. Here we document CD8(+) T-cell priming after lethal irradiation and bone marrow reconstitution of mice treated with an AAV vector several weeks earlier. Temporal separation of vector delivery and successful class I antigen presentation indicated that T-cell priming does not necessarily require antigen synthesis in AAV-transduced dendritic cells. An apparent cross-presentation of antigen acquired from muscle suggests that strategies to limit transgene expression in dendritic cells will not prevent unwanted CD8(+) T-cell responses.  相似文献   

11.
One of the goals of cell-based immune therapy in cancer is the induction of tumor-specific cytotoxic T-lymphocyte (CTL) responses. To achieve this objective, the ability of dendritic cells (DC) to cross-present tumor antigens can be exploited. One of the most efficient pathways for the induction of CTLs by cross-presentation is mediated by immunoglobulins of the IgG class, which are used by DCs to sample antigen in the form of immune complexes via Fc-gamma receptors. Could DCs use an IgE-mediated cross-presentation mechanism in a comparable manner to induce CTLs? We here discuss the potential of two human IgE Fc receptors, FcεRI and FcεRII, to serve as antigen uptake receptors for IgE-mediated cross-presentation. We conclude that the existence of an IgE-mediated cross-presentation pathway would provide a direct link between IgE-driven immune responses and CTL activity.  相似文献   

12.
Orthopoxviruses evade host immune responses by using a number of strategies, including decoy chemokine receptors, regulation of apoptosis, and evasion of complement-mediated lysis. Different from other poxviral subfamilies, however, orthopoxviruses are not known to evade recognition by CTL. In fact, vaccinia virus (VV) is used as a vaccine against smallpox and a vector for eliciting strong T cell responses to foreign Ags. and both human and mouse T cells are readily stimulated by VV-infected APC in vitro. Surprisingly, however, CD8(+) T cells of mice infected with cowpox virus (CPV) or VV recognized APC infected with VV but not APC infected with CPV. Likewise, CD8(+) T cells from vaccinated human subjects could not be activated by CPV-infected targets and CPV prevented the recognition of VV-infected APC upon coinfection. Because CD8(+) T cells recognize viral peptides presented by MHC class I (MHC I), we examined surface expression, total levels, and intracellular maturation of MHC I in CPV- and VV-infected human and mouse cells. Although total levels of MHC I were unchanged, CPV reduced surface levels and inhibited the intracellular transport of MHC I early during infection. CPV did not prevent peptide loading of MHC I but completely inhibited MHC I exit from the endoplasmic reticulum. Because this inhibition was independent of viral replication, we conclude that an early gene product of CPV abrogates MHC I trafficking, thus rendering CPV-infected cells "invisible" to T cells. The absence of this immune evasion mechanism in VV likely limits virulence without compromising immunogenicity.  相似文献   

13.
In an effort to enhance the potency of DNA vaccines, we have developed a new strategy to increase antigen presentation by dendritic cells, one that results in markedly improved cytotoxic T-lymphocyte responses, antibody production, and antitumor effects in vivo. Here, we present the rationale and design of a vaccine encoding a secreted antigen-heat shock protein 70 fusion molecule, targeted to the MHC class I cross-presentation pathway of dendritic cells. Using the human papilloma virus 16 E7 protein as a model antigen, we illustrate the preparation of this vaccine and the main experimental procedures used to test such constructs.  相似文献   

14.
Recombinant viruses are attractive candidates for the development of novel vaccines. A number of viruses have been engineered as vaccine vectors to express antigens from other pathogens or tumors. Inoculation of susceptible animals with this type of recombinant virus results in the induction of both humoral and cellular immune responses directed against the foreign antigens. A general problem to this approach is that existing immunity to the vector can diminish or completely abolish the efficacy of the viral vector. In this study, we investigated whether poliovirus recombinants are capable of inducing effective immunity to the foreign antigen in previously vaccinated animals. Antipoliovirus immunity was induced in susceptible mice by intraperitoneal immunization with live poliovirus. Immunized mice developed antibodies directed against capsid proteins that effectively neutralized poliovirus in vitro and protected animals from a lethal challenge with a high dose of pathogenic poliovirus. To test whether preexisting immunity reduces the efficacy of vaccination with recombinant poliovirus, immunized mice were inoculated with a recombinant poliovirus expressing the C-terminal half of chicken ovalbumin (Polio-Ova). Animals developed ovalbumin-specific antibodies and cytotoxic T lymphocytes (CTL). While the antibody titers observed in preimmune and naive mice were similar, the overall CTL response appeared to be reduced in preimmune mice. Importantly, vaccination with Polio-Ova was able to effectively protect preimmune mice against lethal challenge with a tumor expressing the antigen. Thus, preexisting immunity to poliovirus does not compromise seriously the efficacy of replication-competent poliovirus vaccine vectors. These results contrast with those observed for other viral vaccine vectors and suggest that preexisting immunity does not equally affect the vaccine potential of individual viral vectors.  相似文献   

15.
Many approaches are currently being developed to deliver exogenous antigen into the major histocompatibility complex class I-restricted antigen pathway, leading to in vivo priming of CD8(+) cytotoxic T cells. One attractive possibility consists of targeting the antigen to phagocytic or macropinocytic antigen-presenting cells. In this study, we demonstrate that strong CD8(+) class I-restricted cytotoxic responses are induced upon intraperitoneal immunization of mice with different peptides, characterized as CD8(+) T-cell epitopes, bound to 1-microm synthetic latex microspheres and injected in the absence of adjuvant. The cytotoxic response induced against a lymphocytic choriomeningitis virus (LCMV) peptide linked to these microspheres was compared to the cytotoxic T-lymphocyte (CTL) response obtained upon immunization with the nonreplicative porcine parvovirus-like particles (PPV:VLP) carrying the same peptide (PPV:VLP-LCMV) previously described (C. Sedlik, M. F. Saron, J. Sarraseca, I. Casal, and C. Leclerc, Proc. Natl. Acad. Sci. USA 94:7503-7508, 1997). We show that the induction of specific CTL activity by peptides bound to microspheres requires CD4(+) T-cell help in contrast to the CTL response obtained with the peptide delivered by viral pseudoparticles. Furthermore, PPV:VLP are 100-fold more efficient than microspheres in generating a strong CTL response characterized by a high frequency of specific T cells of high avidity. Moreover, PPV:VLP-LCMV are able to protect mice against a lethal LCMV challenge whereas microspheres carrying the LCMV epitope fail to confer such protection. This study demonstrates the crucial involvement of the frequency and avidity of CTLs in conferring antiviral protective immunity and highlights the importance of considering these parameters when developing new vaccine strategies.  相似文献   

16.
Vaccinia virus (VV) infection is known to inhibit dendritic cells (DC) functions in vitro. Paradoxically, VV is also highly immunogenic and thus has been used as a vaccine. In the present study, we investigated the effects of an in vivo VV infection on DC function by focusing on early innate immunity. Our data indicated that DC are activated upon in vivo VV infection of mice. Splenic DC from VV-infected mice expressed elevated levels of MHC class I and co-stimulatory molecules on their cell surface and exhibited the enhanced potential to produce cytokines upon LPS stimulation. DC from VV-infected mice also expressed a high level of interferon-beta. However, a VV infection resulted in the down-regulation of MHC class II expression and the impairment of antigen presentation to CD4 T cells by DC. Thus, during the early stage of a VV infection, although DC are impaired in some of the critical antigen presentation functions, they can promote innate immune defenses against viral infection.  相似文献   

17.
In vivo priming of cytotoxic T lymphocytes (CTL) by DNA injection predominantly occurs by antigen transfer from DNA-transfected cells to antigen-presenting cells. A rational strategy for increasing DNA vaccine potency would be to use a delivery system that facilitates antigen uptake by antigen-presenting cells. Exogenous antigen presentation through the major histocompatibility complex (MHC) class I-restricted pathway of some viral antigens is increased after adequate virus-receptor interaction and the fusion of viral and cellular membranes. We used DNA-based immunization with plasmids coding for human immunodeficiency virus type 1 (HIV-1) Gag particles pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) to generate Gag-specific CTL responses. The presence of the VSV-G-encoding plasmid not only increased the number of mice displaying anti-Gag-specific cytotoxic response but also increased the efficiency of specific lysis. In vitro analysis of processing confirmed that exogenous presentation of Gag epitopes occurred much more efficiently when Gag particles were pseudotyped with the VSV-G envelope. We show that the VSV-G-pseudotyped Gag particles not only entered the MHC class II processing pathway but also entered the MHC class I processing pathway. In contrast, naked Gag particles entered the MHC class II processing pathway only. Thus, the combined use of DNA-based immunization and nonreplicating pseudotyped virus to deliver HIV-1 antigen to the immune system in vivo could be considered in HIV-1 vaccine design.  相似文献   

18.
We have previously demonstrated that peptide immunization restimulates the memory CD4 T-cell response, but fails to induce cytotoxic T lymphocyte (CTL) in cynomolgus macaques. To examine the nature of protective immunity to simian immunodeficiency virus (SIV) in this study, freshly isolated peripheral blood mononuclear cells (PBMC) from four infected juvenile cynomolgus macaques and from three uninfected control macaques were assessed for CTL activity monthly for 9 consecutive months, beginning 1 month after detection of infection. Target cells consisted of major histocompatibility (MHC) haploidentical parental PBMC which were stimulated with mitogen and then pulsed with heat-killed SIVcyn. CTL activity was demonstrated in PBMCs from all four infected animals. The effector cells are T cells which mediate cytotoxicity against SIVcyn-pulsed target cells in an MHC-restricted manner. Furthermore, the cytotoxicity is virus specific and predominantly, if not exclusively, mediated by CD8+ T cells; it is also MHC class I restricted. Incubation of target cells with pepstatin A during antigen pulsing prior to the cytotoxic assay inhibited target cell generation, suggesting that viral antigens are processed via an endocytic pathway.  相似文献   

19.
Acute infection of the central nervous system by the neurotropic JHM strain of mouse hepatitis virus (JHMV) induces nucleocapsid protein specific cytotoxic T lymphocytes (CTL) not found in the periphery (S. Stohlman, S. Kyuwa, J. Polo, D. Brady, M. Lai, and C. Bergmann, J. Virol. 67:7050-7059, 1993). Peripheral induction of CTL specific for the nucleocapsid protein of JHMV by vaccination with recombinant vaccinia viruses was unable to provide significant protection to a subsequent lethal virus challenge. By contrast, the transfer of nucleoprotein-specific CTL protected mice from a subsequent lethal challenge by reducing virus replication within the central nervous system, demonstrating the importance of the CTL response to this epitope in JHMV infection. Transfer of these CTL directly into the central nervous system was at least 10-fold more effective than peripheral transfer. Histological analysis indicated that the CTL reduced virus replication in ependymal cells, astrocytes, and microglia. Although the CTL were relatively ineffective at reducing virus replication in oligodendroglia, survivors showed minimal evidence of virus persistence within the central nervous system and no evidence of chronic ongoing demyelination.  相似文献   

20.
The transporter associated with antigen processing (TAP) and the major histocompatibility complex class I (MHC-I), two important components of the MHC-I antigen presentation pathway, are often deficient in tumor cells. The restoration of their expression has been shown to restore the antigenicity and immunogenicity of tumor cells. However, it is unclear whether TAP and MHC-I expression in tumor cells can affect the induction phase of the T cell response. To address this issue, we expressed viral antigens in tumors that are either deficient or proficient in TAP and MHC-I expression. The relative efficiency of direct immunization or immunization through cross-presentation in promoting adaptive T cell responses was compared. The results demonstrated that stimulation of animals with TAP and MHC-I proficient tumor cells generated antigen specific T cells with greater killing activities than those of TAP and MHC-I deficient tumor cells. This discrepancy was traced to differences in the ability of dendritic cells (DCs) to access and sample different antigen reservoirs in TAP and MHC-I proficient versus deficient cells and thereby stimulate adaptive immune responses through the process of cross-presentation. In addition, our data suggest that the increased activity of T cells is caused by the enhanced DC uptake and utilization of MHC-I/peptide complexes from the proficient cells as an additional source of processed antigen. Furthermore, we demonstrate that immune-escape and metastasis are promoted in the absence of this DC 'arming' mechanism. Physiologically, this novel form of DC antigen sampling resembles trogocytosis, and acts to enhance T cell priming and increase the efficacy of adaptive immune responses against tumors and infectious pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号