首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prior reports have demonstrated that both parathyroid hormone-related protein (PTHrP) and the type I PTH/PTHrP receptor are necessary for the proper development of the embryonic mammary gland in mice. Using a combination of loss-of-function and gain-of-function models, we now report that PTHrP regulates a series of cell fate decisions that are central to the survival and morphogenesis of the mammary epithelium and the formation of the nipple. PTHrP is made in the epithelial cells of the mammary bud and, during embryonic mammary development, it interacts with the surrounding mesenchymal cells to induce the formation of the dense mammary mesenchyme. In response, these mammary-specific mesenchymal cells support the maintenance of mammary epithelial cell fate, trigger epithelial morphogenesis and induce the overlying epidermis to form the nipple. In the absence of PTHrP signaling, the mammary epithelial cells revert to an epidermal fate, no mammary ducts are formed and the nipple does not form. In the presence of diffuse epidermal PTHrP signaling, the ventral dermis is transformed into mammary mesenchyme and the entire ventral epidermis becomes nipple skin. These alterations in cell fate require that PTHrP be expressed during development and they require the presence of the PTH/PTHrP receptor. Finally, PTHrP signaling regulates the epidermal and mesenchymal expression of LEF1 and (&bgr;)-catenin, suggesting that these changes in cell fate involve an interaction between the PTHrP and Wnt signaling pathways.  相似文献   

2.
The mammary glands develop initially as buds arising from the ventral embryonic epidermis. Recent work has shed light on signaling pathways leading to the patterning and formation of the mammary placodes and buds in mouse embryos. Relatively little is known of the signaling pathways that initiate branching morphogenesis and the formation of the ducts from the embryonic buds. Previous studies have shown that parathyroid hormone-related protein (PTHrP; also known as parathyroid hormone-like peptide, Pthlh) is produced by mammary epithelial cells and acts on surrounding mesenchymal cells to promote their differentiation into a mammary-specific dense mesenchyme. As a result of PTHrP signaling, the mammary mesenchyme supports mammary epithelial cell fate, initiates ductal development and patterns the overlying nipple sheath. In this report, we demonstrate that PTHrP acts, in part, by sensitizing mesenchymal cells to BMP signaling. PTHrP upregulates BMP receptor 1A expression in the mammary mesenchyme, enabling it to respond to BMP4, which is expressed within mesenchymal cells underlying the ventral epidermis during mammary bud formation. We demonstrate that BMP signaling is important for outgrowth of normal mammary buds and that BMP4 can rescue outgrowth of PTHrP(-/-) mammary buds. In addition, the combination of PTHrP and BMP signaling is responsible for upregulating Msx2 gene expression within the mammary mesenchyme, and disruption of the Msx2 gene rescues the induction of hair follicles on the ventral surface of mice overexpressing PTHrP in keratinocytes (K14-PTHrP). Our data suggest that PTHrP signaling sensitizes the mammary mesenchyme to the actions of BMP4, triggering outgrowth of the mammary buds and inducing MSX2 expression, which, in turn, leads to lateral inhibition of hair follicle formation within the developing nipple sheath.  相似文献   

3.
4.
5.
Ectodysplasin (Eda), a member of the tumor necrosis factor (TNF) superfamily, and its receptor Edar are necessary components of ectodermal organ development. Analysis of their expression patterns and mutant phenotypes has shown that during mouse hair and tooth development they may be involved in signalling between separate epithelial compartments. Here we have analysed ectodysplasin and Edar expression in other embryonic mouse tissues, and show that Edar mRNA is confined to the epithelium. Ectodysplasin and Edar are expressed in separate epithelial compartments in the developing brain and the lacrimal gland. In the salivary gland ectodysplasin is expressed in the mesenchyme and Edar in the epithelium. This is the first indication of ectodysplasin-Edar signalling between the epithelium and the mesenchyme. We also studied the expression pattern of a related TNF receptor, TNFRSF19, and show that it is expressed in an overlapping domain with Edar in the tooth, mammary gland, whiskers, and limb bud suggesting a potentially redundant role.  相似文献   

6.
Branching morphogenesis is central to epithelial organogenesis. In the developing kidney, the epithelial ureteric bud invades the metanephric mesenchyme, which directs the ureteric bud to undergo repeated branching. A soluble factor(s) in the conditioned medium of a metanephric mesenchyme cell line is essential for multiple branching morphogenesis of the isolated ureteric bud. The identity of this factor had proved elusive, but it appeared distinct from factors such as HGF and EGF receptor ligands that have been previously implicated in branching morphogenesis of mature epithelial cell lines. Using sequential column chromatography, we have now purified to apparent homogeneity an 18 kDa protein, pleiotrophin, from the conditioned medium of a metanephric mesenchyme cell line that induces isolated ureteric bud branching morphogenesis in the presence of glial cell-derived neurotrophic factor. Pleiotrophin alone was also found to induce the formation of branching tubules in an immortalized ureteric bud cell line cultured three-dimensionally in an extracellular matrix gel. Consistent with an important role in ureteric bud morphogenesis during kidney development, pleiotrophin was found to localize to the basement membrane of the developing ureteric bud in the embryonic kidney. We suggest that pleiotrophin could act as a key mesenchymally derived factor regulating branching morphogenesis of the ureteric bud and perhaps other embryonic epithelial structures.  相似文献   

7.
The distribution of androgen receptors (ARs) in paraffin serial sections of day 17 and day 18 male and female mouse embryos was investigated. In the cranial section of the genital tract AR expression was restricted to Wolffian structures while Müllerian ducts and surrounding mesenchyme were AR negative. In the fusion zone with the urogenital sinus the epithelial components of the vaginal bud were clearly distinguished by differential AR expression, which was faint in the Wolffian ducts, totally missing in the Müllerian ducts, and intense in the sinus ridges with the most intense expression in the morphogenetically active mesenchyme, indicating a new mechanism of negative control of vagina formation via androgens. Expression of ARs outside the genital tract was observed: (1) in loose interstitial mesenchyme extending into the retroperitoneal space up to the coeliac artery, indicating androgen effects during ascent of the kidneys and descent of intraperitoneal organs, (2) in the trigone of the bladder indicating androgen involvement in the development of the vesico-ureteral junction, and (3) in loose mesenchyme between striated muscle fibres and around pelvic skeletal elements, indicating mediation of androgen effects on the musculoskeletal system via loose mesenchyme.  相似文献   

8.
The role of GDNF in patterning the excretory system   总被引:5,自引:0,他引:5  
Mesenchymal-epithelial interactions are an important source of information for pattern formation during organogenesis. In the developing excretory system, one of the secreted mesenchymal factors thought to play a critical role in patterning the growth and branching of the epithelial ureteric bud is GDNF. We have tested the requirement for GDNF as a paracrine chemoattractive factor by altering its site of expression during excretory system development. Normally, GDNF is secreted by the metanephric mesenchyme and acts via receptors on the Wolffian duct and ureteric bud epithelium. Misexpression of GDNF in the Wolffian duct and ureteric buds resulted in formation of multiple, ectopic buds, which branched independently of the metanephric mesenchyme. This confirmed the ability of GDNF to induce ureter outgrowth and epithelial branching in vivo. However, in mutant mice lacking endogenous GDNF, kidney development was rescued to a substantial degree by GDNF supplied only by the Wolffian duct and ureteric bud. These results indicate that mesenchymal GDNF is not required as a chemoattractive factor to pattern the growth of the ureteric bud within the developing kidney, and that any positional information provided by the mesenchymal expression of GDNF may provide for renal branching morphogenesis is redundant with other signals.  相似文献   

9.
Expression and function of a retinoic acid receptor in budding ascidians   总被引:8,自引:0,他引:8  
 Retinoic acid is thought to induce transdifferentiation of multipotent epithelial stem cells in the developing buds of the ascidian Polyandrocarpa misakiensis. We isolated a cDNA clone from this species, named PmRAR, encoding a retinoic acid receptor (RAR) homologue. PmRAR clusters with other RARs on phylogenetic trees constructed by three different methods. Within the cluster, PmRAR is on a separate branch from all the subtypes of RARs, suggesting that RAR subtypes arose in the ancestral vertebrates after divergence of vertebrates and urochordates. The embryos of another ascidian species Ciona intestinalis were co-electroporated with a mixture of a PmRAR expression vector and a lacZ reporter plasmid containing vertebrate-type retinoic acid response elements. The expression of lacZ depended on the presence of both retinoic acid and PmRAR, suggesting that PmRAR is a functional receptor. PmRAR mRNA is expressed in the epidermis and mesenchyme cells of the Polyandrocarpa developing bud. The mRNA is not detectable in the mesenchyme cells in the adult body wall, but its expression can be induced by retinoic acid in vitro. These results suggest that the PmRAR is a mediator of retinoic acid signalling in transdifferentiation during asexual reproduction of protochordates. Received: 6 April 1998 / Accepted: 27 July 1998  相似文献   

10.
PTHrP is necessary for the formation of the embryonic mammary gland and, in its absence, the embryonic mammary bud fails to form the neonatal duct system. In addition, PTHrP is produced by the breast during lactation and contributes to the regulation of maternal calcium homeostasis during milk production. In this study, we examined the role of PTHrP during post-natal mammary development. Using a PTHrP-lacZ transgenic mouse, we surveyed the expression of PTHrP in the developing post-natal mouse mammary gland. We found that PTHrP expression is restricted to the basal cells of the gland during pubertal development and becomes expressed in milk secreting alveolar cells during pregnancy and lactation. Based on the previous findings that overexpression of PTHrP in cap and myoepithelial cells inhibited ductal elongation during puberty, we predicted that ablation of native PTHrP expression in the post-natal gland would result in accelerated ductal development. To address this hypothesis, we generated two conditional models of PTHrP-deficiency specifically targeted to the postnatal mammary gland. We used the MMTV-Cre transgene to ablate the floxed PTHrP gene in both luminal and myoepithelial cells and a tetracycline-regulated K14-tTA;tetO-Cre transgene to target PTHrP expression in just myoepithelial and cap cells. In both models of PTHrP ablation, we found that mammary development proceeds normally despite the absence of PTHrP. We conclude that PTHrP signaling is not required for normal ductal or alveolar development.  相似文献   

11.
Normal penile development is dependent on testosterone, its conversion via steroid 5 alpha-reductase type 2 to dihydrotestosterone, and a functional androgen receptor (AR). The goal of this study was to investigate the distribution of AR and 5 alpha-reductase type 2 in the developing human fetal external genitalia with special emphasis on urethra formation. Twenty fetal genital specimens from normal human males (12-20 weeks gestation) were sectioned serially and stained by avidin-biotinylated peroxidase complex method with antigen retrieval. Stained sections throughout male genital development documented the expression of AR and 5 alpha-reductase type 2 in the phallus. Between 12 and 14 weeks of gestation, AR was localized to epithelial cells of the urethral plate in the glans, the tubular urethra of the penile shaft, and stromal tissue surrounding the urethral epithelium. In the fetal penis between 16 and 20 weeks gestation, the density of AR expression was greatest in urethral epithelial cells versus the surrounding stromal tissues. There was a characteristic pattern of AR expression in the glandular urethral epithelium between 16 and 20 weeks gestation. AR expression was greater along the ventral aspect of the glandular urethra than along the dorsal aspect of the urethral epithelium. The expression of 5 alpha-reductase type 2 was localized to the stroma surrounding the urethra, especially along the urethral seam area in the ventral portion of the remodeling urethra. These anatomical studies support the hypothesis that androgens are essential for the formation of the ventral portion of the urethra and that abnormalities in either the AR or 5 alpha-reductase type 2 can explain the occurrence of hypospadias.  相似文献   

12.
13.
14.
Parathyroid hormone-related protein (PTHrP) can be secreted from cells and interact with its receptor, the Type 1 PTH/PTHrP Receptor (PTHR1) in an autocrine, paracrine or endocrine fashion. PTHrP can also remain inside cells and be transported into the nucleus, where its functions are unclear, although recent experiments suggest that it may broadly regulate cell survival and senescence. Disruption of either the PTHrP or PTHR1 gene results in many abnormalities including a failure of embryonic mammary gland development in mice and in humans. In order to examine the potential functions of nuclear PTHrP in the breast, we examined mammary gland development in PTHrP (1–84) knock-in mice, which express a mutant form of PTHrP that lacks the C-terminus and nuclear localization signals and which can be secreted but cannot enter the nucleus. Interestingly, we found that PTHrP (1–84) knock-in mice had defects in mammary mesenchyme differentiation and mammary duct outgrowth that were nearly identical to those previously described in PTHrP−/− and PTHR1−/− mice. However, the mammary buds in PTHrP (1–84) knock-in mice had severe reductions in mutant PTHrP mRNA levels, suggesting that the developmental defects were due to insufficient production of PTHrP by mammary epithelial cells and not loss of PTHrP nuclear function. Examination of the effects of nuclear PTHrP in the mammary gland in vivo will require the development of alternative animal models.  相似文献   

15.
Parathyroid hormone (PTH)-related protein (PTH-rP) is an important autocrine/paracrine attenuator of programmed cell differentiation whose expression is restricted to the epithelial layer in tooth development. The PTH/PTHrP receptor (PPR) mRNA in contrast is detected in the dental papilla, suggesting that PTHrP and the PPR may modulate epithelial-mesenchymal interactions. To explore the possible interactions, we studied the previously described transgenic mice in which a constitutively active PPR is targeted to osteoblastic cells. These transgenic mice have a vivid postnatal bone and tooth phenotype, with normal tooth eruption but abnormal, widened crowns. Transgene mRNA expression was first detected at birth in the dental papilla and, at 1 week postnatally, in odontoblasts. There was no transgene expression in ameloblasts or in other epithelial structures. Prenatally, transgenic molars and incisors revealed no remarkable change. By the age of 1 week, the dental papilla was widened, with disorganization of the odontoblastic layer and decreased dentin matrix. In addition, the number of cusps was abnormally increased, the ameloblastic layer disorganized, and enamel matrix decreased. Odontoblastic and, surprisingly, ameloblastic cytodifferentiation was impaired, as shown by in situ hybridization and electron microscopy. Interestingly, ameloblastic expression of Sonic Hedgehog, a major determinant of ameloblastic cytodifferentiation, was dramatically altered in the transgenic molars. These data suggest that odontoblastic activation of the PPR may play an important role in terminal odontoblastic and, indirectly, ameloblastic cytodifferentiation, and describe a useful model to study how this novel action of the PPR may modulate mesenchymal/epithelial interactions at later stages of tooth morphogenesis and development.  相似文献   

16.
Antler growth is highly co-ordinated, so that trabecular bone and antler skin (velvet) develop together, at a rapid rate and in a manner reminiscent of their development in the fetus. Parathyroid hormone-related peptide (PTHrP) is expressed in both bone and skin, and is therefore a candidate to effect co-ordination between these tissues. The aim of this study was to localize the expression of PTHrP and its principal receptor, the parathyroid hormone/parathyroid hormone-related peptide receptor (PTH/PTHrPR), in antler ("spiker") of one-year-old red deer. Using immunohistochemistry and in situ hybridization, intense and overlapping expression of PTHrP and its receptor was seen in developing osseocartilaginous structures and in the underlying layers of velvet epidermis. PTHrP was located on both the cell surface and within the nuclei. Our results strongly suggest that PTHrP, acting via the PTH/PTHrPR and possibly other intracrine mechanisms, plays a central role in the co-ordinated regulation of cell division and differentiation of developing antler bone and skin.  相似文献   

17.
The sex steroids, estrogens, progesterone, and androgens, all play a role in mammary development and function. To precisely identify the sites of action of these steroids, we studied the localization of the estrogen receptor α (ERα) and ERβ, the progesterone receptor A (PRA) and PRB, and androgen receptors (AR) in the normal human mammary gland. Immunocytochemical localization of ERα, ERβ, PRA, PRB, and AR was performed with reduction mammoplasty specimens from premenopausal women. ERα, PRA, PRB, and AR were localized mostly to the inner layer of epithelial cells lining acini and intralobular ducts, as well as to myoepithelial cells scattered in the external layer of interlobular ducts. AR was also found in some stromal cells. ERβ staining was more widespread, resulting in epithelial and myoepithelial cells being labeled in acini and ducts as well as stromal cells. These results suggest that all sex steroids can directly act on epithelial cells to modulate development and function of the human mammary gland. Estrogens and androgens can also indirectly influence epithelial cell activity by an action on stromal cells. (J Histochem Cytochem 58:509–515, 2010)  相似文献   

18.
19.
Epithelial-mesenchymal tissue interactions regulate the formation of signaling centers that play a role in the coordination of organogenesis, but it is not clear how their activity leads to differences in organogenesis. We report that type XVIII collagen, which contains both a frizzled and an endostatin domain, is expressed throughout the respective epithelial bud at the initiation of lung and kidney organogenesis. It becomes localized to the epithelial tips in the lung during the early stages of epithelial branching, while its expression in the kidney is confined to the epithelial stalk region and is lost from the nearly formed ureter tips, thus displaying the reverse pattern to that in the lung. In recombinants, between ureter bud and lung mesenchyme, type XVIII collagen expression pattern in the ureter bud shifts from the kidney to the lung type, accompanied by a shift in sonic hedgehog expression in the epithelium. The lung mesenchyme is also sufficient to induce ectopic lung surfactant protein C expression in the ureter bud. Moreover, the shift in type XVIII collagen expression is associated with changes in ureter development, thus resembling aspects of early lung type epigenesis in the recombinants. Respecification of collagen is necessary for the repatterning process, as type XVIII collagen antibody blocking had no effect on ureter development in the intact kidney, whereas it reduced the number of epithelial tips in the lung and completely blocked ureter development with lung mesenchyme. Type XVIII collagen antibody blocking also led to a notable reduction in the expression of Wnt2, which is expressed in the lung mesenchyme but not in that of the kidney, suggesting a regulatory interaction between this collagen and Wnt2. Respecification also occurred in a chimeric organ containing the ureter bud and both kidney and lung mesenchymes, indicating that the epithelial tips can integrate the morphogenetic signals independently. A glial cell line-derived neurotrophic factor signal induces loss of type XVIII collagen from the ureter tips and renders the ureter bud competent for repatterning by lung mesenchyme-derived signals. Our data suggest that differential organ morphogenesis is regulated by an intra-organ patterning process that involves coordination between inductive signals and matrix molecules, such as type XVIII collagen.  相似文献   

20.
Mammalian lung develops as an evagination of ventral gut endoderm into the underlying mesenchyme. Iterative epithelial branching, regulated by the surrounding mesenchyme, generates an elaborate network of airways from the initial lung bud. Fibroblast growth factors (FGFs) often mediate epithelial-mesenchymal interactions and mesenchymal Fgf10 is essential for epithelial branching in the developing lung. However, no FGF has been shown to regulate lung mesenchyme. In embryonic lung, Fgf9 is detected in airway epithelium and visceral pleura at E10.5, but is restricted to the pleura by E12.5. We report that mice homozygous for a targeted disruption of Fgf9 exhibit lung hypoplasia and early postnatal death. Fgf9(-/-) lungs exhibit reduced mesenchyme and decreased branching of airways, but show significant distal airspace formation and pneumocyte differentiation. Our results suggest that Fgf9 affects lung size by stimulating mesenchymal proliferation. The reduction in the amount of mesenchyme in Fgf9(-/-) lungs limits expression of mesenchymal Fgf10. We suggest a model whereby FGF9 signaling from the epithelium and reciprocal FGF10 signaling from the mesenchyme coordinately regulate epithelial airway branching and organ size during lung embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号