首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
In the present study, oxidative stress in diabetic model and the effect of garlic oil or melatonin treatment were examined. Streptozotocin (60 mg/kg body weight, i.p.)-induced diabetic rats, showed a significant increase of plasma glucose, total lipids, triglyceride, cholesterol, lipid peroxides, nitric oxide and uric acid. Concomitantly, significant decreases in the levels of antioxidants ceruloplasmin, albumin and total thiols were found in the plasma of diabetic rats. Lipid peroxide levels were significantly increased in erythrocyte lysate and in homogenates of liver and kidney, while superoxide dismutase (SOD) activities were decreased in tissue homogenates of liver and kidney. Treatment of diabetic rats with garlic oil (10 mg/kg i.p.) or melatonin (200 microg/kg i.p.) for 15 days significantly increased plasma levels of total thiol, ceruloplasmin activities, albumin. Lipid peroxides, uric acid, blood glucose, total lipid, triglyceride and cholesterol were decreased significantly after treatment with garlic oil or melatonin. Nitric oxide levels were decreased significantly in rats treated with melatonin only. In erythrocytes lysate, glutathione S-transferase (GST) activities were increased significantly in rats treated with garlic oil or melatonin, while lipid peroxides decreased significantly and total thiol increased significantly in melatonin or garlic oil treatment, respectively. In liver homogenates of rats treated with garlic or melatonin, lipid peroxides were decreased significantly, and GST activities increased significantly, while SOD activities were increased significantly in liver and kidney after garlic or melatonin treatment. The results suggest that garlic oil or melatonin may effectively normalize the impaired antioxidants status in streptozotocin induced-diabetes. The effects of these antioxidants of both agents may be useful in delaying the complicated effects of diabetes as retinopathy, nephropathy and neuropathy due to imbalance between free radicals and antioxidant systems. Moreover, melatonin may be more powerful free radical scavenger than garlic oil.  相似文献   

3.
Stress proteins (heat shock proteins, HSP) play essential roles in folding, assembly and translocation of polypeptides and also in maintenance of the integrity of polypeptides as molecular chaperones. Since long-lasting hyperglycemia causes modification of cellular proteins, it is possible that expression of molecular chaperones may be altered during the course of diabetes. Here, we examined the cellular levels of stress proteins such as HSP105, HSP90 and HSC70/HSP70 in various tissues of streptozotocin-induced diabetic rats. In comparison to controls, the levels of HSC70 were markedly decreased in the liver but not in the brain, adrenal gland and pancreas of diabetic rats. The levels of HSP105 and HSP90 were not significantly changed in these tissues of diabetic rats. Furthermore, the induction of HSP70 as well as HSC70 by hyperthermia was significantly reduced in the liver and adrenal gland of diabetic rats. These results suggested that the expression and induction of HSC70/HSP70 may be altered during the course of diabetic disease and may result in impairment of the cytoprotective ability of diabetic rats.  相似文献   

4.
Diabetes mellitus is associated with diabetic impairment of testicular function, ultimately leading to reduced fertility. Its etiology may involve oxidative damage by reactive oxygen substances, and protection against this damage can be offered by antioxidant supplementation. The aim of this study was to investigate the effects of intraperitoneal administration of vitamin C and E, selenium (Se), and vitamin E plus Se (COM) on concentrations of lipid peroxide (as malondialdehyde; MDA), reduced glutathione (GSH), and vitamin E concentrations and glutathione peroxidase (GSH-Px) activity in the testes of rats with diabetes induced by streptozotocin (STZ). Sixty groups were used (10 animals each) and these animals were initially allocated to two groups: control group and diabetic group. The diabetic group was subdivided into five groups as follows: diabetic control (DC), vitamin E, Se, COM, and vitamin C. Animals in the DC group and vitamin C, vitamin E, Se, and COM groups were made diabetic by the injection of STZ on 4 d after an injection of vitamins C and E, Se, and COM. Those vitamins and Se were also administered for 21 consecutive days. The MDA, vitamin E, GSH levels, and GSH-Px activities in testes were determined. Although the vitamin E concentration was higher in the control than in the DC group, the MDA levels were found to be lower in the control than in the DC group. The MDA levels in the testes samples of vitamin C, vitamin E, Se, and COM groups were lower than the DC group. However, GSH-Px activity and GSH levels in the testes were not significantly different between the control and DC groups. Vitamin E concentrations in the vitamin C, vitamin E, Se, and COM groups and GSH levels and GSH-Px activities in the Se, COM, and vitamin C groups were higher than either the control or DC group. The results indicate that reactive oxygen substances may be involved in possible testicular complications in diabetes of rats. Administration of vitamins C and E and Se reduced the testicular lipid peroxidation; these vitamins and Se had significant protective effects on testes of rats against oxidative damage in diabetes. Abstract of the study was presented at the conference Trace Elements in Men and Animals-11. June 2–6, 2002; Dr. Naziroğlu has been awarded a TEMA11 Investigative Scientist Award.  相似文献   

5.
Opioids play an important role in the regulation of glucose homeostasis. In the previous report, we showed that activation of opioid mu-receptors produced a plasma glucose lowering effect in diabetic rats lacking insulin. In the present study, we found that the response of opioid mu-receptor is more sensitive in streptozotocin-induced diabetic rats (STZ-diabetic rats) than in normal rats. Intravenous injection of loperamide, an agonist of opioid mu-receptors, induced a dose-dependent decrease of plasma glucose from 3 microg/kg to 60 microg/kg in fasting STZ-diabetic rats. However, loperamide decreased the plasma glucose of normal fasting rats at the doses of 0.3 mg/kg to 1.5 mg/kg, which were much higher than those needed to produce the same effect in diabetic rats. The plasma glucose-lowering action of loperamide at the dose effective in normal rats disappeared in opioid mu-receptor knockout mice, while the plasma glucose-lowering response to loperamide was still observed in wild-type mice. This opens the possibility of mediation through opioid mu-receptor in the plasma glucose-lowering action of loperamide. Moreover, the mRNA level of opioid mu-receptor in the liver markedly increased in STZ-diabetic rats compared to normal rats. Normalization of plasma glucose concentrations in STZ-diabetic rats with exogenous insulin or phlorizin reversed mRNA and protein levels of opioid mu-receptor in the liver after 4 days of treatment. This shows that correction of hyperglycemia in STZ-diabetic rats may reverse the higher gene expression of opioid mu-receptor. These results suggest that hyperglycemia is responsible for increase of opioid mu-receptor in STZ-diabetic rats.  相似文献   

6.
Nitric oxide (NO) plays a significant role in the development of diabetic nephropathy. We investigated the effects of an antioxidant, carnosine, on streptozotocin (STZ)-induced renal injury in diabetic rats. We used four groups of eight rats: group 1, control; group 2, carnosine treated; group 3, untreated diabetic; group 4, carnosine treated diabetic. Kidneys were removed and processed, and sections were stained with periodic acid-Schiff (PAS) and subjected to eNOS immunohistochemistry. Examination by light microscopy revealed degenerated glomeruli, thickened basement membrane and glycogen accumulation in the tubules of diabetic kidneys. Carnosine treatment prevented the renal morphological damage caused by diabetes. Moreover, administration of carnosine decreased somewhat the oxidative damage of diabetic nephropathy. Appropriate doses of carnosine might be a useful therapeutic option to reduce oxidative stress and associated renal injury in diabetes mellitus.  相似文献   

7.
8.
The aim of the study was to evaluate the effect of rosiglitazone treatment on islet ghrelin and insulin gene expressions in streptozotocin (STZ)-induced diabetic rats. Animals were divided into four groups. 1. Intact controls. 2. Rosiglitazone-treated controls. 3. STZ-induced diabetes. 4. Rosiglitazone-treated diabetes. Rosiglitazone was given for 7 days at a dose of 20 mg/kg body weight. Ghrelin and insulin gene expressions were investigated by immunohistochemistry and in situ hybridization. There was no statistically significant difference in body weight between STZ-induced diabetic rats and rosiglitazone-treated diabetic rats during the experimental period. Furthermore, there were no significant differences in blood glucose levels and insulin immunoreactive cell numbers between STZ-induced diabetic rats and rosiglitazone-treated diabetic rats. There was a tendency towards a reduction of ghrelin gene expression in diabetic animals compared with intact controls. We found, in addition, that ghrelin immunoreactive and ghrelin mRNA expressing cells were frequent in the epithelial lining of the ducts suggesting ductal epithelium might be the source of the regenerating islet ghrelin cells, as is known for other islet cells. The results show that short-term rosiglitazone pretreatment had no significant effect on ghrelin and insulin gene expressions.  相似文献   

9.
Changes in tissue glutathione antioxidant system in streptozotocin-induced diabetic rats for a period of 15 weeks were examined. Total glutathione level was significantly increased in kidney tissue, but were slightly decreased and increased in liver and heart tissues, respectively. The small changes in total glutathione level in the liver and heart, though not statistically significant, were associated with reciprocal alterations in the activity Of -glutamylcysteine synthetase (GCS). While the GCS activity was not changed in kidney tissue, the activity of -glutathione peroxidase was significantly increased in kidney tissue. Insulin treatment could completely or partly normalize almost all of these changes induced by diabetes. However, the decrease in hepatic glutathione S-transferases activity in diabetic rats was not reversed by the insulin treatment. The ensemble of results suggests that the diabetes-induced alterations in tissue glutathione antioxidant system may possibly reflect an inter-organ antioxidant response to a generalized increase in tissue oxidative stress associated with diabetes.Abbreviations AGES advanced glycosylation end-products - EDTA ethylenediamine tetraacetic acid - GCS -glutamylcysteine synthetase - GlyHb glycated hemoglobin - GPX Se-glutathione peroxidase - GRD glutathione reductase - GSH reduced glutathione - GSSG oxidized glutathione - GST glutathione S-transferases - SSA sulfosalicylic acid - STZ streptozotocin  相似文献   

10.
11.
We investigated the effect of N-acetyl-l-cysteine (NAC) on the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, antioxidant enzymes, and inflammatory markers in diabetic rat hearts. Metabolic parameters, free 15-F(2t)-isoprostane level, protein expression of NADPH oxidase, superoxide dismutase (SOD), heme oxygenase (HO-1), interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2) were analyzed in control and streptozotocin-induced diabetic rats treated with or without NAC in drinking water for 8 wk. The cardiac protein expression of p67(phox) and p22(phox) was increased in diabetic rats, accompanied by increased NADPH-dependent superoxide production. As a compensatory response to the increased NADPH oxidase, the protein expression of Cu-Zn-SOD and HO-1 and the total SOD activity were also increased in diabetic rat hearts. Consequently, cardiac free 15-F(2t)-isoprostane, an index of oxidative stress, was increased in diabetic rats, indicating that the production of reactive oxygen species becomes excessive in diabetic rat hearts. Cardiac inflammatory markers IL-6 and COX-2 were also increased in diabetic rats. NAC treatment prevented the increased expression of p22(phox) and translocation of p67(phox) to the membrane in diabetic rat hearts. Subsequently, the levels of cardiac free 15-F(2t)-isoprostane, HO-1, Cu-Zn-SOD, total SOD, IL-6, and COX-2 in diabetic rats were decreased by NAC. Consequently, cardiac hypertrophy was attenuated in diabetic rats treated with NAC. The protective effects of NAC on diabetic rat hearts may be attributable to its protection of hearts against oxidative damage induced by the increased NADPH oxidase and to its reduction in cardiac inflammatory mediators IL-6 and COX-2.  相似文献   

12.
Waisundara VY  Siu SY  Hsu A  Huang D  Tan BK 《Life sciences》2011,88(23-24):1016-1025
AimThe primary purpose of this study was to characterize and investigate the antioxidant and anti-diabetic activities of the flavonoid baicalin in type 2 diabetic Goto-Kakizaki rats.Main methodsFour groups of Goto-Kakizaki rats (n = 6) were subjected to the following oral treatments for 30 days: (1) metformin — 500 mg/kg (2) baicalin — 120 mg/kg (3) metformin 500 mg/kg and baicalin — 120 mg/kg (4) vehicle treated diabetic controls receiving distilled water. The plasma glucose, triglyceride, total cholesterol, lipid peroxide and protein carbonyl contents were measured on a weekly basis. Following the completion of the treatment, the rats were sacrificed and their blood, heart, pancreatic and hepatic tissues were collected for analysis. The antioxidant enzyme activities as well as their expression were quantified using Western Blot, microarray and RT-PCR.Key findingsThe respective analyses showed that the baicalin- and the metformin and baicalin-treated groups had statistically significant increases (p < 0.05) in the activity and expression of the antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) compared with vehicle- and metformin-treated groups. Further complementing the antioxidant enzyme activity increases, the oxidative stress markers of plasma lipid peroxide and protein carbonyl contents were reduced in these groups as well. These treatment groups also had reduced plasma total cholesterol and triglyceride levels compared with vehicle-treated and metformin-treated groups (p < 0.05).SignificanceBaicalin was an efficient antioxidant in reducing hyperglycemia-induced oxidative stress through the increased expression of antioxidant enzyme activities. It was also an efficient anti-hypertriglyceridemic as well as anti-hypercholesterolemic agent compared with metformin.  相似文献   

13.
14.
In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense.  相似文献   

15.
Parameters related to oxidative stress were studied in a group of 10 Wistar diabetic rats and 10 control rats. The levels of total erythrocyte catalase activity in the diabetic animals were significantly (p<0.001) greater than the control levels. The diabetic animals presented an amount of vitamin E far greater (p<0.0001) than the controls, as was also the case for the vitaminE/polyunsaturated fatty acid (PUFA) and vitaminE/linoleic acid (C18:2) ratios. Greater vitaminE/triglyceride (TG) ratio, however, appeared in the control group. The corresponding vitamin A ratios (vitaminA/TG, vitaminA/PUFA, vitaminA/C 18:2) were higher in the control group. Our work corroborates the findings that fatty acid metabolism presents alterations in the diabetes syndrome and that the antioxidant status is affected.  相似文献   

16.
To elucidate gender-dependent protein regulation and molecular abnormalities in streptozotocin (STZ)-induced diabetes, we compared differentially expressed pancreatic proteins between male and female diabetic rats and their healthy controls using a 2-DE-based proteomic approach. In animal experiments, we found that females exposed to STZ displayed greater susceptibility towards diabetes development due to lower insulin secretion and severe β-cell damage. It was also accompanied with more impaired regulation of sex hormones, lower glucose tolerance, and higher blood glucose levels compared to male diabetic rats. Among 748 detected protein spots ranging in mass from 6 to 240 kDa between pH 3 and 10, a total of 42 proteins showed significant sexually-dimorphic regulation patterns between male and female diabetic rats. Proteomic data revealed that male and female rats displayed prominent gender-dimorphic differential regulation of pancreatic proteins involved in glycolysis, the citric acid cycle, amino acid synthesis, lipid metabolism, insulin biosynthesis, β-cell regeneration, cell signaling, as well as antioxidative and cellular stress defense. In conclusion, the current proteomic study revealed that severely impaired protein regulation in the pancreas, at least in part, is responsible for increased susceptibility of female rats to STZ-induced diabetes.  相似文献   

17.
Acetylcholine (ACh), the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR) have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). Previous reports from our laboratory on streptozotocin (STZ) induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE) enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax) of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax) and affinity (Kd) of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.  相似文献   

18.
AimsDiabetes mellitus is associated with platelet alterations that may contribute to the development of cardiovascular complications. The present study investigates the effects of resveratrol (RSV), an important compound with cardioprotective activities, on NTPDase, ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP), 5′-nucleotidase and adenosine deaminase (ADA) activities in platelets from streptozotocin (STZ)-induced diabetic rats.Main methodsThe animals were divided into six groups (n = 8): control/saline; control/RSV 10 mg/kg; control/RSV 20 mg/kg; diabetic/saline; diabetic/RSV 10 mg/kg; diabetic/RSV 20 mg/kg. RSV was administered during 30 days and after this period the blood was collected for enzymatic assay.Key findingsThe results demonstrated that NTPDase, E-NPP and 5′-nucleotidase activities were significantly higher in the diabetic/saline group (P < 0.05) compared to control/saline group. Treatment with RSV significantly increased NTPDase, 5′-nucleotidase and E-NPP activities in the diabetic/RSV10 and diabetic/RSV20 groups (P < 0.05) compared to diabetic/saline group. When RSV was administered per se there was also an increase in the activities of these enzymes in the control/RSV10 and control/RSV20 groups (P < 0.05) compared to control/saline group. ADA activity was significantly increased in the diabetic/saline group (P < 0.05) compared to control/saline group. The treatment with RSV prevented this increase in the diabetic/RSV10 and diabetic/RSV20 groups. No significant differences in ADA activity were observed in the control/RSV10 and control/RSV20 compared to control/saline group.SignificanceThe present findings demonstrate alterations in nucleotide hydrolysis in platelets of STZ-induced diabetic rats and treatment with RSV was able to modulate adenine nucleotide hydrolysis, which may be important in the control of the platelet coagulant status in diabetes.  相似文献   

19.
Lipid peroxidation and activity of antioxidant enzymes in diabetic rats   总被引:10,自引:0,他引:10  
We hypothesized that oxygen free radicals (OFRs) may be involved in pathogenesis of diabetic complications. We therefore investigated the levels of lipid peroxidation by measuring thiobarbituric acid reactive substances (TBARS) and activity of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT)] in tissues and blood of streptozotocin (STZ)-induced diabetic rats. The animals were divided into two groups: control and diabetic. After 10 weeks (wks) of diabetes the animals were sacrificed and liver, heart, pancreas, kidney and blood were collected for measurement of various biochemical parameters. Diabetes was associated with a significant increase in TBARS in pancreas, heart and blood. The activity of CAT increased in liver, heart and blood but decreased in kidney. GSH-Px activity increased in pancreas and kidney while SOD activity increased in liver, heart and pancreas. Our findings suggest that oxidative stress occurs in diabetic state and that oxidative damage to tissues may be a contributory factor in complications associated with diabetes.  相似文献   

20.
Several recent studies have demonstrated that organophosphorus insecticides (OPI) possess the potential to disrupt glucose homeostasis leading to hyperglycemia in experimental animals. The propensity of OPI to induce hyperglycemia along with oxidative stress may have far-reaching consequences on diabetic outcomes and associated complications. The primary objective of this study was to assess the potential of monocrotophos (MCP), an extensively used OPI, on hepatic and renal oxidative stress markers and dysregulation of hepatic glucose homeostasis in experimentally induced diabetic rats. Rats rendered diabetic by a single dose of streptozotocin (60 mg/kg b.w) were orally administered MCP (0.9 mg/kg b.w/d for 5 d). Monocrotophos per se caused only a marginal increase in blood glucose levels but significantly elevated the blood glucose levels and also disrupted glucose homeostasis by depleting liver glycogen content and increasing the gluconeogenetic enzyme activities in diabetic rats. Experimentally induced diabetes was also associated with alterations in antioxidant enzymes in liver and kidney. MCP markedly enhanced lipid peroxidation in kidney and altered the enzymatic antioxidant defense mechanisms in both liver and kidney of diabetic rats. Collectively our data provides evidence that MCP has the propensity to augment the oxidative stress and further disrupt glucose homeostasis in diabetic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号