首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The major heat shock protein, hsp70, is an ATP-binding protein which is synthesized in very large amounts in response to stress. In unstressed, or recovered, mammalian cells it is found in both nucleus and cytoplasm. Under these conditions, its interaction with nuclei is weak, and it is readily released from them upon lysis of cells in isotonic buffer. After heat shock, hsp70 binds tightly first to some nuclear component(s) and then to nucleoli. It can be released from these binding sites rapidly and specifically in vitro by as little as 1 microM ATP, but not by non-hydrolysable ATP analogues. Studies of hsp70 deletion mutations show that the ability of mutants to be released by ATP correlates with their ability to migrate to heat-shocked nucleoli and aid their repair in vivo. We propose a model in which ATP-driven cycles of binding and release of hsp70 help to solubilize aggregates of proteins or RNPs that form after heat shock. Cells also contain proteins related to hsp70 that are synthesized in the absence of stress. The most abundant of these shows the same behaviour as hsp70 after heat shock, and thus may perform a related function in both normal and stressed cells.  相似文献   

2.
The intracellular location of the major induced mammalian heat shock (or stress) protein (Mr = 72,000) has been determined by both biochemical and immunological methods. This protein, shown here to be comprised of at least three structurally related isoforms, is produced at high levels within 30 min to 1 h following heat treatment of cells. Biochemical fractionation of cells grown under heat shock showed that following its synthesis a portion of the 72,000-Da protein (and its isoforms) becomes associated with the nucleus while some remains in the cytoplasm. Indirect immunofluorescence studies using antiserum directed against the major isoforms of the 72,000-Da protein were carried out in normal and heat-shocked cells as well as in cells grown under stress by exposure to either an amino acid analogue or to sodium arsenite. Diffuse cytoplasmic and nuclear staining was observed in cells grown at 37 degrees C. In cells grown under heat shock conditions, both the cytoplasmic staining and the nuclear staining were found to increase with the nuclear staining consisting of both granular and patch-like structures, the latter being coincident with phase-dense nucleoli. In the case of cells exposed to amino acid analogues or to sodium arsenite, only cytoplasmic and to a lesser extent nuclear staining was observed, i.e. no localized nucleolar fluorescence was observed. Following return of heat shock-treated cells to normal growth temperatures, both the synthesis of the 72,000-Dalton stress protein and its nucleolar staining were found to diminish.  相似文献   

3.
Localization and quantitation of hsp84 in mammalian cells   总被引:2,自引:0,他引:2  
In order to investigate the function of heat shock protein 84 (hsp84) we have isolated the protein from mouse neuroblastoma cells and raised a polyclonal antiserum which was affinity-purified. The specificity of the antibody was established by immunoprecipitation and immunoblotting. Immunofluorescence studies revealed both a cytoplasmic and a nuclear localization of hsp84 in five different mammalian cell lines (mouse neuroblastoma cells and fibroblasts, rat hepatoma cells, and HeLa cells). In none of the five cell lines were found significant differences in the total cellular levels of hsp84 before and immediately after a heat shock (4 h, 42 degrees C) by immunoblot quantification. Furthermore after heat shock the fluorescence of anti-hsp84-labeled nuclei was increased relative to that of the surrounding cytoplasm. The increased fluorescence disappeared upon reincubation at 37 degrees C. The heat-induced increase in contrast between cytoplasmic and nuclear fluorescence could be explained by a combination of three factors: (a) decrease in nuclear projection area, (b) increase in cytoplasmic projection area, and (c) translocation of hsp84. The contribution of these factors to the increase after heat treatment was different for the cell lines.  相似文献   

4.
The dynamic state of heat shock proteins in chicken embryo fibroblasts   总被引:22,自引:7,他引:15       下载免费PDF全文
Subcellular fractionation and immunofluorescence microscopy have been used to study the intracellular distributions of the major heat shock proteins, hsp 89, hsp 70, and hsp 24, in chicken embryo fibroblasts stressed by heat shock, allowed to recover and then restressed. Hsp 89 was localized primarily to the cytoplasm except during the restress when a portion of this protein concentrated in the nuclear region. Under all conditions, hsp 89 was readily extracted from cells by detergent. During stress and restress, significant amounts of hsp 70 moved to the nucleus and became resistant to detergent extraction. Some of this hsp 70 was released from the insoluble form in an ATP-dependent reaction. Hsp 24 was confined to the cytoplasm and, during restress, aggregated to detergent-insoluble perinuclear phase-dense granules. These granules dissociated during recovery and hsp 24 could be solubilized by detergent. The nuclear hsps reappeared in the cytoplasm in cells allowed to recover at normal temperatures. Sodium arsenite also induces hsps and their distributions were similar to that observed after a heat shock, except for hsp 89, which remained cytoplasmic. We also examined by immunofluorescence the cytoskeletal systems of chicken embryo fibroblasts subjected to heat shock and found no gross morphological changes in cytoplasmic microfilaments or microtubules. However, the intermediate filament network was very sensitive and collapsed around the nucleus very shortly after a heat shock. The normal intermediate filament morphology reformed when cells were allowed to recover from the stress. Inclusion of actinomycin D during the heat shock--a condition that prevents synthesis of the hsps--did not affect the intermediate filament collapse, but recovery of the normal morphology did not occur. We suggest that an hsp(s) may aid in the formation of the intermediate filament network after stress.  相似文献   

5.
Using both electron microscopy and immunological methods, we have characterized a number of changes occurring in rat fibroblasts after heat-shock treatment. Incubation of the cells for 3 h at 42 degrees-43 degrees C resulted in a number of changes within the cytoplasm including: a disruption and fragmentation of the Golgi complex; a modest swelling of the mitochondria and subtle alterations in the packing of the cristae; and alterations in cytoskeletal elements, specifically a collapse and aggregation of the vimentin-containing intermediate filaments around the nucleus. A number of striking changes were also found within the nuclei of the heat-treated cells: (a) We observed the appearance of rod-shaped bodies consisting of densely packed filaments. Using biochemical and immunological methods, these nuclear inclusion bodies were shown to be comprised of actin filaments. (b) Considerable alterations in the integrity of the nucleoli were observed after the heat-shock treatment. Specifically, there appeared to be a general relaxation in the condensation state of the nucleoli, changes in both the number and size of the granular ribonucleoprotein components, and finally a reorganization of the nucleolar fibrillar reticulum. These morphological changes in the integrity of the nucleoli are of significant interest since previous work as well as studies presented here show that two of the mammalian stress proteins, the major stress-induced 72-kD protein and the 110-kD protein, localize within the nucleoli of the cells after heat-shock treatment. We discuss these morphological changes with regards to the known biological and biochemical events that occur in cells after induction of the stress response.  相似文献   

6.
We have recently found a novel 40-kDa heat-shock protein (hsp 40) in mammalian and avian cells and reported that the N-terminal amino acid sequence of mammalian hsp 40 has homology with the bacterial DnaJ heat-shock protein. Also, hsp 40 has been shown to be translocated from the cytoplasm into the nuclei/nucleoli by heat shock and colocalized with hsc 70 (p73) in the nucleoli of exactly the same cells. We here investigated the effect of ATP on the release of hsp 70 (both constitutive p73 and inducible p72) and hsp 40 from the nuclei/nucleoli of heat-shocked HeLa cells which were permeabilized with Nonidet-P40 using immunoflourescence and immunoblotting. Hsp 70 in the nucleoli was released by the addition of ATP but not by ADP, GTP, nonhydrolyzable ATP, nor high salt buffer. In contrast, hsp 40 was not released from the nucleoli with any of these treatments or any combination of these treatments. Thus, hsp 40 might dissociate spontaneously from the nucleoli after hsp 70 has been released in an ATP-dependent manner. Using cell fractionation methods, we showed that while the majority of hsp 40 is localized in the cytoplasm, a small portion of it is located in the microsome fraction in non-heat-shocked control cells and in cells which recovered from heat shock.  相似文献   

7.
In the present study, we examined the expression of the Rana catesbeiana small heat shock protein gene, hsp30, in an FT fibroblast cell line. Northern and western blot analyses revealed that hsp30 mRNA or HSP30 protein was not present constitutively but was strongly induced at a heat shock temperature of 35 degrees C. However, treatment of FT cells with sodium arsenite at concentrations that induced hsp gene expression in other amphibian systems caused cell death. Non-lethal concentrations of sodium arsenite (10 microM) induced only minimal accumulation of hsp30 mRNA or protein after 12 h. Immunocytochemical analyses employing laser scanning confocal microscopy detected the presence of heat-inducible HSP30, in a granular or punctate pattern. HSP30 was enriched in the nucleus with more diffuse localization in the cytoplasm. The nuclear localization of HSP30 was more prominent with continuous heat shock. These heat treatments did not alter FT cell shape or disrupt actin cytoskeletal organization. Also, HSP30 did not co-localize with the actin cytoskeleton.  相似文献   

8.
The relationship between hsp 70 localization and heat resistance   总被引:4,自引:0,他引:4  
Using indirect immunofluorescence we have investigated the kinetics of nuclear accumulation and removal of hsp 70 in HA-1 Chinese hamster fibroblasts exposed to elevated temperatures. The kinetics of accumulation of hsp 70 in the nuclei were found to be time/temperature dependent at all temperatures tested (42-45 degrees C). At a given temperature, the fraction of cells manifesting nuclear localization of hsp 70 increased with exposure time. For a given duration of heating, the fraction of cells manifesting nuclear localization of hsp 70 increased with the temperature. The kinetics of the nuclear accumulation of hsp 70 were similar for normal HA-1 cells, their heat-resistant variants, and transiently thermotolerant cells (triggered by prior exposure to a brief heat shock or to sodium arsenite). Upon return to 37 degrees C after heat shock, the kinetics of removal of the hsp 70 associated with the nucleus was dependent on the severity of the initial heat challenge. However, for a given heat dose, the decay of nuclear localization of hsp 70 was more rapid in thermotolerant and heat-resistant cells than in their normal counterparts. These results suggest that the increased levels of hsp 70 associated with the transient or permanently heat-resistant state may play a direct role in restoring and/or repairing heat-induced nuclear and nucleolar alterations associated with heat-induced cell killing. Furthermore, they also suggest that the heat-resistant state may involve ameliorated repair of heat-induced cellular alterations.  相似文献   

9.
Stress inhibits nucleocytoplasmic shuttling of heat shock protein hsc70   总被引:5,自引:0,他引:5  
Heat shock proteins of the hsp/hsc70 family are essential chaperones, implicated in the stress response, aging, and a growing number of human diseases. At the molecular level, hsc70s are required for the proper folding and intracellular targeting of polypeptides as well as the regulation of apoptosis. Cytoplasmic members of the hsp/hsc70 family are believed to shuttle between nuclei and cytoplasm; they are found in both compartments of unstressed cells. Our experiments demonstrate that actin filament-destabilizing drugs trigger the nuclear accumulation of hsc70s in unstressed and heat-shocked cells recovering from stress. Using human-mouse heterokaryons, we show that stress inhibits shuttling and sequesters the chaperone in nuclei. The inhibition of hsc70 shuttling upon heat shock is only transient, and transport is reestablished when cells recover from stress. Hsc70 shuttling is controlled by hsc70 retention in the nucleus, a process that is mediated by two distinct mechanisms, ATP-sensitive binding of hsc70s to chaperone substrates and, furthermore, the association with nucleoli. The nucleolar protein fibrillarin and ribosomal protein rpS6 were identified as components that show an increased association with hsc70s in the nucleus upon stress exposure. Together, our data suggest that stress abolishes the exit of hsc70s from the nucleus to the cytoplasm, thereby limiting their function to the nuclear compartment. We propose that during recovery from stress hsc70s are released from nuclear and nucleolar anchors, which is a prerequisite to restore shuttling. nuclear transport; chaperone; nuclear retention; nucleoli  相似文献   

10.
A monoclonal antibody (29A) directed against rat liver heat shock protein M(r) 90,000 (hsp90) was produced. By Western immunoblotting of cytosols prepared from several different tissues and species, 29A was shown to specifically recognize only one band with M(r) approximately 90,000. Localization of hsp90 in human gingival fibroblasts was studied using the 29A antibody by indirect mono- and double-staining immunofluorescence and confocal laser scanning microscopy. The distribution was compared to that of the glucocorticoid receptor (GR) and various cytoskeletal structures. Cells were analyzed in interphase and mitosis under basal culture conditions, after heat shock and after microtubule and microfilament depolymerization, sometimes combined with heat shock. A major part of hsp90 immunoreactivity was diffusely distributed throughout the interphase cytoplasm, but a weak nuclear staining with non-stained nucleoli was also present, however, only detectable after methanol and not after formaldehyde/Triton X-100 fixation. Heat shock induced a time-dependent translocation of hsp90 from the cytoplasm to the cell nucleus reaching a plateau after 15 h. This compartment shift was reversible and also occurred in the absence of intact microtubules or intact microfilaments.  相似文献   

11.
Fine structural observations on heat shocked cells of S. mytilus reveal that cell organelles undergo structural alterations. Mitochondria show distorted shapes with disorganized cristae and vacuolar spaces. Pulse heat shock results in dilated rough endoplasmic reticulum, abundant polysomes as well as smooth endoplasmic reticulum. Heat shocked cells show membrane bound bodies containing osmiophilic cores. In macronuclei, dense chromatin breaks up into discrete bodies accompanied by the appearance of bundles of fine filaments and clustering of nuclear pores. The most prominent changes are noticed in nucleoli. Within 15 min of heat shock, nucleoli show hypertrophy and fine fibrillar zone which gradually replaces the granular zone by 120 min giving the nucleoli ring shaped configuration. In S phase cells, macronuclei show the arrested replication band in which the diffused zone (the site of DNA replication) is absent.  相似文献   

12.
13.
E Gibney  J Gault  J Williams 《Biomarkers》2004,9(4-5):353-363
The heat shock response has been suggested as a potential biomarker in toxicology. A vast amount of stimuli have been shown to induce heat shock proteins and new techniques to measure the response are constantly being assessed. In this study we use a novel immunocytochemistry technique to measure heat shock protein 70 (hsp70) induction in L929 cells exposed to cadmium chloride. Hsp70 induction was quantifiably measured using a soluble coloured substrate and qualitatively measured using a coloured substrate that precipitated at the location of hsp70. Using the insoluble coloured substrate hsp70 was identified predominantly within the cytoplasm of control cells. At intermediate cadmium concentrations hsp70 was observed to translocate to the nucleus. At these intermediate concentrations a heterogeneous heat shock response was observed. At lethal concentrations a strong heat shock response was observed with a widespread cellular response. This study demonstrates the potential of this immunocytochemistry technique to measure toxicological effects in cells by identifying the response quantitatively and qualitatively.  相似文献   

14.
E. Gibney  J. Gault  J. Williams 《Biomarkers》2013,18(4-5):353-363
The heat shock response has been suggested as a potential biomarker in toxicology. A vast amount of stimuli have been shown to induce heat shock proteins and new techniques to measure the response are constantly being assessed. In this study we use a novel immunocytochemistry technique to measure heat shock protein 70 (hsp70) induction in L929 cells exposed to cadmium chloride. Hsp70 induction was quantifiably measured using a soluble coloured substrate and qualitatively measured using a coloured substrate that precipitated at the location of hsp70. Using the insoluble coloured substrate hsp70 was identified predominantly within the cytoplasm of control cells. At intermediate cadmium concentrations hsp70 was observed to translocate to the nucleus. At these intermediate concentrations a heterogeneous heat shock response was observed. At lethal concentrations a strong heat shock response was observed with a widespread cellular response. This study demonstrates the potential of this immunocytochemistry technique to measure toxicological effects in cells by identifying the response quantitatively and qualitatively.  相似文献   

15.
Small heat shock proteins (shsps) are molecular chaperones that are inducible by environmental stress. In this study, immunocytochemical analysis and laser scanning confocal microscopy revealed that the shsp family, hsp30, was localized primarily in the cytoplasm of Xenopus A6 kidney epithelial cells after heat shock or sodium arsenite treatment. Heat shock-induced hsp30 was enriched in the perinuclear region with some immunostaining in the nucleus but not in the nucleolus. In sodium arsenite-treated cells hsp30 was enriched towards the cytoplasmic periphery as well as showing some immunostaining in the nucleus. At higher heat shock temperatures (35 degrees C) or after 10 microM sodium arsenite treatment, the actin cytoskeleton displayed some disorganization that co-localized with areas of hsp30 enrichment. Treatment of A6 cells with 50 microM sodium arsenite induced a collapse of the cytoskeleton around the nucleus. These results coupled with previous studies suggest that stress-inducible hsp30 acts as a molecular chaperone primarily in the cytoplasm and may interact with cytoskeletal proteins.  相似文献   

16.
《The Journal of cell biology》1993,120(5):1101-1112
Mammalian cells constitutively express a cytosolic and nuclear form of heat shock protein (hsp) 70, referred to here as hsp 73. In response to heat shock or other metabolic insults, increased expression of another cytosolic and nuclear form of hsp 70, hsp 72, is observed. The constitutively expressed hsp 73, and stress-inducible hsp 72, are highly related proteins. Still unclear, however, is exactly why most eukaryotic cells, in contrast to prokaryotic cells, express a novel form of hsp 70 (i.e., hsp 72) after experiencing stress. To address this question, we prepared antibodies specific to either hsp 72 or hsp 73 and have compared a number of biological properties of the two proteins, both in vivo and in vitro. Using metabolic pulse-chase labeling and immunoprecipitation analysis, both the hsp 72 and hsp 73 specific antibodies were found to coprecipitate a significant number of newly synthesized proteins. Such interactions appeared transient and sensitive to ATP. Consequently, we suspect that both hsp 72 and hsp 73 function as molecular chaperones, interacting transiently with nascent polypeptides. During the course of these studies, we routinely observed that antibodies specific to hsp 73 resulted in the coprecipitation of hsp 72. Similarly, antibodies specific to hsp 72 were capable of coprecipitating hsp 73. Using a number of different approaches, we show that the constitutively expressed, pre-existing hsp 73 rapidly forms a stable complex with the newly synthesized stress inducible hsp 72. As is demonstrated by double-label indirect immunofluorescence, both proteins exhibit a coincident locale within the cell. Moreover, injection of antibodies specific to hsp 73 into living cells effectively blocks the ability of both hsp 73 and hsp 72 to redistribute from the cytoplasm into the nucleus and nucleolus after heat shock. These results are discussed as they relate to the possible structure and function of the constitutive (hsp 73) and highly stress inducible (hsp 72) forms of hsp 70, both within the normal cell as well as in the cell experiencing stress.  相似文献   

17.
Heat-shock protein (hsp) 83 was purified from Drosophila culture cells. Analysis by gel filtration revealed that this hsp exists in a dimeric form under nondenaturing conditions. Monoclonal and polyclonal antibodies produced against this hsp have been used to determine its intracellular localization by indirect immunofluorescence and immunogold electron microscopy in normal cells, after heat shock, during recovery and after a second heat shock. Under normal conditions, hsp 83 is predominantly cytoplasmic. Immunogold labeling reveals that this hsp is associated with vacuole-like structures containing numerous dense bodies. In addition, hsp 83 is detected, albeit at a lower level, in the nucleus where it is found within the network of perichromatin ribonucleoprotein (RNP) fibrils. This distribution changes during heat shock: hsp 83 is then found in increased concentrations at the cell periphery close to the plasma membrane. After a recovery period, hsp 83 appears associated with the nuclear membrane and/or with the neighboring endoplasmic reticulum. Following a second heat shock at 37 degrees C after recovery, a renewed deposition of hsp 83 is observed at the cell periphery. A small population of cells also shows an increased concentration of this protein in the nucleus. This intracellular distribution of hsp 83 is consistent with its reported association with various cellular proteins and suggest that this hsp may be involved in their intracellular transport and/or in the modulation of their activity.  相似文献   

18.
H R Pelham 《The EMBO journal》1984,3(13):3095-3100
The major heat-shock protein, hsp70, is synthesized by cells of many organisms in response to stress. In the present study, Drosophila hsp70 was expressed from cloned genes in mouse L cells and monkey COS cells and detected by immunofluorescence using monoclonal antibodies. Hsp70 is found mostly but not exclusively in the nucleus of unstressed cells. For several hours after a short heat shock, however, it is strongly concentrated in nucleoli. Nucleoli are transiently damaged by such a heat shock: their morphology changes and assembly and export of ribosomes is blocked for several hours. This block can be visualized by addition of actinomycin D: under normal conditions pre-ribosomes are chased out of nucleoli, and the latter shrink dramatically, but no such shrinking is seen in heat-shocked cells. High levels of hsp70 can be produced in unstressed COS cells by transfecting them with an appropriate expression plasmid. Such cells show a more rapid recovery of nucleolar morphology following a heat shock than do untransfected cells. Furthermore, heat shock does not prevent shrinkage of their nucleoli in the presence of actinomycin, which indicates that ribosome export also recovers rapidly when pre-synthesized hsp70 is present. I suggest that an important function of hsp70 is to catalyze reassembly of damaged pre-ribosomes and other RNPs after heat shock.  相似文献   

19.
20.
Heat shock protein 110 (HSP110) is a large molecular mass chaperone that is part of the HSP70/DnaK superfamily. In the present study, we examined the accumulation of HSP110 in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis, using a homologous antibody, detected the presence of HSP110 in A6 cells maintained at 22 degrees C. The relative levels of HSP110 accumulation increased after heat shock or sodium arsenite treatment. Immunocytochemical analysis revealed that constitutively expressed HSP110 was localized in the cytoplasm in a diffuse granular pattern with enrichment in the nucleus. In A6 cells heat shocked at 33 degrees C or 35 degrees C for 2 to 4 h, HSP110 accumulation was enhanced and detected primarily in the cytoplasm as thread- or spindle-like structures. In contrast, HSP30 was not detected constitutively and heat shock treatment of A6 cells induced a relatively uniform punctate pattern primarily in the cytoplasm. Also, treatment of A6 cells at 35 degrees C for 6 h resulted in the presence of HSP110 and HSP30 enriched in the nucleus of most cells. Finally, A6 cells treated with 25 microM sodium arsenite produced very dense HSP110 structures primarily in the cytoplasm while HSP30 was enriched in the cytoplasm in a granular pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号