首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究对Aspergillus niger Glu05生产β-葡萄糖苷酶的培养基组分及培养条件进行了优化.优化后的培养基组成和培养条件分别为:麸皮4%,tryptone 4%,1μmol MnSO4,1μmol NaCl,KH2PO40.2%,oH自然,摇床转速250 r/min,培养温度30℃,培养周期5d.优化后发酵液中酶活力达到44.11 IU/mL,与初始的产酶水平32.87 IU/mL相比,提高了36%.  相似文献   

2.
α-Galactosidases are broadly used in feed, food, chemical, pulp, and pharmaceutical industries. However, there lacks a satisfactory microbial cell factory that is able to produce α-galactosidases efficiently and cost-effectively to date, which prevents these important enzymes from greater application. In this study, the secretory expression of an Aspergillus niger α-galactosidase (AGA) in Pichia pastoris was systematically investigated. Through codon optimization, signal peptide replacement, comparative selection of host strain, and saturation mutagenesis of the P1’ residue of Kex2 protease cleavage site for efficient signal peptide removal, a mutant P. pastoris KM71H (Muts) strain of AGA-I with the specific P1’ site substitution (Glu to Ile) demonstrated remarkable extracellular α-galactosidase activity of 1299 U/ml upon a 72 h methanol induction in 2.0 L fermenter. The engineered yeast strain AGA-I demonstrated approximately 12-fold higher extracellular activity compared to the initial P. pastoris strain. To the best of our knowledge, this represents the highest yield and productivity of a secreted α-galactosidase in P. pastoris, thus holding great potential for industrial application.  相似文献   

3.
β-Mannosidase (EC 3.2.1.25) is an exoglycosidase specific for the hydrolysis of terminal β-linked mannoside in various sugar chains. cDNA corresponding to the β-mannosidase gene was cloned from Aspergillus niger, sequenced, and expressed in the yeast Pichia pastoris. The β-mannosidase gene contains an open reading frame which encodes the protein with 933 amino acid residues. The wild type and recombinant proteins were purified to apparent homogeneity and biochemically characterized (K(M) 0.28 and 0.44mmol/l for p-nitrophenyl β-d-mannopyranoside, pI 4.2 and 4.0, and their pH optima were at pH 4.5 and 5.5 and 65°C, respectively).  相似文献   

4.
5.
α-N-Acetylgalactosaminidase (α-GalNAc-ase; EC.3.2.1.49) is an exoglycosidase specific for the hydrolysis of terminal α-linked N-acetylgalactosamine in various sugar chains. The cDNA corresponding to the α-GalNAc-ase gene was cloned from Aspergillus niger, sequenced, and expressed in the yeast Saccharomyces cerevisiae. The α-GalNAc-ase gene contains an open reading frame which encodes a protein of 487 amino acid residues. The molecular mass of the mature protein deduced from the amino acid sequence of this reading frame is 54 kDa. The recombinant protein was purified to apparent homogeneity and biochemically characterized (pI4.4, K(M) 0.56 mmol/l for 2-nitrophenyl 2-acetamido-2-deoxy-α-d-galactopyranoside, and optimum enzyme activity was achieved at pH2.0-2.4 and 50-55°C). Its molecular weight was determined by analytical ultracentrifuge measurement and dynamic light scattering. Our experiments confirmed that the recombinant α-GalNAc-ase exists as two distinct species (70 and 130 kDa) compared to its native form, which is purely monomeric. N-Glycosylation was confirmed at six of the eight potential N-glycosylation sites in both wild type and recombinant α-GalNAc-ase.  相似文献   

6.
7.
8.

Aspergillus niger α-glucosidase (ANG), a member of glycoside hydrolase family 31, catalyzes hydrolysis of α-glucosidic linkages at the non-reducing end. In the presence of high concentrations of maltose, the enzyme also catalyzes the formation of α-(1→6)-glucosyl products by transglucosylation and it is used for production of the industrially useful panose and isomaltooligosaccharides. The initial transglucosylation by wild-type ANG in the presence of 100 mM maltose [Glc(α1–4)Glc] yields both α-(1→6)- and α-(1→4)-glucosidic linkages, the latter constituting ~25% of the total transfer reaction product. The maltotriose [Glc(α1–4)Glc(α1–4)Glc], α-(1→4)-glucosyl product disappears quickly, whereas the α-(1→6)-glucosyl products panose [Glc(α1–6)Glc(α1–4)Glc], isomaltose [Glc(α1–6)Glc], and isomaltotriose [Glc(α1–6)Glc(α1–6)Glc] accumulate. To modify the transglucosylation properties of ANG, residue Asn694, which was predicted to be involved in formation of the plus subsites of ANG, was replaced with Ala, Leu, Phe, and Trp. Except for N694A, the mutations enhanced the initial velocity of the α-(1→4)-transfer reaction to produce maltotriose, which was then degraded at a rate similar to that by wild-type ANG. With increasing reaction time, N694F and N694W mutations led to the accumulation of larger amounts of isomaltose and isomaltotriose than achieved with the wild-type enzyme. In the final stage of the reaction, the major product was panose (N694A and N694L) or isomaltose (N694F and N694W).

  相似文献   

9.
A cDNA encoding β-mannanase was cloned from Aspergillus niger BCC4525 and expressed in Pichia pastoris KM71. The secreted enzyme hydrolyzed locust bean gum substrate with very high activity (1625 U/mL) and a relatively high kcat/Km (461 mg?1 s?1 mL). The enzyme is thermophilic and thermostable with an optimal temperature of 70 °C and 40% retention of endo-β-1,4-mannanase activity after preincubation at 70 °C. In addition, the enzyme exhibited broad pH stability with an optimal pH of 5.5. The recombinant enzyme hydrolyzes low-cost biomass, including palm kernel meal (PKM) and copra meal, to produce mannooligosaccharides, which is used as prebiotics to promote the growth of beneficial microflora in animals. An in vitro digestibility test simulating the gastrointestinal tract system of broilers suggested that the recombinant β-mannanase could effectively liberate reducing sugars from PKM-containing diet. These characteristics render this enzyme suitable for utilization as a feed additive to improve animal performance.  相似文献   

10.
A putative endo-1,4-β-d-xylanohydrolase gene xyl10 from Aspergillus niger, encoding a 308-residue mature xylanase belonging to glycosyl hydrolase family 10, was constitutively expressed in Pichia pastoris. The recombinant Xyl10 exhibited optimal activity at pH 5.0 and 60 °C with more than 50 % of the maximum activity from 40 to 70 °C. It retained more than 90 % of the original activity after incubation at 60 °C (pH 5.0) for 30 min and more than 74 % after incubation at pH 3.0–13.0 for 2 h (25 °C). The specific activity, K m and V max values for purified Xyl10 were, respectively, 3.2 × 103 U mg?1, 3.6 mg ml?1 and 5.4 × 103 μmol min?1 mg?1 towards beechwood xylan. The enzyme degraded xylan to a series of xylooligosaccharides and xylose. The recombinant enzyme with these properties has the potential for various industrial applications.  相似文献   

11.
Li  Gao-Xiang  Linko  Yu-Yen  Linko  P. 《Biotechnology letters》1984,6(10):645-650
Summary Aspergillus niger mycelia or spores were immobilized in calcium alginate gel beads and employed for production of glucoamylase and -amylase by repeated batch process. The immobilized mycelium produced lower enzyme activities than immobilized spores germinated in a growth medium and subsequently cultured in an enzyme production medium. In repeated batch experiments, free cells could be used for only 4 4-day batches, whereas with immobilized spores at least 11 4-day batches with a gradual increase in enzyme activities in each successive batch were possible. The activity ratio of glucoamylase and -amylase produced was altered by immobilization.  相似文献   

12.
13.
In our previous study, the α-amylase from Rhizopus oryzae (RoAmy) was expressed in Escherichia coli and Saccharomyces cerevisiae but the obtained recombinant RoAmy (rRoAmy) yields were too low. The aim of the present research was to obtain high-level expressions of RoAmy in the methylotrophic yeast Pichia pastoris. To this end, we constructed P. pastoris strains with the capability to express recombinant α-amylase under the control of constitutive glyceraldehyde-3-phosphate dehydrogenase (GAP) and methanol-inducible alcohol oxidase 1 promoters. The levels of inducibly expressed rRoAmy were higher than those of constitutively expressed. The maximal inducible rRoAmy expression levels for the Mut(+) strains (41.1mg/l) were approximately eight times higher than those for the Mut(s) strains and 24 times higher than those expressed under the control of the GAP promoter. For both inducible and constitutive expressions, the S. cerevisiae α-prepro sequence and the native signal sequence of RoAmy were used separately to direct the secretion of rRoAmy into the culture medium of P. pastoris. Low levels of intracellular amylase activities that had been detected after shake-flask fermentation indicated that both signal sequences could effectively direct the secretion of rRoAmy under all studied conditions. In addition, the secretion levels of rRoAmy directed with its own signal peptide were 7-10% higher than those directed by the α-prepro sequence.  相似文献   

14.
A β-glucosidase gene (bgl) from Aspergillus oryzae GIF-10 was cloned, sequenced and expressed. Its full-length DNA sequence was 2,903 bp and included three introns. The full-length cDNA sequence contained an open reading frame of 2,586 nucleotides, encoding 862 amino acids with a potential secretion signal. The A. oryzae GIF-10 bgl was functionally expressed in Pichia pastoris. After 7-day induction, protein yield reached 321 mg/mL. Using salicin as the substrate, the specific activity of the purified enzyme reached 215 U/mg. The purified recombinant β-glucosidase was a 110-kDa glycoprotein with optimum catalytic activity at pH 5.0 and 50 °C. The enzyme was stable between 20 and 60 °C, and retained 65 % of its activity after being held at 60 °C for 30 min. The recombinant β-glucosidase was relatively stable in a broad range of pHs, from 4.0 to 6.5. It showed broad specific activity, hydrolyzing a range of (1-4)-β-diglycosides and (1-4)-α-diglycosides, and Mn2+ stimulated its activity significantly.  相似文献   

15.
Studies in shake-flasks showed that Aspergillus wentii produces the maximum activity of β-glucosidase among the cultures tested. The activity against cellobiose was about 2–3 fold that against 4NPG. Aspergillus wentii produced a maximum activity of 16.5 U/ml in 14 days on malt extract. It also produced a comparable amount on other simple soluble sugars, which indicates that it is constitutive and does not require an inducer. Peptone was found to the best nitrogen source for β-glucosidase production. Optimum C/N ratio was found to be 7.3. Phosphate, magnesium and trace metals did not play significant roles in the production of β-glucosidase when they were used with malt extract as a carbon source. An inoculum of 6% (v/v) of 20-h-old culture grown on malt extract produced the maxium β-glucosidase activity.  相似文献   

16.
Using l-arabitol as an inducer, simple induction conditions were established that resulted in high-level expression of -l-arabinofuranosidase A by an Aspergillus niger d-xylulose kinase mutant strain. These conditions were adapted to construct a cDNA expression library from which an -l-arabinofuranosidase A cDNA clone was isolated using specific antiserum. The corresponding gene encoding -l-arabinpfuranosidase A (abfA) was isolated from a genomic library and cloned into a high copy plasmid vector. By co-transformation of uridine auxotrophic mutants lacking orotidine-5-phosphate decarboxylase activity, the afbA gene was introduced both in A. niger and A. nidulans, using the A. niger pyrA gene as selection marker. The identity of the abfA gene was confirmed by overexpression of the gene product by A. niger and A. nidulans transformants, upon growth using sugar beet pulp as the carbon source.  相似文献   

17.
Pro-FXIIIa (the -subunit of FXIII with activation peptide, which must be removed to produce the active form of FXIIIa), cloned from human placenta cDNA library, was overexpressed in the methylotrophic yeast Pichia pastoris GS115 (his4) and secreted into the culture medium to yield the recombinant pro-FXIIIa subunit with a predicted molecular mass of approximately 83 kDa. The gene was located immediately downstream of the strong yeast alcohol oxidase promoter (AOX1). In shake flask culture, recombinant pro-FXIIIa (rFXIIIa) was secreted into the culture medium at above 50 mg l–1. The fibrin-stabilizing activity of the recombinant pro-FXIIIa, after thrombin activation, was confirmed using fibrin cross-linking patterns, and analyzed by SDS-PAGE.  相似文献   

18.
The glycoside hydrolase β-1,3-glucomannanase is an enzyme that specifically breaks the β-1,3 glycosidic bond of the glucomannan, the main cell wall constituent of some yeasts. In this work, a codon optimized DNA sequence of the MAN5C gene from Penicillium lilacinum ATCC 36010 was expressed in the yeast Pichia pastoris under the control of AOX1 promoter. The recombinant protein plMAN5C was purified from the shake flask culture and the stirred-tank bioreactor culture in yields of 30.0 mg/l and 224.0 mg/l, respectively. The purified protein had a specific activity of 14.6 U/mg at 37 °C, pH 4.5. Biochemical analysis showed that the optimal temperature and pH for plMAN5C were 50 °C and 4.5, respectively. The recombinant plMAN5C was efficient in lysis of the cell wall of the red yeast Rhodosporidium toruloides to form protoplast. Our work provided an effective system for heterogeneous production of β-1,3-glucomannanase, which should facilitate a more convenient application of this enzyme in biotechnology and other related areas.  相似文献   

19.
Production of cellulases and β-glucosidase was studied using locally-isolated Aspergillus niger on various cheap sources of cellulose like bagasse, corn corbs, computer cards and sawdust, by solid state fermentation (SSF) and by liquid state fermentation (LSF). Enzyme activities were increased about 30–80% by SSF in comparison with conventional LSF. Enzyme production was further improved by various pretreatments, making cellulosic material easily accessible. The best results were obtained with 5 M NaOH treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号