首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The family of Tephritid fruit flies (Tephritidae, Diptera) is composed of more than 4000 species and more than 350 are of economic importance (EI). The Tephritid Barcoding Initiative (TBI) aims at obtaining DNA barcodes for all EI species and the majority of their congeners. Dry pinned specimens from natural history collections are an important resource for reference material, but were often collected decades ago. We observed a strong decrease in the success rate of obtaining a full COX1 DNA barcode (658 bp), with an increasing age of the specimens. Obtaining full barcodes is often not possible using standard protocols. We developed a universal Tephritid primer set for multiple overlapping mini-barcodes that allows reconstructing the full COX1 DNA barcode. These newly developed primers and the corresponding protocol will facilitate the utilization of the extensive natural history collection by the TBI consortium.  相似文献   

2.

Background

DNA barcoding refers to the use of short DNA sequences for rapid identification of species. Genetic distance or character attributes of a particular barcode locus discriminate the species. We report an efficient approach to analyze short sequence data for discrimination between species.

Methodology and Principal Findings

A new approach, Oligonucleotide Frequency Range (OFR) of barcode loci for species discrimination is proposed. OFR of the loci that discriminates between species was characteristic of a species, i.e., the maxima and minima within a species did not overlap with that of other species. We compared the species resolution ability of different barcode loci using p-distance, Euclidean distance of oligonucleotide frequencies, nucleotide-character based approach and OFR method. The species resolution by OFR was either higher or comparable to the other methods. A short fragment of 126 bp of internal transcribed spacer region in ribosomal RNA gene was sufficient to discriminate a majority of the species using OFR.

Conclusions/Significance

Oligonucleotide frequency range of a barcode locus can discriminate between species. Ability to discriminate species using very short DNA fragments may have wider applications in forensic and conservation studies.  相似文献   

3.

Background

Phytoplasmas are bacterial phytopathogens responsible for significant losses in agricultural production worldwide. Several molecular markers are available for identification of groups or strains of phytoplasmas. However, they often cannot be used for identification of phytoplasmas from different groups simultaneously or are too long for routine diagnostics. DNA barcoding recently emerged as a convenient tool for species identification. Here, the development of a universal DNA barcode based on the elongation factor Tu (tuf) gene for phytoplasma identification is reported.

Methodology/Principal Findings

We designed a new set of primers and amplified a 420–444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX). Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed that the tuf tree is highly congruent with the 16S rRNA tree and had higher inter- and intra- group sequence divergence. Mean K2P inter−/intra- group divergences of the tuf barcode did not overlap and had approximately one order of magnitude difference for most groups, suggesting the presence of a DNA barcoding gap. The use of the tuf barcode allowed separation of main ribosomal groups and most of their subgroups. Phytoplasma tuf barcodes were deposited in the NCBI GenBank and Q-bank databases.

Conclusions/Significance

This study demonstrates that DNA barcoding principles can be applied for identification of phytoplasmas. Our findings suggest that the tuf barcode performs as well or better than a 1.2 kbp fragment of the 16S rRNA gene and thus provides an easy procedure for phytoplasma identification. The obtained sequences were used to create a publicly available reference database that can be used by plant health services and researchers for online phytoplasma identification.  相似文献   

4.
《Journal of Asia》2014,17(4):679-684
Currently, DNA barcodes are often required to be analyzed using old museum specimens when they are the only available specimens for rare or endangered species, or even type series. In this study, using eight universal primers and newly designed 315 species-specific primers, we tried to recover full-length barcode sequences from 45 dried specimens of 36 butterfly species collected between 1959 and 1980 in Korea. The eight universal primers failed entirely in the PCR amplification and sequencing of all the specimens. On the other hand, 284 primer pairs consisting of the 315 primers, targeting fragments of 71–417 bp, amplified various lengths of barcode sequences from all specimens. The fragments were successfully combined to generate the barcode sequences ranging from 444 bp to 658 bp. Notably, of the 284 primer pairs, 26 primer pairs designed for Limenitis camilla, Argynnis niobe, and Brenthis daphne successfully amplified the barcode sequences of congeneric species, Limenitis doerriesi, Argynnis nerippe, and Brenthis ino, suggesting that the species-specific primers can be available for analyzing barcode sequences of closely related species. Our study reveals that the newly designed species-specific primers will be effective in acquiring COI sequences from old butterfly specimens.  相似文献   

5.

Background

DNA barcoding, i.e. the use of a 648 bp section of the mitochondrial gene cytochrome c oxidase I, has recently been promoted as useful for the rapid identification and discovery of species. Its success is dependent either on the strength of the claim that interspecific variation exceeds intraspecific variation by one order of magnitude, thus establishing a "barcoding gap", or on the reciprocal monophyly of species.

Results

We present an analysis of intra- and interspecific variation in the butterfly family Lycaenidae which includes a well-sampled clade (genus Agrodiaetus) with a peculiar characteristic: most of its members are karyologically differentiated from each other which facilitates the recognition of species as reproductively isolated units even in allopatric populations. The analysis shows that there is an 18% overlap in the range of intra- and interspecific COI sequence divergence due to low interspecific divergence between many closely related species. In a Neighbour-Joining tree profile approach which does not depend on a barcoding gap, but on comprehensive sampling of taxa and the reciprocal monophyly of species, at least 16% of specimens with conspecific sequences in the profile were misidentified. This is due to paraphyly or polyphyly of conspecific DNA sequences probably caused by incomplete lineage sorting.

Conclusion

Our results indicate that the "barcoding gap" is an artifact of insufficient sampling across taxa. Although DNA barcodes can help to identify and distinguish species, we advocate using them in combination with other data, since otherwise there would be a high probability that sequences are misidentified. Although high differences in DNA sequences can help to identify cryptic species, a high percentage of well-differentiated species has similar or even identical COI sequences and would be overlooked in an isolated DNA barcoding approach.  相似文献   

6.

Background

In recent years, DNA barcoding has become an important tool for biologists to identify species and understand their natural biodiversity. The complexity of barcode data makes it difficult to analyze quickly and effectively. Manual classification of this data cannot keep up to the rate of increase of available data.

Results

In this study, we propose a new method for DNA barcode classification based on the distribution of nucleotides within the sequence. By adding the covariance of nucleotides to the original natural vector, this augmented 18-dimensional natural vector makes good use of the available information in the DNA sequence. The accurate classification results we obtained demonstrate that this new 18-dimensional natural vector method, together with the random forest classifier algorthm, can serve as a computationally efficient identification tool for DNA barcodes. We performed phylogenetic analysis on the genus Megacollybia to validate our method. We also studied how effective our method was in determining the genetic distance within and between species in our barcoding dataset.

Conclusions

The classification performs well on the fungi barcode dataset with high and robust accuracy. The reasonable phylogenetic trees we obtained further validate our methods. This method is alignment-free and does not depend on any model assumption, and it will become a powerful tool for classification and evolutionary analysis.
  相似文献   

7.
Nagy ZT  Sonet G  Glaw F  Vences M 《PloS one》2012,7(3):e34506

Background

DNA barcoding of non-avian reptiles based on the cytochrome oxidase subunit I (COI) gene is still in a very early stage, mainly due to technical problems. Using a newly developed set of reptile-specific primers for COI we present the first comprehensive study targeting the entire reptile fauna of the fourth-largest island in the world, the biodiversity hotspot of Madagascar.

Methodology/Principal Findings

Representatives of the majority of Madagascan non-avian reptile species (including Squamata and Testudines) were sampled and successfully DNA barcoded. The new primer pair achieved a constantly high success rate (72.7–100%) for most squamates. More than 250 species of reptiles (out of the 393 described ones; representing around 64% of the known diversity of species) were barcoded. The average interspecific genetic distance within families ranged from a low of 13.4% in the Boidae to a high of 29.8% in the Gekkonidae. Using the average genetic divergence between sister species as a threshold, 41–48 new candidate (undescribed) species were identified. Simulations were used to evaluate the performance of DNA barcoding as a function of completeness of taxon sampling and fragment length. Compared with available multi-gene phylogenies, DNA barcoding correctly assigned most samples to species, genus and family with high confidence and the analysis of fewer taxa resulted in an increased number of well supported lineages. Shorter marker-lengths generally decreased the number of well supported nodes, but even mini-barcodes of 100 bp correctly assigned many samples to genus and family.

Conclusions/Significance

The new protocols might help to promote DNA barcoding of reptiles and the established library of reference DNA barcodes will facilitate the molecular identification of Madagascan reptiles. Our results might be useful to easily recognize undescribed diversity (i.e. novel taxa), to resolve taxonomic problems, and to monitor the international pet trade without specialized expert knowledge.  相似文献   

8.

Background

DNA barcoding is a popular tool in taxonomic and phylogenetic studies, but for most animal lineages protocols for obtaining the barcoding sequences—mitochondrial cytochrome C oxidase subunit I (cox1 AKA CO1)—are not standardized. Our aim was to explore an optimal strategy for arachnids, focusing on the species-richest lineage, spiders by (1) improving an automated DNA extraction protocol, (2) testing the performance of commonly used primer combinations, and (3) developing a new cox1 primer suitable for more efficient alignment and phylogenetic analyses.

Methodology

We used exemplars of 15 species from all major spider clades, processed a range of spider tissues of varying size and quality, optimized genomic DNA extraction using the MagMAX Express magnetic particle processor—an automated high throughput DNA extraction system—and tested cox1 amplification protocols emphasizing the standard barcoding region using ten routinely employed primer pairs.

Results

The best results were obtained with the commonly used Folmer primers (LCO1490/HCO2198) that capture the standard barcode region, and with the C1-J-2183/C1-N-2776 primer pair that amplifies its extension. However, C1-J-2183 is designed too close to HCO2198 for well-interpreted, continuous sequence data, and in practice the resulting sequences from the two primer pairs rarely overlap. We therefore designed a new forward primer C1-J-2123 60 base pairs upstream of the C1-J-2183 binding site. The success rate of this new primer (93%) matched that of C1-J-2183.

Conclusions

The use of C1-J-2123 allows full, indel-free overlap of sequences obtained with the standard Folmer primers and with C1-J-2123 primer pair. Our preliminary tests suggest that in addition to spiders, C1-J-2123 will also perform in other arachnids and several other invertebrates. We provide optimal PCR protocols for these primer sets, and recommend using them for systematic efforts beyond DNA barcoding.  相似文献   

9.

Background

Identification of DNA sequence diversity is a powerful means for assessing the species present in environmental samples. The most common molecular strategies for estimating taxonomic composition depend upon PCR with universal primers that amplify an orthologous DNA region from a range of species. The diversity of sequences within a sample that can be detected by universal primers is often compromised by high concentrations of some DNA templates. If the DNA within the sample contains a small number of sequences in relatively high concentrations, then less concentrated sequences are often not amplified because the PCR favours the dominant DNA types. This is a particular problem in molecular diet studies, where predator DNA is often present in great excess of food-derived DNA.

Results

We have developed a strategy where a universal PCR simultaneously amplifies DNA from food items present in DNA purified from stomach samples, while the predator's own DNA is blocked from amplification by the addition of a modified predator-specific blocking primer. Three different types of modified primers were tested out; one annealing inhibiting primer overlapping with the 3' end of one of the universal primers, another annealing inhibiting primer also having an internal modification of five dI molecules making it a dual priming oligo, and a third elongation arrest primer located between the two universal primers. All blocking primers were modified with a C3 spacer. In artificial PCR mixtures, annealing inhibiting primers proved to be the most efficient ones and this method reduced predator amplicons to undetectable levels even when predator template was present in 1000 fold excess of the prey template. The prey template then showed strong PCR amplification where none was detectable without the addition of blocking primer. Our method was applied to identifying the winter food of one of the most abundant animals in the world, the Antarctic krill, Euphausia superba. Dietary item DNA was PCR amplified from a range of species in krill stomachs for which we had no prior sequence knowledge.

Conclusion

We present a simple, robust and cheap method that is easily adaptable to many situations where a rare DNA template is to be PCR amplified in the presence of a higher concentration template with identical PCR primer binding sites.  相似文献   

10.
DNA barcoding is an effective approach for species identification and for discovery of new and/or cryptic species. Sanger sequencing technology is the method of choice for obtaining standard 650 bp cytochrome c oxidase subunit I (COI) barcodes. However, DNA degradation/fragmentation makes it difficult to obtain a full-length barcode from old specimens. Mini-barcodes of 130 bp from the standard barcode region have been shown to be effective for accurate identification in many animal groups and may be readily obtained from museum samples. Here we demonstrate the application of an alternative sequencing technology, the four-enzymes single-specimen pyrosequencing, in rapid, cost-effective mini-barcode analysis. We were able to generate sequences of up to 100 bp from mini-barcode fragments of COI in 135 fresh and 50 old Lepidoptera specimens (ranging from 53-97 year-old). The sequences obtained using pyrosequencing were of high quality and we were able to robustly match all the tested pyro-sequenced samples to their respective Sanger-sequenced standard barcode sequences, where available. Simplicity of the protocol and instrumentation coupled with higher speed and lower cost per sequence than Sanger sequencing makes this approach potentially useful in efforts to link standard barcode sequences from unidentified specimens to known museum specimens with only short DNA fragments.  相似文献   

11.
DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (~450 bp) representing ~100 morphospecies from ~650 collections of Agaricomycotina using several sets of new primers. Large introns (~1500 bp) at variable locations were detected in ~5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (~30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms.  相似文献   

12.

Background

Recent studies have demonstrated the utility of DNA barcoding in the discovery of overlooked species and in the connection of immature and adult stages. In this study, we use DNA barcoding to examine diversity patterns in 121 species of Nymphalidae from the Yucatan Peninsula in Mexico. Our results suggest the presence of cryptic species in 8 of these 121 taxa. As well, the reference database derived from the analysis of adult specimens allowed the identification of nymphalid caterpillars providing new details on host plant use.

Methodology/Principal Findings

We gathered DNA barcode sequences from 857 adult Nymphalidae representing 121 different species. This total includes four species (Adelpha iphiclus, Adelpha malea, Hamadryas iphtime and Taygetis laches) that were initially overlooked because of their close morphological similarity to other species. The barcode results showed that each of the 121 species possessed a diagnostic array of barcode sequences. In addition, there was evidence of cryptic taxa; seven species included two barcode clusters showing more than 2% sequence divergence while one species included three clusters. All 71 nymphalid caterpillars were identified to a species level by their sequence congruence to adult sequences. These caterpillars represented 16 species, and included Hamadryas julitta, an endemic species from the Yucatan Peninsula whose larval stages and host plant (Dalechampia schottii, also endemic to the Yucatan Peninsula) were previously unknown.

Conclusions/Significance

This investigation has revealed overlooked species in a well-studied museum collection of nymphalid butterflies and suggests that there is a substantial incidence of cryptic species that await full characterization. The utility of barcoding in the rapid identification of caterpillars also promises to accelerate the assembly of information on life histories, a particularly important advance for hyperdiverse tropical insect assemblages.  相似文献   

13.
The performance of DNA barcoding as a tool for fast taxonomic verification in ecological assessment projects of small mammals was evaluated during a collecting trip to a lowland tropical rainforest site in Suriname. We also compared the performance of tissue sampling onto FTA CloneSaver cards vs. liquid nitrogen preservation. DNA barcodes from CloneSaver cards were recovered from 85% of specimens, but DNA degradation was apparent, because only 36% of sequence reads were long (over 600 bp). In contrast, cryopreserved tissue delivered 99% barcode recovery (97% > 600 bp). High humidity, oversampling or tissue type may explain the poor performance of CloneSaver cards. Comparison of taxonomic assignments made in the field and from barcode results revealed inconsistencies in just 3.4% of cases and most of the discrepancies were due to field misidentifications (3%) rather than sampling/analytical error (0.5%). This result reinforces the utility of DNA barcoding as a tool for verification of taxonomic identifications in ecological surveys, which is especially important when the collection of voucher specimens is not possible.  相似文献   

14.

Background

DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the fern''s life history—an endeavor previously impossible—will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade—Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)—to further evaluate the resolving power of these loci.

Principal Findings

Our results clearly demonstrate the value of matK data, previously unavailable in ferns because of difficulties in amplification due to a major rearrangement of the plastid genome. With its high sequence variation, matK complements rbcL to provide a two-locus barcode with strong resolving power. With sequence variation comparable to matK, trnL-F appears to be a suitable alternative barcode region in ferns, and perhaps should be added to the core barcode region if universal primer development for matK fails. In contrast, trnH-psbA shows dramatically reduced sequence variation for the majority of ferns. This is likely due to the translocation of this segment of the plastid genome into the inverted repeat regions, which are known to have a highly constrained substitution rate.

Conclusions

Our study provides the first endorsement of the two-locus barcode (rbcL+matK) in ferns, and favors trnL-F over trnH-psbA as a potential back-up locus. Future work should focus on gathering more fern matK sequence data to facilitate universal primer development.  相似文献   

15.

Background

The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous.

Results

We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae.

Conclusion

Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.  相似文献   

16.
Our ability to DNA barcode the birds of the world is based on the effective amplification and sequencing of a 648 base pair (bp) region of the mitochondrial cytochrome c oxidase (COI or cox1) gene. For many geographic regions the large numbers of vouchered specimens necessary for the construction of a DNA barcoding database have already been collected and are available in museums and other institutions. However, many of these specimens are old (>20 years) and are stored as either fixed study skins or dried skeletons. DNA extracted from such historical samples is typically degraded and, generally, only short DNA fragments can be recovered from such specimens making the recovery of the barcoding region as a single fragment difficult. We report two sets of conserved primers that allow the amplification of the entire DNA barcoding region in either three or five overlapping fragments. These primer sets allow the recovery of DNA barcodes from valuable historical specimens that in many cases are unique in that they are unable or unlikely to be collected again. We also report three new primers that in combination allow the effective amplification from modern samples of the entire DNA barcoding region as a single DNA fragment for 17 orders of Southern Hemisphere birds.  相似文献   

17.

Background

The State of Bavaria is involved in a research program that will lead to the construction of a DNA barcode library for all animal species within its territorial boundaries. The present study provides a comprehensive DNA barcode library for the Geometridae, one of the most diverse of insect families.

Methodology/Principal Findings

This study reports DNA barcodes for 400 Bavarian geometrid species, 98 per cent of the known fauna, and approximately one per cent of all Bavarian animal species. Although 98.5% of these species possess diagnostic barcode sequences in Bavaria, records from neighbouring countries suggest that species-level resolution may be compromised in up to 3.5% of cases. All taxa which apparently share barcodes are discussed in detail. One case of modest divergence (1.4%) revealed a species overlooked by the current taxonomic system: Eupithecia goossensiata Mabille, 1869 stat.n. is raised from synonymy with Eupithecia absinthiata (Clerck, 1759) to species rank. Deep intraspecific sequence divergences (>2%) were detected in 20 traditionally recognized species.

Conclusions/Significance

The study emphasizes the effectiveness of DNA barcoding as a tool for monitoring biodiversity. Open access is provided to a data set that includes records for 1,395 geometrid specimens (331 species) from Bavaria, with 69 additional species from neighbouring regions. Taxa with deep intraspecific sequence divergences are undergoing more detailed analysis to ascertain if they represent cases of cryptic diversity.  相似文献   

18.

Background

The construction of comprehensive reference libraries is essential to foster the development of DNA barcoding as a tool for monitoring biodiversity and detecting invasive species. The looper moths of British Columbia (BC), Canada present a challenging case for species discrimination via DNA barcoding due to their considerable diversity and limited taxonomic maturity.

Methodology/Principal Findings

By analyzing specimens held in national and regional natural history collections, we assemble barcode records from representatives of 400 species from BC and surrounding provinces, territories and states. Sequence variation in the barcode region unambiguously discriminates over 93% of these 400 geometrid species. However, a final estimate of resolution success awaits detailed taxonomic analysis of 48 species where patterns of barcode variation suggest cases of cryptic species, unrecognized synonymy as well as young species.

Conclusions/Significance

A catalog of these taxa meriting further taxonomic investigation is presented as well as the supplemental information needed to facilitate these investigations.  相似文献   

19.

Background

In order to understand the role of herbivores in trophic webs, it is essential to know what they feed on. Diet analysis is, however, a challenge in many small herbivores with a secretive life style. In this paper, we compare novel (high-throughput pyrosequencing) DNA barcoding technology for plant mixture with traditional microhistological method. We analysed stomach contents of two ecologically important subarctic vole species, Microtus oeconomus and Myodes rufocanus, with the two methods. DNA barcoding was conducted using the P6-loop of the chloroplast trnL (UAA) intron.

Results

Although the identified plant taxa in the diets matched relatively well between the two methods, DNA barcoding gave by far taxonomically more detailed results. Quantitative comparison of results was difficult, mainly due to low taxonomic resolution of the microhistological method, which also in part explained discrepancies between the methods. Other discrepancies were likely due to biases mostly in the microhistological analysis.

Conclusion

We conclude that DNA barcoding opens up for new possibilities in the study of plant-herbivore interactions, giving a detailed and relatively unbiased picture of food utilization of herbivores.  相似文献   

20.

Background

The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL + matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over.

Methodology/Principal Findings

Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level.

Conclusions

The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号