首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation patterns of amino acid tandem repeats in the human proteome   总被引:1,自引:0,他引:1  

Background

Amino acid tandem repeats are found in nearly one-fifth of human proteins. Abnormal expansion of these regions is associated with several human disorders. To gain further insight into the mutational mechanisms that operate in this type of sequence, we have analyzed a large number of mutation variants derived from human expressed sequence tags (ESTs).

Results

We identified 137 polymorphic variants in 115 different amino acid tandem repeats. Of these, 77 contained amino acid substitutions and 60 contained gaps (expansions or contractions of the repeat unit). The analysis showed that at least about 21% of the repeats might be polymorphic in humans. We compared the mutations found in different types of amino acid repeats and in adjacent regions. Overall, repeats showed a five-fold increase in the number of gap mutations compared to adjacent regions, reflecting the action of slippage within the repetitive structures. Gap and substitution mutations were very differently distributed between different amino acid repeat types. Among repeats containing gap variants we identified several disease and candidate disease genes.

Conclusion

This is the first report at a genome-wide scale of the types of mutations occurring in the amino acid repeat component of the human proteome. We show that the mutational dynamics of different amino acid repeat types are very diverse. We provide a list of loci with highly variable repeat structures, some of which may be potentially involved in disease.  相似文献   

2.

Background

Enzyme production in microbial cells has been limited to secreted enzymes or intracellular enzymes followed by expensive down stream processing. Extracellular enzymes consists mainly of hydrolases while intracellular enzymes exhibit a much broader diversity. If these intracellular enzymes could be secreted by the cell the potential of industrial applications of enzymes would be enlarged. Therefore a novel secretion pathway for intracellular proteins was developed, using peroxisomes as secretion vesicles.

Results

Peroxisomes were decorated with a Golgi derived v-SNARE using a peroxisomal membrane protein as an anchor. This allowed the peroxisomes to fuse with the plasma membrane. Intracellular proteins were transported into the peroxisomes by adding a peroxisomal import signal (SKL tag). The proteins which were imported in the peroxisomes, were released into the extra-cellular space through this artificial secretion pathway which was designated peroxicretion. This concept was supported by electron microscopy studies.

Conclusion

Our results demonstrate that it is possible to reroute the intracellular trafficking of vesicles by changing the localisation of SNARE molecules, this approach can be used in in vivo biological studies to clarify the different control mechanisms regulating intracellular membrane trafficking. In addition we demonstrate peroxicretion of a diverse set of intracellular proteins. Therefore, we anticipate that the concept of peroxicretion may revolutionize the production of intracellular proteins from fungi and other microbial cells, as well as from mammalian cells.  相似文献   

3.

Background

Previous work, by us and others, has shown that mammalian galectins-1 have a growth-inhibitory activity for mammalian cells which is apparently independent of their β-galactoside binding site.

Results

We have made recombinant human galectin-1 as a bacterial fusion protein with an N-terminal hexahistidine tag. This protein displays both haemagglutination and growth-inhibitory activities, even in the presence of the hexahistidine tag. Site-directed mutagenesis of this protein has confirmed the independent nature of the protein sites responsible for the two biological activities. Mutant proteins were created, which displayed each activity in the absence of the other.

Conclusions

Human galectin-1 possesses a growth-inhibitory site, which is not part of the β-galactoside binding site. A surface loop, comprising amino acid residues 25–30, and joining two internal β-strands, forms part of the growth-inhibitory site. This region is relatively close to the N-terminus of the protein, and N-terminal substitutions or extensions also affect growth-inhibitory activity. Further experiments will be necessary to fully define this site.  相似文献   

4.

Background

Chronic hypoxia is a major component of ischemic diseases such as stroke or myocardial infarction. Drosophila is more tolerant to hypoxia than most mammalian species. It is considered as a useful model organism to identify new mechanisms of hypoxic tolerance. The hypoxic tolerance of flies has previously been reported to be enhanced by low protein diets. This study analyses the mechanisms involved.

Results

Feeding adult Drosophila on a yeast diet dramatically reduced their longevities under chronic hypoxic conditions (5% O2). Mean and maximum longevities became close to the values observed for starving flies. The action of dietary yeast was mimicked by a whole casein hydrolysate and by anyone of the 20 natural amino acids that compose proteins. It was mimicked by amino acid intermediates of the urea cycle such as L-citrulline and L-ornithine, and by polyamines (putrescine, spermidine and spermine). α-difluoromethylornithine, a specific inhibitor of ornithine decarboxylase, partially protected hypoxic flies from amino acid toxicity but not from polyamine toxicity. N1-guanyl-1,7 diaminoheptane, a specific inhibitor of eIF5A hypusination, partially relieved the toxicities of both amino acids and polyamines.

Conclusion

Dietary amino acids reduced the longevity of chronically hypoxic flies fed on a sucrose diet. Pharmacological evidence suggests that the synthesis of polyamines and the hypusination of eIF5A contributed to the life-shortening effect of dietary amino acids.  相似文献   

5.

Background

With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity.

Results

In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses.

Conclusion

A monophyletic assemblage strongly supported in all our phylogenetic analysis is herein defined as the Characidae and includes the characiform species lacking a supraorbital bone and with a derived position of the emergence of the hyoid artery from the anterior ceratohyal. To recognize this and several other monophyletic groups within characiforms we propose changes in the limits of several families to facilitate future studies in the Characiformes and particularly the Characidae. This work presents a new phylogenetic framework for a speciose and morphologically diverse group of freshwater fishes of significant ecological and evolutionary importance across the Neotropics and portions of Africa.  相似文献   

6.

Introduction

The present study objective was to evaluate the incidence of methotrexate (MTX)-specific liver lesions from the analysis of a liver biopsy of inflammatory arthritis patients with elevated liver enzymes.

Methods

A case-control study was performed with 1,571 arthritis patients on long-term low-dose MTX therapy. Results of liver biopsy were analyzed in 41 patients with elevated liver enzymes. The expression of autoimmune markers was also assessed. This population was compared with 41 disease control subjects obtained from the same database, also on MTX but without elevated liver enzymes, matched for age, sex and rheumatic disease.

Results

Compared with the disease controls, patients with liver biopsy showed lower disease duration and lower MTX exposure, weekly and cumulative doses, reflecting shorter treatment duration due to liver abnormalities. Liver biopsies showed 17 autoimmune hepatitis-like (AIH-like) lesions, 13 nonalcoholic steatohepatitis-like lesions, seven limited liver lesions, and two primary biliary cirrhoses. However, MTX-specific lesions with dystrophic nuclei in hepatocytes were seen in only two cases. Liver biopsy lesions were associated with autoimmune markers (P = 0.007); notably, AIH-like lesions were associated with rheumatoid arthritis and with the presence of the HLA-DR shared epitope.

Conclusions

MTX-specific liver lesions are rarely observed in arthritis patients under long-term MTX therapy and elevated liver enzymes.  相似文献   

7.
8.

Background

Nucleolus is the most prominent mammalian organelle within the nucleus which is also the site for ribosomal biogenesis. There have been many reports indicating the involvement of nucleolus in the process of aging. Several proteins related to aging have been shown to localize in the nucleolus, which suggests the role of this organelle in senescence.

Results

In this study, we used quantitative mass spectrometry to map the flux of proteins into and out of the nucleolus during the induction of senescence in cultured mammalian cells. Changes in the abundance of 344 nucleolar proteins in sodium butyrate-induced senescence in NIH3T3 cells were studied by SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry. Biochemically, we have validated the proteomic results and confirmed that B23 (nucleophosmin) protein was down-regulated, while poly (ADP-ribose) polymerase (PARP) and nuclear DNA helicase II (NDH II/DHX9/RHA) were up-regulated in the nucleolus upon treatment with sodium butyrate. Accumulation of chromatin in the nucleolus was also observed, by both proteomics and microscopy, in sodium butyrate-treated cells. Similar observations were found in other models of senescence, namely, in mitoxantrone- (MTX) treated cells and primary fibroblasts from the Lamin A knockout mice.

Conclusion

Our data indicate an extensive nuclear organization during senescence and suggest that the redistribution of B23 protein and chromatin can be used as an important marker for senescence.  相似文献   

9.

Background

Despite infections by the dengue virus being a significant problem in tropical and sub-tropical countries, the mechanism by which the dengue virus enters into mammalian cells remains poorly described.

Methods

A combination of biochemical inhibition, dominant negative transfection of Eps15 and siRNA mediated gene silencing was used to explore the entry mechanism of dengue into HepG2 cells.

Results

Results were consistent with entry via multiple pathways, specifically via clathrin coated pit mediated endocytosis and macropinocytosis, with clathrin mediated endocytosis being the predominant pathway.

Conclusion

We propose that entry of the dengue virus to mammalian cells can occur by multiple pathways, and this opens the possibility of the virus being directed to multiple cellular compartments. This would have significant implications in understanding the interaction of the dengue virus with the host cell machinery.  相似文献   

10.

Background

Polymorphism in genes of regulating enzymes, transporters and receptors of the neurotransmitters of the central nervous system have been associated with altered behaviour, and single nucleotide polymorphisms (SNPs) represent the most frequent type of genetic variation. The serotonin and dopamine signalling systems have a central influence on different behavioural phenotypes, both of invertebrates and vertebrates, and this study was undertaken in order to explore genetic variation that may be associated with variation in behaviour.

Results

Single nucleotide polymorphisms in canine genes related to behaviour were identified by individually sequencing eight dogs (Canis familiaris) of different breeds. Eighteen genes from the dopamine and the serotonin systems were screened, revealing 34 SNPs distributed in 14 of the 18 selected genes. A total of 24,895 bp coding sequence was sequenced yielding an average frequency of one SNP per 732 bp (1/732). A total of 11 non-synonymous SNPs (nsSNPs), which may be involved in alteration of protein function, were detected. Of these 11 nsSNPs, six resulted in a substitution of amino acid residue with concomitant change in structural parameters.

Conclusion

We have identified a number of coding SNPs in behaviour-related genes, several of which change the amino acids of the proteins. Some of the canine SNPs exist in codons that are evolutionary conserved between five compared species, and predictions indicate that they may have a functional effect on the protein. The reported coding SNP frequency of the studied genes falls within the range of SNP frequencies reported earlier in the dog and other mammalian species. Novel SNPs are presented and the results show a significant genetic variation in expressed sequences in this group of genes. The results can contribute to an improved understanding of the genetics of behaviour.  相似文献   

11.
12.

Background

Soluble guanylate cyclases generate cyclic GMP when bound to nitric oxide, thereby linking nitric oxide levels to the control of processes such as vascular homeostasis and neurotransmission. The guanylate cyclase catalytic module, for which no structure has been determined at present, is a class III nucleotide cyclase domain that is also found in mammalian membrane-bound guanylate and adenylate cyclases.

Results

We have determined the crystal structure of the catalytic domain of a soluble guanylate cyclase from the green algae Chlamydomonas reinhardtii at 2.55 Å resolution, and show that it is a dimeric molecule.

Conclusion

Comparison of the structure of the guanylate cyclase domain with the known structures of adenylate cyclases confirms the close similarity in architecture between these two enzymes, as expected from their sequence similarity. The comparison also suggests that the crystallized guanylate cyclase is in an inactive conformation, and the structure provides indications as to how activation might occur. We demonstrate that the two active sites in the dimer exhibit positive cooperativity, with a Hill coefficient of ~1.5. Positive cooperativity has also been observed in the homodimeric mammalian membrane-bound guanylate cyclases. The structure described here provides a reliable model for functional analysis of mammalian guanylate cyclases, which are closely related in sequence.  相似文献   

13.

Background

The first two steps in the capping of cellular mRNAs are catalyzed by the enzymes RNA triphosphatase and RNA guanylyltransferase. Although structural and mechanistic differences between fungal and mammalian RNA triphosphatases recommend this enzyme as a potential antifungal target, it has not been determined if RNA triphosphatase is essential for the growth of fungal species that cause human disease.

Results

We show by classical genetic methods that the triphosphatase (Pct1) and guanylyltransferase (Pce1) components of the capping apparatus in the fission yeast Schizosaccharomyces pombe are essential for growth. We were unable to disrupt both alleles of the Candida albicans RNA triphosphatase gene CaCET1, implying that the RNA triphosphatase enzyme is also essential for growth of C. albicans, a human fungal pathogen.

Conclusions

Our results provide the first genetic evidence that cap synthesis is essential for growth of an organism other than Saccharomyces cerevisiae and they validate RNA triphosphatase as a target for antifungal drug discovery.  相似文献   

14.

Backround

Aspartyl aminopeptidase (DNPEP), with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated.

Results

The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-??-hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids.

Conclusions

The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference. Together, the structural knowledge will aid in the development of enzyme-/family-specific aminopeptidase inhibitors.  相似文献   

15.
A direct detection of Escherichia coli genomic DNA using gold nanoprobes   总被引:1,自引:0,他引:1  

Background

Electrospun nanofibers have been widely used as substrata for mammalian cell culture owing to their structural similarity to natural extracellular matrices. Structurally consistent electrospun nanofibers can be produced with synthetic polymers but require chemical modification to graft cell-adhesive molecules to make the nanofibers functional. Development of a facile method of grafting functional molecules on the nanofibers will contribute to the production of diverse cell type-specific nanofiber substrata.

Results

Small molecules, peptides, and functionalized gold nanoparticles were successfully incorporated with polymethylglutarimide (PMGI) nanofibers through electrospinning. The PMGI nanofibers functionalized by the grafted AuNPs, which were labeled with cell-adhesive peptides, enhanced HeLa cell attachment and potentiated cardiomyocyte differentiation of human pluripotent stem cells.

Conclusions

PMGI nanofibers can be functionalized simply by co-electrospinning with the grafting materials. In addition, grafting functionalized AuNPs enable high-density localization of the cell-adhesive peptides on the nanofiber. The results of the present study suggest that more cell type-specific synthetic substrata can be fabricated with molecule-doped nanofibers, in which diverse functional molecules are grafted alone or in combination with other molecules at different concentrations.  相似文献   

16.

Background

The branched-chain amino acid (BCAA) leucine has been identified to be a key regulator of skeletal muscle anabolism. Activation of anabolic signalling occurs via the mammalian target of rapamycin (mTOR) through an undefined mechanism. System A and L solute carriers transport essential amino acids across plasma membranes; however it remains unknown whether an exogenous supply of leucine regulates their gene expression. The aim of the present study was to investigate the effects of acute and chronic leucine stimulation of anabolic signalling and specific amino acid transporters, using cultured primary human skeletal muscle cells.

Results

Human myotubes were treated with leucine, insulin or co-treated with leucine and insulin for 30 min, 3 h or 24 h. Activation of mTOR signalling kinases were examined, together with putative nutrient sensor human vacuolar protein sorting 34 (hVps34) and gene expression of selected amino acid transporters. Phosphorylation of mTOR and p70S6K was transiently increased following leucine exposure, independently to insulin. hVps34 protein expression was also significantly increased. However, genes encoding amino acid transporters were differentially regulated by insulin and not leucine.

Conclusions

mTOR signalling is transiently activated by leucine within human myotubes independently of insulin stimulation. While this occurred in the absence of changes in gene expression of amino acid transporters, protein expression of hVps34 increased.  相似文献   

17.
Analysis of 142 genes resolves the rapid diversification of the rice genus   总被引:1,自引:0,他引:1  

Background

The completion of rice genome sequencing has made rice and its wild relatives an attractive system for biological studies. Despite great efforts, phylogenetic relationships among genome types and species in the rice genus have not been fully resolved. To take full advantage of rice genome resources for biological research and rice breeding, we will benefit from the availability of a robust phylogeny of the rice genus.

Results

Through screening rice genome sequences, we sampled and sequenced 142 single-copy genes to clarify the relationships among all diploid genome types of the rice genus. The analysis identified two short internal branches around which most previous phylogenetic inconsistency emerged. These represent two episodes of rapid speciation that occurred approximately 5 and 10 million years ago (Mya) and gave rise to almost the entire diversity of the genus. The known chromosomal distribution of the sampled genes allowed the documentation of whole-genome sorting of ancestral alleles during the rapid speciation, which was responsible primarily for extensive incongruence between gene phylogenies and persisting phylogenetic ambiguity in the genus. Random sample analysis showed that 120 genes with an average length of 874 bp were needed to resolve both short branches with 95% confidence.

Conclusion

Our phylogenomic analysis successfully resolved the phylogeny of rice genome types, which lays a solid foundation for comparative and functional genomic studies of rice and its relatives. This study also highlights that organismal genomes might be mosaics of conflicting genealogies because of rapid speciation and demonstrates the power of phylogenomics in the reconstruction of rapid diversification.  相似文献   

18.
19.
Agricultural uses of plant biostimulants   总被引:22,自引:0,他引:22  

Background

Plant biostimulants are diverse substances and microorganisms used to enhance plant growth. The global market for biostimulants is projected to increase 12 % per year and reach over $2,200 million by 2018. Despite the growing use of biostimulants in agriculture, many in the scientific community consider biostimulants to be lacking peer-reviewed scientific evaluation.

Scope

This article describes the emerging definitions of biostimulants and reviews the literature on five categories of biostimulants: i. microbial inoculants, ii. humic acids, iii. fulvic acids, iv. protein hydrolysates and amino acids, and v. seaweed extracts.

Conclusions

The large number of publications cited for each category of biostimulants demonstrates that there is growing scientific evidence supporting the use of biostimulants as agricultural inputs on diverse plant species. The cited literature also reveals some commonalities in plant responses to different biostimulants, such as increased root growth, enhanced nutrient uptake, and stress tolerance.  相似文献   

20.

Background

Glutathione reductase (GR) plays a critical role in the maintenance of physiological redox status in cells. However, the comprehensive investigations of GR-modulated oxidative stress have not been reported.

Methods

In the present study, we cultured a human lung adenocarcinoma line CL1-0 and its GR-knockdown derivative CL1-0ΔGR to evaluate their differential responses to UVB-irradiation.

Results

We identified 18 proteins that showed significant changes under UVB-irradiation in CL1-0ΔGR cells rather than in CL1-0 cells. Several proteins involving protein folding, metabolism, protein biosynthesis and redox regulation showed significant changes in expression.

Conclusions

In summary, the current study used a comprehensive lung adenocarcinoma-based proteomic approach for the identification of GR-modulated protein expression in response to UVB-irradiation. To our knowledge, this is the first global proteomic analysis to investigate the role of GR under UVB-irradiation in mammalian cell model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号