首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Protein phosphatase type 1 is the major enzyme in skeletal muscle and liver for the dephosphorylation of Ser(P) and Thr(P) phosphoproteins. The cDNA for the catalytic subunit encodes a polypeptide of Mr 35,400 kDa, consistent with the Mr of 36,000-38,000 of the active protein purified in various laboratories. However, several investigators have found a Mr 70,000 protein for phosphatase type 1. In this report proteins of Mr 38,000 and 70,000 were resolved by Mono Q chromatography after extensive copurification from rabbit skeletal muscle. Antibodies affinity-purified against a type 1 phosphatase catalytic fragment reacted with both proteins in Western immunoblotting. Fractions from each peak were cleaved with cyanogen bromide and the major peptides were the same size by electrophoresis in gradient polyacrylamide gels. Cyanogen bromide peptides of the individual bands also were mapped by reversed-phase high-performance liquid chromatography. The purified Mr 38,000 and 70,000 proteins had identical HPLC peptide maps and also gave the same amino acid compositions after acid hydrolysis. Purified Mr 38,000 phosphatase catalytic subunit spontaneously formed a Mr 70,000 dimer that resisted usual dissociation conditions, i.e., boiling dodecyl sulfate plus 2-mercaptoethanol, but could be cleaved to about half size by various proteases, indicating that monomers were bound together near their amino or carboxy termini. Physiological changes in protein phosphatase type 1 are reflected in the amount of nondissociable dimers detected in tissue extracts.  相似文献   

2.
Two antipeptide antibodies (designated type 1 antibody and type 2A antibody) were raised against synthetic peptides, Cys-Thr-Pro-Pro-Arg-Asn-Ser-Ala-Lys-Ala-Lys-Lys and Cys-Val-Thr-Arg-Arg-Thr-Pro-Asp-Try-Phe-Leu, corresponding to the carboxyl termini of the catalytic subunits of protein phosphatase 1 and phosphatase 2A (Cys was added for specific coupling to carrier protein). These antipeptide antibodies were highly specific and were useful in discriminating between protein phosphatase 1 and phosphatase 2A in crude extracts or purified preparations. Type 2A antibody reacted with both native and denatured protein phosphatase 2A whereas under the same condition type 1 antibody reacted only with denatured protein phosphatase 1.  相似文献   

3.
Protein phosphatase type 1 and type 2 activities (designated PP-1 and PP-2, respectively) from rabbit reticulocyte lysates have been identified and characterized based on criteria previously established for similar activities in rabbit skeletal muscle and rabbit liver. These include (a) chromatographic separation on DEAE-cellulose, (b) substrate specificity toward glycogen phosphorylase a and the alpha- and beta-subunits of phosphorylase kinase, (c) differential sensitivity to the heat-stable protein phosphatase inhibitors-1 and -2, and (d) sensitivity to MgATP. When total lysate phosphatases are assayed in the presence of 1 mM MnCl2, protein phosphatase type 2 represents 84% of lysate phosphorylase phosphatase activity. However, when phosphatase assays are carried out with MgATP concentrations similar to those in the lysate, type 2 activity is diminished, and the levels of type 1 (41%) and type 2 (59%) phosphatase activities are comparable. A small proportion (6%) of total lysate phosphatase is tightly bound to the ribosomes, where type 1 phosphatase predominates. At least five species of protein phosphatases can be identified in lysates. These constitute two forms of protein phosphatase type 1, one of which (designated FC) is dependent on MgATP and a lysate activator protein FA; both FC and FA have been identified previously in skeletal muscle. Three species of protein phosphatase type 2 have been identified and designated PP-2B, PP-2A1, and PP-2A2 based on criteria recently established for rabbit skeletal muscle and rabbit liver phosphatases, which display similar phosphatase profiles. Lysate protein phosphatases types 1, FC, 2A1, and 2A2 can all act on phosphorylase a and the alpha- (type 2) or beta-(type 1) subunit of phosphorylase kinase. PP-2B, a Ca2+/calmodulin-dependent phosphatase, specifically dephosphorylates the alpha-subunit of phosphorylase kinase, but does not act on phosphorylase alpha. The heat-stable protein phosphatase inhibitor-2 from skeletal muscle completely blocks the activity of the two type 1 phosphatases (PP-1, FC), but has no effect on the three species of type 2 protein phosphatase. A preliminary assay of the two heat-stable phosphatase inhibitors in lysates indicates significant levels of inhibitor-2, but little or no detectable inhibitor-1.  相似文献   

4.
Extracts of Brassica napus (oilseed rape) seeds contain type 1 and type 2A protein phosphatases whose properties are indistinguishable from the corresponding enzymes in mammalian tissues. The type 1 activity dephosphorylated the beta-subunit of phosphorylase kinase selectively and was inhibited by the same concentrations of okadaic acid [IC50 (concentration causing 50% inhibition) approximately 10 nM], mammalian inhibitor 1 (IC50 = 0.6 nM) and mammalian inhibitor 2 (IC50 = 2.0 nM) as the rabbit muscle type 1 phosphatase. The plant type 2A activity dephosphorylated the alpha-subunit of phosphorylase kinase preferentially, was exquisitely sensitive to okadaic acid (IC50 approximately 0.1 nM), and was unaffected by inhibitors 1 and 2. As in mammalian tissues, a substantial proportion of plant type 1 phosphatase activity (40%) was particulate, whereas plant type 2A phosphatase was cytosolic. The specific activities of the plant type 1 and type 2A phosphatases were as high as in mammalian tissue extracts, but no type 2B or type 2C phosphatase activity was detected. The results demonstrate that the improved procedure for identifying and quantifying protein phosphatases in animal cells is applicable to higher plants, and suggests that okadaic acid may provide a new method for identifying plant enzymes that are regulated by reversible phosphorylation.  相似文献   

5.
Extracts from Dictyostelium discoideum contain type 2A and 2C serine/threonine-specific protein phosphatases with properties very similar to those from mammals according to their sensitivity to okadaic acid and to their dependence for divalent cations. In contrast, no type 1 protein phosphatase is found at any time of development, neither in the cytosolic nor in the particulate fraction, using glycogen phosphorylase a, casein, histone or the non-proteinous 4-Methylumbelliferyl phosphate as substrates. Both type 2A and 2C protein phosphatase activities remain constant throughout the development cycle.  相似文献   

6.
We have established an assay to measure protein phosphatase activity in mouse oocytes using [32P]-radiolabeled phosphorylase a as the substrate. Removal of the radiolabel from the substrate in vitro was linear with time and could be inhibited totally by the addition of okadaic acid (inhibitor of type 1 and type 2 protein phosphatases), or partially by protein inhibitor 2 (inhibitor of type 1 protein phosphatases). We performed a detailed study of the activity of type 2A protein phosphatases in mouse oocytes undergoing meiotic maturation and after parthenogenetic activation of mature oocytes arrested in metaphase II. Significant changes in the activity of type 2A protein phosphatases were observed during the first meiotic and the first mitotic cell cycles. These alterations in type 2A protein phosphatase activity occurred in the absence of changes in the quantity of the catalytic sub-unit and can be correlated with changes in the activity of protein kinases and rearrangement of the cellular cytoskeleton. Our observations support a role for type 2A protein phosphatases in cell cycle regulation and demonstrate that, like the protein kinases, the type 2A phosphatases also undergo changes in their activity during early mammalian development.  相似文献   

7.
Effects of five kinds of dopamine agonists on the activity of type 2A protein phosphatase in rat brain were studied. Apomorphine and SKF-38393 reduced the enzyme activity considerably and their effects were further enhanced in the presence of 10 microM Mn2+. Also, 6,7-ADTN slightly inhibited the activity. The present results suggest that type 2A protein phosphatase in the brain is possibly involved in dopamine mediated protein phosphorylation functions.  相似文献   

8.
The cyclic peptide hepatotoxins microcystin-LR, 7-desmethyl-microcystin-RR and nodularin are potent inhibitors of the protein phosphatases type 1 and type 2A. Their potency of inhibition resembles calyculin-A and to a lesser extent okadaic acid. These hepatotoxins increase the overall level of protein phosphorylation in hepatocytes. Evidence is presented to indicate that in hepatocytes the morphological changes and effects on the cytoskeleton are due to phosphatase inhibition. The potency of these compounds in inducing hepatocyte deformation is similar to their potency in inhibiting phosphatase activity. These results suggest that the hepatotoxicity of these peptides is related to inhibition of phosphatases, and further indicate the importance of the protein phosphorylation in maintenance of structural and homeostatic integrity in these cells.  相似文献   

9.
The substrate specificity of the different forms of the polycation-stimulated (PCS, type 2A) protein phosphatases and of the active catalytic subunit of the ATP, Mg-dependent (type 1) phosphatase (AMDC) was investigated, using synthetic peptides phosphorylated by either cyclic-AMP-dependent protein kinase or by casein kinase-2. The PCS phosphatases are very efficient toward the Thr(P) peptides RRAT(P)VA and RRREEET(P)EEE when compared with the Ser(P) analogues RRAS(P)VA and RRREEES(P)EEEAA. Despite their distinct sequence, both Thr(P) peptides are excellent substrates for the PCSM and PCSH1 phosphatases, being dephosphorylated faster than phosphorylase a. The slow dephosphorylation of RRAS(P)VA by the PCS phosphatases could be increased substantially by the insertion of N-terminal (Arg) basic residues. In contrast with the latter, the AMDC phosphatase shows very poor activity toward all the phosphopeptides tested, without preference for either Ser(P) or Thr(P) peptides. However, N-terminal basic residues also favor the dephosphorylation of otherwise almost inert substrates by the AMDC phosphatase. Hence, while the dephosphorylation of Thr(P) substrates by the PCS phosphatases is highly favored by the nature of the phosphorylated amino acid, phosphatase activity toward Ser(P)-containing peptides may require specific determinants in the primary structure of the phosphorylation site.  相似文献   

10.
The level of protein phosphorylation is dependent on the relative activities of both protein kinases and protein phosphatases. By comparison with protein kinases, however, there have been considerably fewer studies on the functions of serine/threonine protein phosphatases. This is partly due to a lack of specific protein phosphatase inhibitors that can be used as probes. In the present study we characterize the inhibitory effects of microcystin-LR, a hepatotoxic cyclic peptide associated with most strains of the blue-green algae Microcystis aeruginosa found in the Northern hemisphere, that proves to be a potent inhibitor of type 1 (IC50 = 1.7 nM) and type 2A (IC50 = 0.04 nM) protein phosphatases. Microcystin-LR inhibited the activity of both type 1 and type 2A phosphatases greater than 10-fold more potently than okadaic acid under the same conditions. Type 2A protein phosphatases in dilute mammalian cell extracts were found to be completely inhibited by 0.5 nM microcystin-LR while type 1 protein phosphatases were only slightly affected at this concentration. Thus, microcystin-LR may prove to be a useful probe for the study and identification cellular processes which are mediated by protein phosphatases.  相似文献   

11.
A cDNA clone containing the full coding sequence of a type 1 protein phosphatase catalytic subunit 1 alpha has been isolated from a rat kidney lambda gt 10 library. The protein sequence deduced from the cDNA contains 330 amino acid residues with a molecular mass of 38 kDa. The cDNA clone from rat kidney was 89% identical at the nucleotide level in the coding region to type 1 protein phosphatase 1 alpha from rabbit skeletal muscle. However, the two protein sequences were completely identical. The type 1 alpha protein phosphatase from rat kidney shows 49% homology of amino acid sequence to the rat type 2A alpha protein phosphatase. Thus, the protein sequence of type 1 alpha protein phosphatase was completely conserved between rat and rabbit. The mRNA levels of type 1 protein phosphatase were determined in rat liver, AH13, a strain of rat hepatoma, and regenerating rat liver by Northern blot analysis using the cDNA fragment as a probe, under which conditions a single mRNA of 1.5 kb was detected. The mRNA levels of AH13 were remarkably increased when compared to those of normal ivers, whereas the mRNA levels of regenerating livers were slightly but significantly increased. These results demonstrate a marked increase in gene expression of type 1 protein phosphatase in hepatoma cells, suggesting an important role of the type 1 protein phosphatase in hepatocarcinogenesis.  相似文献   

12.
Host cell invasion by Toxoplasma gondii tachyzoites relies on many coordinated processes. The tachyzoite participates in invasion by providing an actomyosin-dependent force driving it into the nascent parasitophorous vacuole as well as by releasing molecules which contribute to the vacuole membrane. Exposure to type 1/2A protein phosphatase inhibitors, okadaic acid (OA) or tautomycin significantly impairs tachyzoite invasiveness. Furthermore, the tachyzoite extract contains a biochemically active type 1, but not a type 2A, serine-threonine protein phosphatase, which is immunologically related to eukaryotic phosphatase type 1 catalytic subunit. When tachyzoite extracts are incubated with a monoclonal antibody reactive to human type 1 catalytic subunit, other T. gondii molecules are coprecipitated among which one competes with the inhibitory toxin OA. Finally, in vitro phosphate labelling assays indicate that the biochemically characterized PP1 activity controls the phosphorylation of several proteins. Taken together, these data strongly suggest that the type 1 phosphatase activity detected in invasive tachyzoites is implicated in the control of the host cell invasion process.  相似文献   

13.
A novel serine/threonine protein phosphatase is identified, and the catalytic subunit, obtained from a detergent extraction of the pellet generated by a 100,000 x g centrifugation of a whole bovine brain homogenate, is purified and characterized. The protein phosphatase, designated as PP3, has a Mr of 36,000, does not require divalent cations for activity, is stimulated rather than inhibited by inhibitor 2, is inhibited by both okadaic acid and microcystin-LR with an intermediate IC50 compared to type 1 and type 2A protein phosphatases, and preferentially dephosphorylates the beta subunit of phosphorylase kinase. Substrate specificity, immunoblotting with type-specific antisera, and the amino acid sequences of peptides derived from PP3 indicate that PP3 is not an isoform of any known serine/threonine protein phosphatase.  相似文献   

14.
Phosphoprotein phosphatases regulate the biological activities of proteins through their involvement in cyclic phosphorylation/dephosphorylation cascades. A variety of multimeric phosphatases have been isolated and grouped into several classes, termed type 1 and types 2A, 2B, and 2C. To elucidate the relationship between the different phosphoprotein phosphatases, highly purified enzymes from soil amoebae, turkey gizzards, bovine heart and brain, and rabbit skeletal muscle and reticulocytes were tested for immunological antigenic relatedness. Two heterologous antibody preparations were employed for this purpose. One was made against an Acanthamoeba type 2A phosphatase and the other was made to bovine brain phosphatase type 2B (calcineurin, holoenzyme). Specific subunit cross-reactivity was examined by protein blot ("Western") analysis. The antibody to the type 2A phosphatase reacted with the catalytic subunits of every type 2 enzyme tested, including both the catalytic and Ca2+-binding subunits of the Ca2+/calmodulin-dependent type 2B phosphatase (calcineurin), bovine cardiac type 2A phosphatase, and turkey gizzard smooth muscle phosphatase-1 (type 2A1). It did not react with any type 1 phosphatase (catalytic subunit or ATP-Mg-dependent). The antigenic relatedness of calcineurin and the bovine cardiac type 2A phosphatase (Mr 38,000) was demonstrated further by protein blot analysis showing that the anti-calcineurin antibody cross-reacted with both enzymes. The mutual cross-reactivity poses an intriguing problem because these enzymes are so different in their molecular structures and modes of regulation. The degree of evolutionary conservation exhibited by the antigenic cross-reactivity of the type 2 enzymes from a broad range of species and tissues suggests a strong selective pressure on maintaining one or more features of these important regulatory enzymes.  相似文献   

15.
We have identified a 36 kD phosphoprotein that forms a complex with spliceosomal small nuclear ribonucleoproteins in lymphocyte extracts. This 36 kD protein is differentially phosphorylated in transformed human lymphoid cell lines and is regulated by IL-2 in peripheral blood T cells. We purified the 36 kD protein from human lymphocytes by employing a combination of immuno-affinity chromatography and preparative two-dimensional gel electrophoresis. Internal amino acid sequence analysis of the purified protein yielded two peptides that had perfect matches with sequences in the human protein serine/threonine phosphatase 6 (PP6). Using degenerate primers corresponding to the peptides, we obtained from a human T lymphocyte cDNA library a DNA fragment whose sequence is homologous to an EST cDNA clone (R05547). The predicted amino acid sequence of this clone showed over 98% sequence identity to human PP6. The identification of an IL-2 regulated type 6 protein serine/threonine phosphatase in lymphocytes was further substantiated by immunoblotting with anti-peptide antibodies. These findings suggest that PP6 is a component of a signaling pathway regulating cell cycle progression in response to IL-2 receptor stimulation.  相似文献   

16.
Monoclonal antibodies (MAbs) raised against the core proteins of human immunodeficiency virus type 1 (HIV-1; laboratory strain HTLV-IIIB) and HIV-2 (strain ROD) were investigated in a variety of tests, e.g., enzyme-linked immunosorbent assay (ELISA), immunostaining of Western immunoblots, immunofluorescence, immunoprecipitation, and alkaline phosphatase anti-alkaline phosphatase assay. The MAbs were grouped according to their cross-reactions. Seven HIV-1-specific MAbs reacted exclusively with HIV-1, and five showed cross-reactivity with HIV-2 and simian immunodeficiency virus of macaques in ELISA. Four of the 15 MAbs against HIV-2 reacted only with the HIV-2 protein p26. Six showed cross-reactivity with HIV-1, and five showed a broad reaction with all three viruses. Overlapping 30-amino-acid-long peptides derived from the p24 protein sequence of HIV-1 were used in an epitope-mapping system. Three different immunogenic regions (A, B, and C) could be defined. Specific regions where anti-HIV-1 and -HIV-2 MAbs cross-reacted were mapped with shorter oligopeptides.  相似文献   

17.
18.
Mouse epidermal cytosol contains a protein phosphatase with Mr 38,000, which dephosphorylates the elongation factor 2 (EF-2) of protein biosynthesis and is stimulated after topical application of TPA to mouse skin [(1988) Biochem. Biophys. Res. Commun. 153, 1129-1135]. Dephosphorylation of EF-2 by this phosphatase is inhibited by okadaic acid at concentrations as low as 10(-8) M, but not by heparin up to concentrations of 600.micrograms/ml. The catalytic subunit of protein phosphatase 2A (PP2Ac) with EF-2 as a substrate exhibits the same sensitivity towards okadaic acid and insensitivity towards heparin as the EF-2 phosphatase of epidermal cytosol. The catalytic subunit of protein phosphatase 1 (PP1c) is strongly suppressed by heparin and less sensitive towards okadaic acid than PP2Ac. PP2Ac is around 50 times more efficient in dephosphorylating EF-2 than PP1c. These data indicate that the TPA-stimulated EF-2 phosphatase in epidermal cytosol is a type 2A protein phosphatase.  相似文献   

19.
In the eggs and embryos of sea urchins, the activity of protein phosphatase type 2A (PP2A) increased during the developmental period between fertilization and the morula stage, decreased after the prehatching blastula stage and increased again after hatching. The PP2A activity changed keeping pace with alteration to the activities of cAMP-dependent protein kinase (A kinase), Ca2+/calmodulin-dependent protein kinase (CaM kinase) and casein kinase. Probably, PP2A contributes to the quick turning off of cellular signals because of protein phosphorylation. The activity of protein phosphatase type 1 (PP1) was not detectable up to the morula stage and appreciably increased thereafter. In the isolated nucleus fraction, specific activities of PP1 and PP2A were higher than in whole embryos at all stages in early development. Exponential increase in the number of nuclei because of egg cleavage probably makes PP1 activity detectable in whole embryos after the morula stage. In isolated nuclei, the activities of PP1 and PP2A appreciably decreased after hatching, whereas the activities of A kinase, Ca2+/phospholipid-dependent protein kinase (C kinase) and CaM kinase, as well as casein kinase, became higher. In nuclei, cellular signals caused by protein phosphorylation after hatching do not seem to be turned off by these protein kinases so quickly as before hatching. The PP1 and PP2A in nuclei also seem to contribute to the elimination of signal noise.  相似文献   

20.
A Mr 60,000 peptide that modulates the activity of the Mr 35,000 catalytic subunit of a type 2A phosphatase has been isolated from rabbit reticulocytes and partially characterized. The peptide appears to be a subunit of the intact phosphatase that has been isolated under nondenaturing conditions. The Mr 60,000 peptide itself is catalytically inactive. However, it binds to the Mr 35,000 catalytic subunit causing a decrease in its activity for dephosphorylation of phosphorylated 40 S ribosomal subunits, but an increase in dephosphorylation of peptide initiation factor 2 phosphorylated in its alpha subunit. Reassociation of the Mr 60,000 and the Mr 35,000 peptides yields a two-subunit phosphatase with a Stokes radius of 42 A; sedimentation coefficient, S20,w of 5.1 S; molecular weight of 89,000. These parameters are compared to those of the native three-subunit enzyme and those of the isolated Mr 35,000 and 60,000 peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号