首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Yeast Artificial Chromosome Clone Map of the Drosophila Genome   总被引:3,自引:0,他引:3       下载免费PDF全文
H. Cai  P. Kiefel  J. Yee    I. Duncan 《Genetics》1994,136(4):1385-1401
We describe the mapping of 979 randomly selected large yeast artificial chromosome (YAC) clones of Drosophila DNA by in situ hybridization to polytene chromosomes. Eight hundred and fifty-five of the clones are euchromatic and have primary hybridization sites in the banded portions of the polytene chromosomes, whereas 124 are heterochromatic and label the chromocenter. The average euchromatic clone contains about 211 kb and, at its primary site, labels eight or nine contiguous polytene bands. Thus, the extent as well as chromosomal position of each clone has been determined. By direct band counts, we estimate our clones provide about 76% coverage of the euchromatin of the major autosomes, and 63% coverage of the X. When previously reported YAC mapping data are combined with ours, euchromatic coverage is extended to about 90% for the autosomes and 82% for the X. The distribution of gap sizes in our map and the coverage achieved are in good agreement with expectations based on the assumption of random coverage, indicating that euchromatic clones are essentially randomly distributed. However, certain gaps in coverage, including the entire fourth chromosome euchromatin, may be significant. Heterochromatic sequences are underrepresented among the YAC clones by two to three fold. This may result, at least in part, from underrepresentation of heterochromatic sequences in adult DNA (the source of most of the clones analyzed), or from clone instability.  相似文献   

2.
We present a strategy for assembling a physical map of the genome of Drosophila melanogaster based on yeast artificial chromosomes (YACs). In this paper we report 500 YACs containing inserts of Drosophila DNA averaging 200 kb that have been assigned positions on the physical map by means of in situ hybridization with salivary gland chromosomes. The cloned DNA fragments have randomly sheared ends (DY clones) or ends generated by partial digestion with either NotI (N clones) or EcoRI (E clones). Relative to the euchromatic portion of the genome, the size distribution and genomic positions of the clones reveal no significant bias in the completeness or randomness of genome coverage. The 500 mapped euchromatic clones contain an aggregate of approximately 100 million base pairs of DNA, which is approximately one genome equivalent of Drosophila euchromatin.by W. Hennig  相似文献   

3.
Methods of genome analysis, including the cloning and manipulation of large fragments of DNA, have opened new strategies for uniting molecular evolutionary genetics with chromosome evolution. We have begun the development of a physical map of the genome of Drosophila virilis based on large DNA fragments cloned in bacteriophage P1. A library of 10,080 P1 clones with average insert sizes of 65.8 kb, containing approximately 3.7 copies of the haploid genome of D. virilis, has been constructed and characterized. Approximately 75% of the clones have inserts exceeding 50 kb, and approximately 25% have inserts exceeding 80 kb. A sample of 186 randomly selected clones was mapped by in situ hybridization with the salivary gland chromosomes. A method for identifying D. virilis clones containing homologs of D. melanogaster genes has also been developed using hybridization with specific probes obtained from D. melanogaster by means of the polymerase chain reaction. This method proved successful for nine of ten genes and resulted in the recovery of 14 clones. The hybridization patterns of a sample of P1 clones containing repetitive DNA were also determined. A significant fraction of these clones hybridizes to multiple euchromatic sites but not to the chromocenter, which is a pattern of hybridization that is very rare among clones derived from D. melanogaster. The materials and methods described will make it possible to carry out a direct study of molecular evolution at the level of chromosome structure and organization as well as at the level of individual genes.  相似文献   

4.
I. Felger  D. Sperlich 《Chromosoma》1989,98(5):342-350
To study the middle repetitive fraction of the Drosophila subobscura genome, 26 phage clones containing repetitive sequences were examined by Southern DNA blot analysis and by in situ hybridization to polytene chromosomes. These results led to a classification of the clones according to five different types of hybridization patterns. Two types, each containing seven clones, are characterized by hybridization at 100 to 300 sites dispersed over the euchromatic parts of the chromosomes, and in addition by one prominently labelled chromosome band. One of these two classes also showed strong labelling of the chromocentre. The remaining types of hybridization pattern lacked a prominent band but showed hybridization either to the euchromatic regions or to the chromocentre or both. Chromosome A (=X) was the preferred location of prominently labelled bands and it also showed an excess of labelling by some clones. Some of the cloned dispersed sequences were localized cytologically on chromosomes of larvae from crosses between different strains of D. subobscura and between two closely related species, in order to detect heterozygosity at hybridization sites. Comparisons of the chromosomal distribution of labelling sites showed differences in number and location, indicating the possibility of transposition events.  相似文献   

5.
A library of yeast artificial chromosomes (YACs) was constructed from a human/hamster somatic cell hybrid containing human chromosome 21 (q11-qter). Cells were embedded in agarose, and the DNA was partially digested with EcoRI, released into solution by agarase treatment of the agarose plugs, ligated into pYAC4, and transferred into yeast. Double screening of the yeast transformants with human and hamster genomic DNA allowed the selection of clones hybridizing only with human DNA. The library consists of 321 clones, amounting to 1.5 equivalents (61 Mb) of chromosome 21. The mean YAC size calculated from 178 clones is 190 +/- 100 kb. Screening of the library with eight sequence-tagged sites gave six positives. Among 21 YACs tested by in situ hybridization, 17 mapped to chromosome 21.  相似文献   

6.
Genomic libraries of rice,Oryza sativa L. cv. Nipponbare, in yeast artificial chromosomes were prepared for construction of a rice physical map. High-molecular-weight genomic DNA was extracted from cultured suspension cells embedded in agarose plugs. After size fractionation of theEco RI- andNot I-digested DNA fragments, they were ligated with pYAC4 and pYAC55, respectively, and used to transformSaccharomyces cerevisiae AB1380. A total of 6932 clones were obtained containing on average ca. 350 kb DNA. The YAC library was estimated to contain six haploid genome equivalents. The YACs were examined for their chimerism by mapping both ends on an RFLP linkage map. Most YACs withEco RI fragments below 400 kb were intact colinear clones. About 40% of clones were chimeric. Genetic mapping of end clones from large size YACs revealed that the physical distance corresponding to 1 cM genetic distance varies from 120 to 1000 kb, depending on the chromosome region. To select and order YAC clones for making contig maps, high-density colony hybridization using ECL was applied. With several probes, at least one and at most ten YAC clones could be selected in this library. The library size and clone insert size indicate that this YAC library is suitable for physical map construction and map-based cloning.  相似文献   

7.
Construction of tomato genomic DNA libraries in a binary-BAC (BIBAC) vector   总被引:12,自引:0,他引:12  
This is the first report of large insert genomic DNA libraries constructed in a binary-BAC (BIBAC) vector. Genomic DNA libraries containing approximately 4.6 haploid nuclear genomic equivalents were constructed for Lycopersicon esculentum (cv. Mogeor) and Lycopersicon pennellii (LA716) in the BIBAC2 vector. The L. esculentum library has an average insert size of 125 kb and is comprised of 42 272 individual colonies stored as frozen cultures in a 384-well format (108 plates). The L. pennellii library has an average insert size of 90 kb and is comprised of 53 760 individual clones (140 384-well plates). In each of the libraries, it is estimated that 90% of the colonies contain genomic DNA inserts. The composition of the L. esculentum and L. pennellii libraries was determined by analyzing a series of randomly selected clones. The L. esculentum library was surveyed for clones containing chloroplast DNA (1.4%), mitochondrial DNA (0.012%) and repetitive DNA motifs. BIBAC clones that may contain a gene of interest can be identified from these libraries by colony hybridization with homologous or heterologous probes or by PCR pooling techniques. Once identified, BIBAC genomic DNA library clones are immediately suitable for Agrobacterium tumefaciens-mediated plant transformation.  相似文献   

8.
Summary Chromosomal sites which have DNA homology to the 1 kb (kilobase pair) BamHI restrictable fragment of the 5 kb type I insertion present in many ribosomal genes in Drosophila melanogaster, were identified by using in situ hybridization and autoradiography. XX and XY complements of polytene chromosomes showed the nucleolus and chromocenter to be heavily labeled. Of the light label over euchromatic regions, the 102C band of chromosome 4 labeled particularly intensely. In mitotic XX and XY complements, the NORs (nucleolus organizer regions) of both sex chromosomes labeled as did the centromeric heterochromatin of autosomes. Label also appeared less frequently over telomeric and euchromatic regions.  相似文献   

9.
A physical map of the genome of Drosophila melanogaster has been created using 965 yeast artificial chromosome (YAC) clones assigned to locations in the cytogenetic map by in situ hybridization with the polytene salivary gland chromosomes. Clones with insert sizes averaging about 200 kb, totaling 1.7 genome equivalents, have been mapped. More than 80% of the euchromatic genome is included in the mapped clones, and 75% of the euchromatic genome is included in 161 cytological contigs ranging in size up to 2.5 Mb (average size 510 kb). On the other hand, YAC coverage of the one-third of the genome constituting the heterochromatin is incomplete, and clones containing long tracts of highly repetitive simple satellite DNA sequences have not been recovered.  相似文献   

10.
Two and five 1R chromosomes were microdissected from the metaphase spreads of rye ( Secale cereale L. ) root-rip cells with the aids of glass needles. The dissected chromosomes were amplified in vitro by the Sau3A linker adaptor mediated PCR technique, by which 0.3 to 2.5 kb smear DNA fragments were obtained. After hybridized with DIG labeled probes, it was confirmed that the PCR products of the microdissected chromosomes were homologous with the rye genomic DNA, and derived from the 1R chromosome as well. Then, the second round PCR products from five chromosomes of 1R were microcloned to construct the plasmid library, including 220 000 clones. 172 randomly selected clones were evaluated ranged in size from 300 to 1 800 bp. Furthermore, the genomic dot hybridization results indicated that the library contained nearly 42% medium/high repetitive sequences and 58% low/single copy sequences, and its redundancy was very low. In this research, many aspects of the 1R chromosome microclone library exceeded or approached those of the previous reports in the literatures. Those are potential for construction of a high density genetic map of chromosome IR, from which some important genes can be tagged and isolated.  相似文献   

11.
A number of DNA clones containing the amplified DNA sequences were isolated from the genomic library of multidrug-resistant (MDR) Djungarian hamster cells using the DNAC0t 10-250 hybridization probe. Five independent nonoverlapping clones were obtained that covered more than 100 kb of the amplified genomic region. These clones were used as hybridization probes in blot-hybridization with DNA from 7 independently derived MDR Djungarian hamster cell lines selected for the resistance to colchicine or actinomycin D. Some clones contained the DNA sequences amplified in all of the cell lines tested while the others contained the cell line specific amplified sequences. Hybridization in situ was used to localize the amplified DNA in metaphase chromosomes of a MDR cell line that contained about 140 copies of these sequences. The approximate size of an amplicon calculated on the basis of the obtained data is about 1-2 X 10(3) kb.  相似文献   

12.
FISH physical mapping with barley BAC clones   总被引:7,自引:0,他引:7  
Fluorescence in situ hybridization (FISH) is a useful technique for physical mapping of genes, markers, and other single- or low-copy sequences. Since clones containing less than 10 kb of single-copy DNA do not reliably produce detectable signals with current FISH techniques in plants, a bacterial artificial chromosome (BAC) partial library of barley was constructed and a FISH protocol for detecting unique sequences in barley BAC clones was developed. The library has a 95 kb average barley insert, representing about 20% of a barley genome. Two BAC clones containing hordein gene sequences were identified and partially characterized. FISH using these two BAC clones as probes showed specific hybridization signals near the end of the short arm of one pair of chromosomes. Restriction digests of these two BAC clones were compared with restriction patterns of genomic DNA; all fragments contained in the BAC clones corresponded to bands present in the genomic DNA, and the two BAC clones were not identical. The barley inserts contained in these two BAC clones were faithful copies of the genomic DNA. FISH with four BAC clones with inserts varying from 20 to 150 kb, showed distinct signals on paired chromatids. Physical mapping of single- or low-copy sequences in BAC clones by FISH will help to correlate the genetic and physical maps. FISH with BAC clones also provide an additional approach for saturating regions of interest with markers and for constructing contigs spanning those regions.  相似文献   

13.
A physical map of the euchromatic X chromosome of Drosophila melanogaster has been constructed by assembling contiguous arrays of cosmids that were selected by screening a library with DNA isolated from microamplified chromosomal divisions. This map, consisting of 893 cosmids, covers ~64% of the euchromatic part of the chromosome. In addition, 568 sequence tagged sites (STS), in aggregate representing 120 kb of sequenced DNA, were derived from selected cosmids. Most of these STSs, spaced at an average distance of ~35 kb along the euchromatic region of the chromosome, represent DNA tags that can be used as entry points to the fruitfly genome. Furthermore, 42 genes have been placed on the physical map, either through the hybridization of specific probes to the cosmids or through the fact that they were represented among the STSs. These provide a link between the physical and the genetic maps of D. melanogaster. Nine novel genes have been tentatively identified in Drosophila on the basis of matches between STS sequences and sequences from other species.  相似文献   

14.
Five G/C-containing oligonucleotides that include the recognition sequences of rare-cutting restriction enzymes have been used to isolate almost 100 different genomic segments from chromosome 7 that contain recognition sites for those enzymes. Hybridization and washing at 27 degrees C allow the use of 8-bp radiolabeled oligonucleotides to detect specific G/C-containing sequences in less than 1 ng of cloned DNA. This method was used to isolate 9 positive clones from 138 previously isolated single-copy probes from a flow-sorted chromosome 7 library. The specificity of the method was confirmed by showing that clones that gave positive hybridization signals also contained the corresponding restriction site. The oligonucleotides were also used to analyze approximately 12,000 kb of genomic sequence from a newly constructed chromosome 7 cosmid library that yielded 88 positive cosmids from 350 analyzed. The average distances between binding sites ranged from 200 to 690 kb and was independent of the number of CpG residues present in the oligonucleotide. Confirmation that clones containing restriction sites for these rare-cutting enzymes are located near genes was obtained by hybridization to RNA and cross-species DNA blots.  相似文献   

15.
The oomycete plant pathogen Phytophthora nicotianae causes diseases on a wide range of plant species. To facilitate isolation and functional characterization of pathogenicity genes, we have constructed a large-insert bacterial artificial chromosome (BAC) library using nuclear DNA from P. nicotianae H1111. The library contains 10,752 clones with an average insert size of 90 kb and is free of mitochondrial DNA. The quality of the library was verified by hybridization with 37 genes, all of which resulted in the identification of multiple positive clones. The library is estimated to be 10.6 haploid genome equivalents based on hybridization of 23 single-copy genes and the genome size of P. nicotianae was estimated to be 95.5 Mb. Hybridization with a nuclear repetitive DNA probe revealed that 4.4% of clones in the library contained 28S rDNA. Hybridization of total genomic DNA to the library indicated that at least 39% of the BAC library contains repetitive DNA sequences. A BAC pooling strategy was developed for efficient library screening. The library was used to identify and characterize BAC clones containing an Hsp70 gene family whose four members were identified to be clustered within approximately 18 kb in the P. nicotianae genome based on the physical mapping of eight BACs spanning a genomic region of approximately 186 kb. The BAC library created provides an invaluable resource for the isolation of P. nicotianae genes and for comparative genomics studies.  相似文献   

16.
Chromosome 1R was microdissected and collected from mitotic metaphase spreads of rye (Secale cereale L.) by using glass needles. The isolated chromosomes were amplified in vitro by Sau3A linker adaptor-mediated polymerase chain reaction (PCR). After amplification, the presence of rye-specific DNA was verified by Southern hybridization. The second-round PCR products from five 1R chromosomes were cloned into a plasmid vector to create a chromosome-specific library, which produced approximately 220,000 recombinant clones. Characterization of the microclone library showed that the 172 clones evaluated ranged in size from 300–1800 bp with an average size of 950 bp, of which approximately 42% were medium/high copy and 58% were low/unique copy clones. Chromosome in situ hybridization confirmed that the PCR products from microdissected chromosomes originated from chromosome 1R, indicating that many chromosome 1R-specific sequences were present in the library. Received: 5 December 1998; in revised form: 15 April 1999 / Accepted: 29 April 1999  相似文献   

17.
Hong  Guofan 《Plant molecular biology》1997,35(1-2):129-133
A rapid and accurate strategy for rice contig map construction was described. Rice BAC library with average insert of 120 kb in length was used as building materials in contig mapping. The contigs of varied lengths ranging from 500 kb to several megabases with sufficient redundancy to ensure the accuracy of the joining between individual BACs were formed by fingerprinting. The contigs were then assigned to and ordered along the chromosomes by various molecular markers through their hybridization against the whole rice genomic library. The accuracy of clone overlaps in contig was further confirmed by the existence in contigs of well fit stacks of marker-lodged clones. He contigs thus obtained covered nearly the rice genome.  相似文献   

18.
Summary The major families of repeated DNA sequences in the genome of tomato (Lycopersicon esculentum) were isolated from a sheared DNA library. One thousand clones, representing one million base pairs, or 0.15% of the genome, were surveyed for repeated DNA sequences by hybridization to total nuclear DNA. Four major repeat classes were identified and characterized with respect to copy number, chromosomal localization by in situ hybridization, and evolution in the family Solanaceae. The most highly repeated sequence, with approximately 77000 copies, consists of a 162 bp tandemly repeated satellite DNA. This repeat is clustered at or near the telomeres of most chromosomes and also at the centromeres and interstitial sites of a few chromosomes. Another family of tandemly repeated sequences consists of the genes coding for the 45 S ribosomal RNA. The 9.1 kb repeating unit in L. esculentum was estimated to be present in approximately 2300 copies. The single locus, previously mapped using restriction fragment length polymorphisms, was shown by in situ hybridization as a very intense signal at the end of chromosome 2. The third family of repeated sequences was interspersed throughout nearly all chromosomes with an average of 133 kb between elements. The total copy number in the genome is approximately 4200. The fourth class consists of another interspersed repeat showing clustering at or near the centromeres in several chromosomes. This repeat had a copy number of approximately 2100. Sequences homologous to the 45 S ribosomal DNA showed cross-hybridization to DNA from all solanaceous species examined including potato, Datura, Petunia, tobacco and pepper. In contrast, with the exception of one class of interspersed repeats which is present in potato, all other repetitive sequences appear to be limited to the crossing-range of tomato. These results, along with those from a companion paper (Zamir and Tanksley 1988), indicate that tomato possesses few highly repetitive DNA sequences and those that do exist are evolving at a rate higher than most other genomic sequences.  相似文献   

19.
A yeast artificial chromosome (YAC) library was constructed using high-molecular-weight DNA isolated from pepper (Capsicum annuum L.) leaf protoplasts. Insert DNA was prepared by partial digestion using EcoRI and subjected to electrophoretic fractionation before in-gel ligation to the pJS97/98 YAC vector. Prior to transformation of yeast spheroplasts, ligation products were subjected to a second electrophoretic size selection. The library consists of about 19 000 clones with an average insert size of 500 kb, thus representing approximately three haploid genome equivalents. Three PCR-based markers tightly linked to the pepper Bs2 resistance gene were used to assess the utility of this library for positional cloning. Three YAC clones containing pepper genomic DNA from the Bs2 resistance locus were isolated from the library. The clones ranged in size from 270 kb to 1.2 Mb and should prove useful for the cloning of the Bs2 gene. Received: 15 January 1999 / Accepted: 11 May 1999  相似文献   

20.
Two diploid (2n=18) sugar beet (Beta vulgaris L.) lines which carry monogenic traits for nematode (Heterodera schachtii Schm.) resistance located on translocations from the wild beet species Beta procumbens were investigated. Short interspersed repetitive DNA elements exclusively hybridizing with wild beet DNA were found to be dispersed around the translocations. The banding pattern as revealed by genomic Southern hybridization was highly conserved among translocation lines of different origins indicating that the translocations are not affected by recombination events with sugar beet chromosomes. Physical mapping revealed that the entire translocation is represented by a single Sal I fragment 300 kb in size. A representative YAC (yeast artifical chromosome) library consisting of approximately 13,000 recombinant clones (2.2 genome equivalents) with insert sizes ranging between 50 and 450 kb and an average of 130kb has been constructed from the resistant line A906001. Three recombinant YACs were isolated from this library using the wild beet-specific repetitive elements as probes for screening. Colinearity between YAC inserts and donor DNA was confirmed by DNA fingerprinting utilizing these repetitive probes. The YACs were arranged into two contigs with a total size of 215 kb; these represent a minimum of 72% of the translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号