共查询到20条相似文献,搜索用时 0 毫秒
1.
membranes can transfer either N-acetylmuramyl-pentapeptide phosphate or N-acetylglucosaminyl phosphate from UMP directly onto undecaprenyl phosphate. Tunicamycin blocks only the latter transfer and inhibits peptidoglycan synthesis by toluenized cells of utilizing added nucleotide sugar precursors or cell wall synthesis by intact cells of . Tunicamycin prevents formation of the cell wall disaccharide lipid intermediate by blocking transfer of N-acetylglucosamine onto undecaprenyl muramyl pentapeptidyl pyrophosphate. 相似文献
2.
3.
Two cytochrome proteins were isolated from succinate-cytochrome reductase and the cytochrome complex. Their molecular weights were determined to be 37,000 and 17,000 daltons by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Spectral properties and amino acid composition of these two proteins are reported in the paper. 相似文献
4.
5.
6.
7.
8.
D F Wilson M Erecińska J S Leigh M Koppelman 《Archives of biochemistry and biophysics》1972,151(1):112-121
The cytochromes b and bT of pigeon heart mitochondria have half-reduction potentials (Em's) of +30 mV and −30 mV at pH 7.2. The midpoint potentials of these cytochromes become more negative by 30–60 mV per pH unit when the pH is made more alkaline. Detergents may be used to prepare a succinate-cytochrome c reductase free of cytochrome oxidase in which the activation of electron transport induced by oxidation of cytochrome c1 causes the half-reduction potential of cytochrome bT to become at least 175 mV more positive than in the absence of electron transport. This change is interpreted as indicating that the primary energy conservation reaction at site 2 remains fully functional in the purified reductase. Preliminary electron paramagnetic resonance spectra of the succinate-cytochrome c reductase as measured at near liquid helium temperatures are presented. 相似文献
9.
Succinate-cytochrome c reductase (SCR) from mouse liver was inhibited strongly and reversibly by an iron (II) macrocyclic complex 3. The inhibition was observed for the enzyme toward the reduction of both 2,6-dichlorophenol indophenol (DCIP) and cytochrome c (cyt c). The inhibition was a mixed type and noncompetitive with respect to the reduction of DCIP and cyt c, respectively. Values of the inhibition constant ranged from 6.6 to 8.3 microM. The IC50 for the complex 3 was found to be 16.6 +/- 0.8 and 12.1 +/- 0.5 microM for the enzyme toward DCIP and cyt c, respectively. The reduced form of complex 3 also exhibited enzyme inhibition but to a less extent. Complex 3, at a lower level, equal to 25% of its LD50 showed about 50% inhibition of the enzyme through in vivo dose-dependent effect. These findings suggested that the structure of the equatorial benzoquinoid macrocyclic ligand of the Fe(II) complex is involved in the enzyme inhibition. 相似文献
10.
Antimycin-insensitive succinate-cytochrome c reductase activity has been detected in pure, reconstitutively active succinate dehydrogenase. The enzyme catalyzes electron transfer from succinate to cytochrome c at a rate of 0.7 mumole succinate oxidized per min per mg protein, in the presence of 100 microM cytochrome c. This activity, which is about 2% of that of reconstitutive (the ability of succinate dehydrogenase to reconstitute with coenzyme ubiquinone-binding proteins (QPs) to form succinate-ubiquinone reductase) or succinate-phenazine methosulfate activity in the preparation, differs from antimycin-insensitive succinate-cytochrome c reductase activity detected in submitochondrial particles or isolated succinate-cytochrome c reductase. The Km for cytochrome c for the former is too high to be measured. The Km for the latter is about 4.4 microM, similar to that of antimycin-sensitive succinate-cytochrome c activity in isolated succinate-cytochrome c reductase, suggesting that antimycin-insensitive succinate-cytochrome c activity of succinate-cytochrome c reductase probably results from incomplete inhibition by antimycin. Like reconstitutive activity of succinate dehydrogenase, the antimycin-insensitive succinate-cytochrome c activity of succinate dehydrogenase is sensitive to oxygen; the half-life is about 20 min at 0 degrees C at a protein concentration of 23 mg/ml. In the presence of QPs, the antimycin-insensitive succinate-cytochrome c activity of succinate dehydrogenase disappears and at the same time a thenoyltrifluoroacetone-sensitive succinate-ubiquinone reductase activity appears. This suggests that antimycin-insensitive succinate-cytochrome c reductase activity of succinate dehydrogenase appears when succinate dehydrogenase is detached from the membrane or from QPs. Reconstitutively active succinate dehydrogenase oxidizes succinate using succinylated cytochrome c as electron acceptor, suggesting that a low potential intermediate (radical) may be involved. This suggestion is confirmed by the detection of an unknown radical by spin trapping techniques. When a spin trap, alpha-phenyl-N-tert-butylnitrone (PBN), is added to a succinate oxidizing system containing reconstitutively active succinate dehydrogenase, a PBN spin adduct is generated. Although this PBN spin adduct is identical to that generated by xanthine oxidase, indicating that a perhydroxy radical might be involved, the insensitivity of this antimycin-insensitive succinate-cytochrome c reductase activity to superoxide dismutase and oxygen questions the nature of this observed radical. 相似文献
11.
Y Ilan 《Biochemical and biophysical research communications》1978,85(4):1261-1267
Internal electron transfer within succinate-cytochrome C reductase from pigeon breast muscle mitochondria was followed by the pulse radiolytic technique. The electron equivalent is transferred from an unknown donor to b type cytochrome(s) in a first order process with a rate constant of: 660±150 s?1. This process might be the rate determining step of electron transfer in mitochondria, since it is similar in rate to the turn over number of the mitochondrial respiratory chain. 相似文献
12.
The reduction of cytochrome c by succinate-cytochrome c reductase was studied at very low cytochrome c concentrations where the reaction between cytochrome c1 and cytochrome c was rate limiting. The rate constant for the reaction was found to be independent of ionic strength up to 0.1 M chloride, and to decrease rapidly at higher ionic strength, suggesting that the interaction between cytochrome c1 and cytochrome c was primarily electrostatic. The reaction rates of cytochrome c derivatives modified at single lysine residues to form trifluoroacetylated or trifluoromethylphenylcarbamylated cytochromes c were studied to determine the role of individual lysines in the reaction. None of the modifications affected the reaction at low ionic strength, but at higher ionic strength the reaction rate was substantially decreased by modification of those lysines surrounding the heme crevice, lysine-8, -13, -27, -72, and -79. Modification of lysine-22, -25, -55, -99, and -100 had no effect on the rate. These results indicate that the binding site on cytochrome c for cytochrome c1 overlaps considerably with that for cytochrome oxidase, suggesting that cytochrome c might undergo some type of rotational diffusion during the electron-transport process. 相似文献
13.
The triphasic course previously reported for the reduction of cytochrome b in the succinate-cytochrome c reductase by either succinate or duroquinol has been shown to be dependent on the redox state of the enzyme preparation. Prior reduction with increasing concentrations of ascorbate leads to partial reduction of cytochrome c1, and a gradual decrease in the magnitude of the oxidation phase of cytochrome b. At an ascorbate concentration sufficient to reduce cytochrome c1 almost completely, the reduction of cytochrome b by either succinate or duroquinol becomes monophasic. Owing to the presence of a trace amount of cytochrome oxidase in the reductase preparation employed, the addition of cytochrome c makes electron flow from substrate to oxygen possible. Under such circumstances, the addition of a limited amount of either succinate or duroquinol leads to a multiphasic reduction and oxidation of cytochrome b. After the initial three phases as described previously, cytochrome b becomes oxidized before cytochrome c1 when the limited amount of added substrate is being used up. However, at the end of the reaction when cytochrome c1 is being rapidly oxidized, cytochrome b becomes again reduced. The above observations support a cyclic scheme of electron flow in which the reduction of cytochrome b proceeds by two different routes and its oxidation controlled by the redox state of a component of the respiratory chain. 相似文献
14.
Interactions of cytochrome c with mitochondrial membranes. Binding to succinate-cytochrome c reductase 总被引:3,自引:0,他引:3
Methyl-4-azidobenzoimidate was reacted with horse heart cytochrome c to give a photoaffinity-labeled derivative of this heme protein. The modified cytochrome c bound to cytochrome c-depleted mitochondria with the same Kd as native cytochrome c and restored oxygen uptake to the same extent. Irradiation of cytochrome c-depleted mitochondrial membranes with 3- to 4-fold excess of photoaffinity-labeled cytochrome c over cytochrome c oxidase resulted in covalent binding of the derivative to the membranes. Fractionation of the irradiated mitochondria in the presence of detergents and salts followed by chromatography on an agarose Bio-Gel-A-5m showed that the labeled cytochrome c was bound covalently to succinate-cytochrome c reductase. The covalently bound cytochrome c was active in mediating electron transfer between its reductase and oxidase. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the succinate-cytochrome c reductase containing photoaffinity-labeled 125I-cytochrome c showed that the reductase contained a protein binding site for cytochrome c. It is suggested that cytochrome c1 is the most likely site for the cytochrome c binding in mitochondria in situ. 相似文献
15.
In the succinate-cytochrome c reductase, the reduction of cytochrome b has been found to be triphasic: an initial rapid partial reduction was followed first by a rapid oxidation and then finally by a slow reduction. The initial reduction of cytochrome b was faster than that of cytochrome c1 and the final slow reduction of cytochrome b began when cytochrome c1 reduction was approaching completion. In presence of the inhibitors antimycin A or HQNO the reduction of cytochrome b became monophasic. Hysteresis or a kinetic cooperative effect of a factor controlling cytochrome b oxidation has been suggested as a possible explanation for the triphasic reduction of cytochrome b. 相似文献
16.
17.
A nonproteinaceous, antimycin A insensitive ubiquinol-cytochrome c reductase activity is detected in and purified from chromatophores of Rhodopseudomonas sphaeroides, R-26. This activity is about 5 times the antimycin A sensitive reductase activity in chromatophores and the two are not interconvertable. The purification involved chloroform:methanol (2:1), and hexane extractions and florisil column chromatography. The purified preparation contains some bacteriochlorophyll-like pigments and phospholipids, and is stable in organic solvent. It catalyzes the oxidation of ubiquinol by cytochrome c with substrate specificity and pH optimum. 相似文献
18.
19.
Balbaa M Al-Meer J Al-Khal A 《Journal of enzyme inhibition and medicinal chemistry》2004,19(4):343-347
Succinate-cytochrome c reductase was inhibited in vitro and in vivo by phenobarbitone, aminophylline and neostigmine using both 2,6-dichlorophenolindophenol (DCIP) and cytochrome c (cyt c) as substrates. The enzyme was also activated by gallamine towards both substrates. In vitro, phenobarbitone and aminophylline inhibited the enzyme with respect to the reduction of DCIP and cyt c in a non-competitive manner with Ki values of 1.5 x 10(-5) and 5.7 x 10(-5)M, respectively. Moreover, neostigmine competitively inhibited the enzyme towards both substrates with Ki values of 1.36 x 10(-5) and 1.50 x 10(-5)M, respectively. 相似文献
20.