首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bioconversion of L-phenylalanine (L-Phe) to 2-phenylethanol (PEA) by the yeast Saccharomyces cerevisiae is limited by the toxicity of the product. PEA extraction by a separate organic phase in the fermenter is the ideal in situ product recovery (ISPR) technique to enhance productivity. Oleic acid was chosen as organic phase for two-phase fed-batch cultures, although it interfered to some extent with yeast viability. There was a synergistic inhibitory impact toward S. cerevisiae in the presence of PEA, and therefore a maximal PEA concentration in the aqueous phase of only 2.1 g/L was achieved, compared to 3.8 g/L for a normal fed-batch culture. However, the overall PEA concentration in the fermenter was increased to 12.6 g/L, because the PEA concentration in the oleic phase attained a value of 24 g/L. Thus, an average volumetric PEA production rate of 0.26 g L(-1) h(-1) and a maximal volumetric PEA production rate of 0.47 g L(-1) h(-1) were achieved in the two-phase fed-batch culture. As ethanol inhibition had to be avoided, the production rates were limited by the intrinsic oxidative capacity of S. cerevisiae. In addition, the high viscosity of the two-phase system lowered the k(l)a, and therefore also the productivity. Thus, if a specific ISPR technique is planned, it consequently has to be remembered that the productivity of this bioconversion process is also quickly limited by the k(l)a of the fermenter at high cell densities.  相似文献   

2.
An in situ product adsorption technique was used to enhance the biotransformation of l-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae BD. As a suitable adsorbent, the non-polar macroporous resin D101, selected from several resins tested, showed high adsorption capacity for 2-phenylethanol but not l-phenylalanine. Product inhibition was effectively alleviated by the addition of macroporous resin D101 to the biotransformation medium. When 2 g of hydrated resin D101 was added to 30 mL of the biotransformation medium, the total 2-phenylethanol concentration achieved was 6.17 g/L, of which 3.15 g/L remained in the aqueous phase and 3.02 g/L was adsorbed onto the resin. The molar yield of 2-phenylethanol reached 0.70 after 24 h cultivation. Addition of the macroporous resin greatly increased the volumetric productivity of 2-phenylethanol, and made the downstream processing more feasible and easier to perform in an industrial application.  相似文献   

3.
本文旨在开发一种微生物转化工艺,将连翘苷转化为活性更高的连翘脂素.结果从土壤中分离筛选到一株桔青霉(Penicillium citrinum)LB菌株,转化连翘苷为连翘脂素的专一性较高.经培养基主要组成和转化条件优化,得出较佳的产酶培养组成为:蔗糖7 g/L,(NH4)2 SO45 g/L,NaCl 5 g/L,KH2 PO45 g/L,MgSO41 g/L,MnSO40.5 g/L,pH 6.0.LB菌株经产酶培养后,过滤收集菌体悬浮于2倍发酵液体积的磷酸盐缓冲液中,加入2 g/L的底物连翘苷,于30℃、200 r/min转化20 h,连翘脂素的转化得率可达94.1%.利用微生物将连翘苷转化为连翘脂素,具有方法简单、转化得率高、产物容易纯化和副产物少等优点,有潜在的工业化应用价值.  相似文献   

4.
The microwell-scale approach is widely used for screening purposes and one-pot biotransformations, but it has seldom been applied to whole cell multistep biotransformations and to organic solvent screening/non-conventional medium bioconversion processes, which is an issue of major relevance when bioconversion processes are addressed. The present study aims to fill in this gap by using 24-well microtitre plates as platforms for the screening of suitable organic solvents as substrate carriers for effective biocatalysis. The side-chain cleavage of sitosterol with resting cells of Mycobacterium sp. NRRL B-3805 was used as model system. Series of miscible and immiscible alcohols with primary, secondary and tertiary structure were tested as carriers of the hydrophobic substrate, thus ruling out the effect of functionality on biocatalytic activity.Results suggest that microtitre plates may be used for solvent selection in complex bioconversion systems. The highest bioconversion yields were observed when methanol and ethanol were used as substrate carriers. An empirical correlation could be established between overall catalytic activity and physicochemical properties of the solvents.  相似文献   

5.
旨在研究化学改性的甘蔗渣作为固定化载体对丙酮丁醇梭菌Clostridium acetobutylicum XY16发酵制备生物丁醇的影响。首先利用不同浓度的聚乙烯亚胺(PEI)和1 g/L戊二醛(GA)对甘蔗渣表面进行化学改性,增强甘蔗渣对Clostridium acetobutylicum XY16的附载能力。经4 g/L聚乙烯亚胺和1 g/L戊二醛改性的甘蔗渣(添加量10 g/L)应用到固定化批次发酵中,发酵36 h后丁醇和总溶剂浓度最高,分别达到了12.24 g/L和21.67 g/L,同时溶剂的生产速率达到0.60 g/(L·h),生产速率比游离细胞和未改性甘蔗渣固定化细胞分批发酵分别提高了130.8%和66.7%。在此基础上对改性甘蔗渣固定化的细胞进行6次重复批次发酵,丁醇和总溶剂的产量稳定,溶剂生产速率逐渐提高至0.83 g/(L·h),同时转化率也提高至0.42 g/g。  相似文献   

6.
The selective cleavage of the β-sitosterol side-chain by free Mycobacterium sp. NRRL B-3805 cells was used as a model system for the study of solvent effects in a whole-cell bioconversion in two phase aqueous–organic media. This multi-step degradation pathway leads to the production of 4-androstene-4,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) as a minor product. In an attempt to correlate the substrate and cell partition effects and solvent hydrophobicity (log P) with biocatalytic activity, 15 carboxylic acid esters with log P values between 3 and 10 were screened. The results indicated that the toxicity of the tested solvents in this system could not be correlated to their log P, but seemed to depend on their ability to accumulate in the cells, as these showed a strong affinity towards the organic phase. Different solvent/aqueous ratios and hydrodynamic conditions were further tested in the solvent systems (phthalates) showing significant biodegradation activity. The bioconversion rate was generally not much affected by the stirring speed in the employed range (150–300 rpm) but was strongly influenced by the aqueous/organic phase ratio. Results suggest that the bioconversion takes place at the interphase, its rate being possibly limited by mass transport inside the organic phase.  相似文献   

7.
In this study, we utilized a unique strategy for fed-batch fermentation using ethanol-tolerant Saccharomyces cerevisiae to achieve a high-level of ethanol production that could be practically applied on an industrial scale. During this study, the aeration rate was controlled at 0.0, 0.13, 0.33, and 0.8 vvm to determine the optimal aeration conditions for the production of ethanol. Additionally, non-sterile glucose powder was fed during fed-batch ethanol fermentation and corn-steep liquor (CSL) in the medium was used as an organic N-source. When aeration was conducted, the ethanol production and productivity were superior to that when aeration was not conducted. Specifically, the maximum ethanol production reached approximately 160 g/L, when the fermentor was aerated at 0.13 vvm. These findings indicate that the use of a much less expensive C-source may enable the fermentation process to be directed towards the improvement of overall ethanol production and productivity in fermentors that are aerated at 0.13 vvm. Furthermore, if a repeated fed-batch process in which the withdrawal and fill is conducted prior to 36 h can be employed, aeration at a rate of 0.33 and/or 0.8 vvm may improve the overall ethanol productivity  相似文献   

8.
循环利用重组大肠杆菌细胞转化合成丁二酸   总被引:1,自引:0,他引:1  
研究了回收丁二酸发酵液中的大肠杆菌进行细胞转化的可行性,以转化率和生产效率为指标,考察了不同菌体浓度、底物浓度、pH调节剂对细胞转化的影响。发酵结果表明大肠杆菌可以在仅含有葡萄糖和pH调节剂的水环境中转化生产丁二酸,并确定了最佳的转化条件为:细胞浓度(OD600)50,底物浓度40g/L,缓冲盐为MgCO3。基于优化好的条件,在7L发酵罐中进行重复批次转化,第1次转化的转化率和生产效率分别达到91%和3.22g/(L·h),第2次转化的生产效率和转化率达到了86%和2.04g/(L·h),第3次转化的转化率和生产效率分别达到了83%和1.82g/(L·h)。  相似文献   

9.

Background

Clostridium acetobutylicum can propagate on fibrous matrices and form biofilms that have improved butanol tolerance and a high fermentation rate and can be repeatedly used. Previously, a novel macroporous resin, KA-I, was synthesized in our laboratory and was demonstrated to be a good adsorbent with high selectivity and capacity for butanol recovery from a model solution. Based on these results, we aimed to develop a process integrating a biofilm reactor with simultaneous product recovery using the KA-I resin to maximize the production efficiency of biobutanol.

Results

KA-I showed great affinity for butanol and butyrate and could selectively enhance acetoin production at the expense of acetone during the fermentation. The biofilm reactor exhibited high productivity with considerably low broth turbidity during repeated batch fermentations. By maintaining the butanol level above 6.5 g/L in the biofilm reactor, butyrate adsorption by the KA-I resin was effectively reduced. Co-adsorption of acetone by the resin improved the fermentation performance. By redox modulation with methyl viologen (MV), the butanol-acetone ratio and the total product yield increased. An equivalent solvent titer of 96.5 to 130.7 g/L was achieved with a productivity of 1.0 to 1.5 g?·?L-1?·?h-1. The solvent concentration and productivity increased by 4 to 6-fold and 3 to 5-fold, respectively, compared to traditional batch fermentation using planktonic culture.

Conclusions

Compared to the conventional process, the integrated process dramatically improved the productivity and reduced the energy consumption as well as water usage in biobutanol production. While genetic engineering focuses on strain improvement to enhance butanol production, process development can fully exploit the productivity of a strain and maximize the production efficiency.  相似文献   

10.
Elimination of ethanol inhibition by perstraction   总被引:2,自引:0,他引:2  
Perstraction (membrane-aided solvent extraction) was utilized for elimination of ethanol inhibition in continuous ethanol fermentation using high sugar concentrate. Hollow fibers for an artificial kidney were used as a permeable membrane, and their capacity to extract ethanol was examined by using several organic solvents. When tri-n-butylphosphate was used as an extractant, a 500 g/L feed glucose medium was successfully fermented by immobilized yeast cells. During this continuous fermentation a high ehtanol productivity of 48 g/h-L-gel was held, and the solvent requirement per consumed glucose was 6 L-solvent/kg-glucose.  相似文献   

11.
在蓝色梨头霉和新月弯孢霉协同转化制备氢化可的松(HC)过程中,常规的底物热溶液体系由17α羟基孕甾4-烯-3,20-二酮-21-醋酸酯(RSA)和乙醇组成,其中m(RSA)∶V(乙醇)=1∶25;改进后的底物溶液体系由Tween-80、丙三醇、RSA和磷酸盐缓冲溶液(PBS)组成,其中V(Tween-80)∶V(丙三醇)∶m(RSA)∶V(PBS)=1∶3∶1∶25。RSA质量浓度从2g/L起,累加到5g/L,RSA全部被转化,且产物氢化可的松(HC)产率与常规低浓度投料相当;在RSA质量浓度3g/L时添加底物,协同菌丝体能重复利用达3次,HC产率稳定在70%左右;经3批次实验室摇瓶放大制备实验,产物HC平均收率为52%,重现性较好,工艺操作稳定。Tween-80/丙三醇/RSA/PBS底物体系较常规RSA/乙醇构成的底物添加体系,可显著提高HC生产收率,有工业应用价值。  相似文献   

12.
Microorganisms can be used as catalysts to produce organic compounds in a highly chemo-, regio- and enantioselective manner, and whole cells do not require the costly addition of cofactors for redox reactions. However, bioconversions are slow compared to alternative chemical reactions, and the biocatalyst works at its best in an aqueous medium, while the transformations of interest frequently involve compounds with a low-aqueous solubility and that are toxic to microorganisms. This results in low-volumetric productivity in classical bioreactors. The Continuous Closed-Gas-Loop Bioreactor is described here-a reactor system with high productivity, but without the problems associated with two-phase systems, such as an emulsified product stream and phase toxicity. Its working principle is to recirculate a gas phase through a bioreaction compartment and a saturator/absorber module where the product accumulates as a clear organic solution. A wide range of bioconversions should be possible in this set-up, and proof of concept was established for the epoxidation of 1,7-octadiene to (R)-1,2-epoxyoct-7-ene by a native strain of Pseudomonas oleovorans. This reaction represents a group of terminal alkene epoxidations where the bioconversion substrate does not support growth of the microorganism. Practical results at a 5l-scale are presented for this bioconversion for both batch and continuous operation with respect to the aqueous phase, showing continuous stable epoxidation at productivities >14 micromol min(-1) L(-1) (U L(-1)). The results confirm that the metabolism does not allow a simple optimization strategy, because growth and biotransformation substrates compete for the same enzyme sites, and conversely growth on a substrate using this very enzyme system is necessary for longterm bioconversion. Integrated removal of the CO(2) formed via the liquid overflow was estimated from theory and verified in experimental work.  相似文献   

13.
In this study, the computer-aided process/solvent design is introduced to find an optimal biocompatible solvent and to maximize the ethanol production rate simultaneously for the single- or double-stage extractive fermentation process with cell recycling. Such a process/solvent design problem is formulated as a mixed-integer nonlinear programming problem that is solved by mixed-integer hybrid differential evolution in order to obtain a global design. The double-stage process can use a smaller amount of fresh solvent to increase ethanol productivity compared with that of the single-stage process, but it will also decrease overall conversion. Comparing the case studies, the simultaneous process/solvent design could yield higher overall ethanol productivity than that of the process design. The maximum ethanol production rate for the double-stage extractive fermentation with cell recycling was about 10-fold higher than that of continuous fermentation and about twofold higher than that of continuous fermentation with cell recycling.  相似文献   

14.
The co-production of 3-hydroxypropionic acid (3HP) and 1,3-propanediol (PDO) from glycerol was studied using the resting cells of a recombinant Klebsiella pneumoniae J2B strain that overexpresses an aldehyde dehydrogenase (KGSADH). Active biomass was produced in a mineral salt medium containing yeast extract and glycerol under a range of aeration conditions, and shifted to potassium phosphate buffer containing glycerol for bioconversion. The microaerobic or anaerobic conditions were favorable for both the production of active biomass and subsequent bioconversion. At the flask level, the recombinant strain (2.0?g?CDW/L) grown under microaerobic conditions produced 43.2?mM 3HP and 59.0?mM PDO from glycerol (117?mM) in 30?min with a cumulative yield of 0.87?(mol/mol). The fed-batch bioconversion, which was performed in a 1.5-L bioreactor with 1.0?g?CDW/L at a constant pH?7.0 under anaerobic conditions, resulted in 125.6?mM 3HP and 209.5?mM PDO in 12?h with a cumulative overall productivity, yield, and maximum specific production rate of 27.9?mmol/L/h, 0.71 (mol/mol), and 128.5?mmol/g CDW/h, respectively. Lactate, succinate and 2,3-butanediol were the major by-products, whereas the production of acetate and ethanol was marginal. This is the first report of the simultaneous production of 3HP and PDO from glycerol using a resting cell system.  相似文献   

15.
传统大孔吸附树脂吸附分离中草药有效成分通常需要高浓度的有机溶剂作为洗脱剂,在大规模生产中具有安全隐患和对环境的污染。本文以异黄酮为目标产物,考察了8种不同骨架、不同孔径的树脂对异黄酮的吸附分离性能,其中包括本实验室自制的孔径为1000nm的超大孔树脂。实验结果表明,与传统大孔树脂吸附层析法相比,超大孔树脂吸附层析不仅工艺简单、快速而且大幅度降低了有机溶剂的使用量。洗脱时,乙醇浓度由70%降低到20%。  相似文献   

16.
The bioconversion of xylose into xylitol in fed-batch fermentation with a recombinantSaccharomyces cerevisiae strain, transformed with the xylose-reductase gene ofPichia stipitis, was studied. When only xylose was fed into the fermentor, the production of xylitol continued until the ethanol that had been produced during an initial growth phase on glucose, was depleted. It was concluded that ethanol acted as a redox-balance-retaining co-substrate. The conversion of high amounts of xylose into xylitol required the addition of ethanol to the feed solution. Under O2-limited conditions, acetic acid accumulated in the fermentation broth, causing poisoning of the yeast at low extracellular pH. Acetic acid toxicity could be avoided by either increasing the pH from 4.5 to 6.5 or by more effective aeration, leading to the further metabolism of acetic acid into cell mass. The best xylitol/ethanol yield, 2.4 gg–1 was achieved under O2-limited conditions. Under anaerobic conditions ethanol could not be used as a co-substrate, because the cell cannot produce ATP for maintenance requirements from ethanol anaerobically. The specific rate of xylitol production decreased with increasing aeration. The initial volumetric productivity increased when xylose was added in portions rather than by continuous feeding, due to a more complete saturation of the transport system and the xylose reductase enzyme.  相似文献   

17.
A membrane bioreactor was developed to perform an extractive bioconversion aimed at the production of isovaleraldehyde by isoamyl alcohol oxidation with whole cells of Gluconobacter oxydans. A liquid/liquid extractive system using isooctane as extractant and assisted by a hollow-fiber hydrophobic membrane was chosen to recover the product. The aqueous bioconversion phase and the organic phase were maintained apart with the aid of the membrane. The extraction of alcohol and aldehyde was evaluated by performing equilibrium and mass transfer kinetic studies. The bioprocess was then performed in a continuous mode with addition of the substrate to the aqueous phase. Fresh solvent was added to the organic phase and exhausted solvent was removed at the same flow rate. The extractive system enabled a fast and selective in situ removal of the aldehyde from the water to the organic phase. High conversions (72–90%) and overall productivity (2.0–3.0 g l−1 h−1) were obtained in continuous experiments performed with different rates of alcohol addition (1.5–3.5 g l−1 h−1). Cell deactivation was observed after 10–12 h of operation.  相似文献   

18.
ABSTRACT:?

Lignocellulosic materials containing cellulose, hemicellulose, and lignin as their main constituents are the most abundant renewable organic resource present on Earth. The conversion of both cellulose and hemicellulose for production of fuel ethanol is being studied intensively with a view to develop a technically and economically viable bioprocess. The fermentation of glucose, the main constituent of cellulose hydrolyzate, to ethanol can be carried out efficiently. On the other hand, although bioconversion of xylose, the main pentose sugar obtained on hydrolysis of hemicellulose, to ethanol presents a biochemical challenge, especially if it is present along with glucose, it needs to be fermented to make the biomass-to-ethanol process economical. A lot of attention therefore has been focussed on the utilization of both glucose and xylose to ethanol. Accordingly, while describing the advancements that have taken place to get xylose converted efficiently to ethanol by xylose-fermenting organisms, the review deals mainly with the strategies that have been put forward for bioconversion of both the sugars to achieve high ethanol concentration, yield, and productivity. The approaches, which include the use of (1) xylose-fermenting yeasts alone, (2) xylose isomerase enzyme as well as yeast, (3) immobilized enzymes and cells, and (4) sequential fermentation and co-culture process are described with respect to their underlying concepts and major limitations. Genetic improvements in the cultures have been made either to enlarge the range of substrate utilization or to channel metabolic intermediates specifically toward ethanol. These contributions represent real significant advancements in the field and have also been adequately dealt with from the point of view of their impact on utilization of both cellulose and hemicellulose sugars to ethanol.  相似文献   

19.
Summary This paper reports the production of 2-phenylacetaldehyde from 2-phenylethanol by acetic bacteria. Several strains of acetic bacteria were investigated and three were found to be effective for this bioconversion. Different conditions (different C source for the microorganisms, pH, substrate concentration, cell immobilization) were tested with yields ranging from 30 to 52.6%.  相似文献   

20.
Escherichia coli was metabolically engineered by expanding the shikimate pathway to generate strains capable of producing six kinds of aromatic compounds, phenyllactic acid, 4-hydroxyphenyllactic acid, phenylacetic acid, 4-hydroxyphenylacetic acid, 2-phenylethanol, and 2-(4-hydroxyphenyl)ethanol, which are used in several fields of industries including pharmaceutical, agrochemical, antibiotic, flavor industries, etc. To generate strains that produce phenyllactic acid and 4-hydroxyphenyllactic acid, the lactate dehydrogenase gene (ldhA) from Cupriavidus necator was introduced into the chromosomes of phenylalanine and tyrosine overproducers, respectively. Both the phenylpyruvate decarboxylase gene (ipdC) from Azospirillum brasilense and the phenylacetaldehyde dehydrogenase gene (feaB) from E. coli were introduced into the chromosomes of phenylalanine and tyrosine overproducers to generate phenylacetic acid and 4-hydroxyphenylacetic acid producers, respectively, whereas ipdC and the alcohol dehydrogenase gene (adhC) from Lactobacillus brevis were introduced to generate 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol producers, respectively. Expression of the respective introduced genes was controlled by the T7 promoter. While generating the 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol producers, we found that produced phenylacetaldehyde and 4-hydroxyphenylacetaldehyde were automatically reduced to 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol by endogenous aldehyde reductases in E. coli encoded by the yqhD, yjgB, and yahK genes. Cointroduction and cooverexpression of each gene with ipdC in the phenylalanine and tyrosine overproducers enhanced the production of 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol from glucose. Introduction of the yahK gene yielded the most efficient production of both aromatic alcohols. During the production of 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, phenylacetic acid, and 4-hydroxyphenylacetic acid, accumulation of some by-products were observed. Deletion of feaB, pheA, and/or tyrA genes from the chromosomes of the constructed strains resulted in increased desired aromatic compounds with decreased by-products. Finally, each of the six constructed strains was able to successfully produce a different aromatic compound as a major product. We show here that six aromatic compounds are able to be produced from renewable resources without supplementing with expensive precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号