首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The solution structure of the complex between the cytoplasmic A domain (IIA(Mtl)) of the mannitol transporter II(Mannitol) and the histidine-containing phosphocarrier protein (HPr) of the Escherichia coli phosphotransferase system has been solved by NMR, including the use of conjoined rigid body/torsion angle dynamics, and residual dipolar couplings, coupled with cross-validation, to permit accurate orientation of the two proteins. A convex surface on HPr, formed by helices 1 and 2, interacts with a complementary concave depression on the surface of IIA(Mtl) formed by helix 3, portions of helices 2 and 4, and beta-strands 2 and 3. The majority of intermolecular contacts are hydrophobic, with a small number of electrostatic interactions at the periphery of the interface. The active site histidines, His-15 of HPr and His-65 of IIA(Mtl), are in close spatial proximity, and a pentacoordinate phosphoryl transition state can be readily accommodated with no change in protein-protein orientation and only minimal perturbations of the backbone immediately adjacent to the histidines. Comparison with two previously solved structures of complexes of HPr with partner proteins of the phosphotransferase system, the N-terminal domain of enzyme I (EIN) and enzyme IIA(Glucose) (IIA(Glc)), reveals a number of common features despite the fact that EIN, IIA(Glc), and IIA(Mtl) bear no structural resemblance to one another. Thus, entirely different underlying structural elements can form binding surfaces for HPr that are similar in terms of both shape and residue composition. These structural comparisons illustrate the roles of surface and residue complementarity, redundancy, incremental build-up of specificity and conformational side chain plasticity in the formation of transient specific protein-protein complexes in signal transduction pathways.  相似文献   

2.
Solution structures of complexes between the isolated A (IIA(Man)) and B (IIB(Man)) domains of the cytoplasmic component of the mannose transporter of Escherichia coli have been solved by NMR. The complex of wild-type IIA(Man) and IIB(Man) is a mixture of two species comprising a productive, phosphoryl transfer competent complex and a non-productive complex with the two active site histidines, His-10 of IIA(Man) and His-175 of IIB(Man), separated by approximately 25A. Mutation of the active site histidine, His-10, of IIA(Man) to a glutamate, to mimic phosphorylation, results in the formation of a single productive complex. The apparent equilibrium dissociation constants for the binding of both wild-type and H10E IIA(Man) to IIB(Man) are approximately the same (K(D) approximately 0.5 mM). The productive complex can readily accommodate a transition state involving a pentacoordinate phosphoryl group with trigonal bipyramidal geometry bonded to the Nepsilon2 atom of His-10 of IIA(Man) and the Ndelta1 atom of His-175 of IIB(Man) with negligible (<0.2A) local backbone conformational changes in the immediate vicinity of the active site. The non-productive complex is related to the productive one by a approximately 90 degrees rotation and approximately 37A translation of IIB(Man) relative to IIA(Man), leaving the active site His-175 of IIB(Man) fully exposed to solvent in the non-productive complex. The interaction surface on IIA(Man) for the non-productive complex comprises a subset of residues used in the productive complex and in both cases involves both subunits of IIA(Man). The selection of the productive complex by IIA(Man)(H10E) can be attributed to neutralization of the positively charged Arg-172 of IIB(Man) at the center of the interface. The non-productive IIA(Man)-IIB(Man) complex may possibly be relevant to subsequent phosphoryl transfer from His-175 of IIB(Man) to the incoming sugar located on the transmembrane IIC(Man)-IID(Man) complex.  相似文献   

3.
The active center histidines of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system proteins; histidine-containing protein, enzyme I, and enzyme IIA(Glc) were substituted with a series of amino acids (serine, threonine, tyrosine, cysteine, aspartate, and glutamate) with the potential to undergo phosphorylation. The mutants [H189E]enzyme I, [H15D]HPr, and [H90E]enzyme IIA(Glc) retained ability for phosphorylation as indicated by [(32)P]phosphoenolpyruvate labeling. As the active center histidines of both enzyme I and enzyme IIA(Glc) undergo phosphorylation of the N(epsilon2) atom, while HPr is phosphorylated at the N(delta1) atom, a pattern of successful substitution of glutamates for N(epsilon2) phosphorylations and aspartates for N(delta1) phosphorylations emerges. Furthermore, phosphotransfer between acyl residues: P-aspartyl to glutamyl and P-glutamyl to aspartyl was demonstrated with these mutant proteins and enzymes.  相似文献   

4.
The solution structure of trimeric Escherichia coli enzyme IIA(Chb) (34 kDa), a component of the N,N'-diacetylchitobiose/lactose branch of the phosphotransferase signal transduction system, has been determined by NMR spectroscopy. Backbone residual dipolar couplings were used to provide long range orientational restraints, and long range (|i - j| > or = 5 residues) nuclear Overhauser enhancement restraints were derived exclusively from samples in which at least one subunit was 15N/13C/2H/(Val-Leu-Ile)-methyl-protonated. Each subunit consists of a three-helix bundle. Hydrophobic residues lining helix 3 of each subunit are largely responsible for the formation of a parallel coiled-coil trimer. The active site histidines (His-89 from each subunit) are located in three symmetrically placed deep crevices located at the interface of two adjacent subunits (A and C, C and B, and B and A). Partially shielded from bulk solvent, structural modeling suggests that phosphorylated His-89 is stabilized by electrostatic interactions with the side chains of His-93 from the same subunit and Gln-91 from the adjacent subunit. Comparison with the x-ray structure of Lactobacillus lactis IIA(Lac) reveals some substantial structural differences, particularly in regard to helix 3, which exhibits a 40 degrees kink in IIA(Lac) versus a 7 degrees bend in IIA(Chb). This is associated with the presence of an unusually large (230-angstroms3) buried hydrophobic cavity at the trimer interface in IIA(Lac) that is reduced to only 45 angstroms3) in IIA(Chb).  相似文献   

5.
Activity of antiterminator protein BglG regulating the beta-glucoside operon in Escherichia coli is controlled by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in a dual manner. It requires HPr phosphorylation to be active, whereas phosphorylation by the beta-glucoside-specific transport protein EIIBgl inhibits its activity. BglG and its relatives carry two PTS regulation domains (PRD1 and PRD2), each containing two conserved histidines. For BglG, histidine 208 in PRD2 was reported to be the negative phosphorylation site. In contrast, other antiterminators of this family are negatively regulated by phosphorylation of the first histidine in PRD1, and presumably activated by phosphorylation of the histidines in PRD2. In this work, a screen for mutant BglG proteins that escape repression by EIIBgl yielded exchanges of nine residues within PRD1, including conserved histidines His-101 and His-160, and C-terminally truncated proteins. Genetic and phosphorylation analyses indicate that His-101 in PRD1 is phosphorylated by EIIBgl and that His-160 contributes to negative regulation. His-208 in PRD2 is essential for BglG activity, suggesting that it is phosphorylated by HPr. Surprisingly, phosphorylation by HPr is not fully abolished by exchanges of His-208. However, phosphorylation by HPr is inhibited by exchanges in PRD1 and the phosphorylation of these mutants is restored in the presence of wild-type BglG. These results suggest that the activating phosphoryl group is transiently donated from HPr to PRD1 and subsequently transferred to His-208 of a second BglG monomer. The active His-208-phosphorylated BglG dimer can subsequently be inhibited in its activity by EIIBgl-catalyzed phosphorylation at His-101.  相似文献   

6.
The high resolution crystal structures of two interacting proteins from the phosphoenolpyruvate:sugar phosphotransferase system, the histidine-containing phosphocarrier protein (HPr) and the IIA domain of glucose permease (IIA(Glc)) from Bacillus subtilis, provide the basis for modeling the transient binary complex formed during the phosphoryl group transfer. The complementarity of the interacting surfaces implies that no major conformational transition is required. The negatively charged phosphoryl group is buried in the interface, suggesting a key role for electrostatic interactions. It is proposed that the phosphoryl transfer is triggered by a switch between two salt bridges involving Arg-17 of the HPr. The first, prior to phosphoryl group transfer, is intramolecular, with the phosphorylated His-15. The second, during the transfer, is intermolecular, with 2 aspartate residues associated with the active site of IIA(Glc). Such alternating ion pairs may be mechanistically important in other protein-protein phosphotransfer reactions.  相似文献   

7.
The solution structure of the complex of enzyme IIA of the N,N'-diacetylchitobiose (Chb) transporter with the histidine phosphocarrier protein HPr has been solved by NMR. The IIA(Chb)-HPr complex completes the structure elucidation of representative cytoplasmic complexes for all four sugar branches of the bacterial phosphoryl transfer system (PTS). The active site His-89 of IIA(Chb) was mutated to Glu to mimic the phosphorylated state. IIA(Chb)(H89E) and HPr form a weak complex with a K(D) of ~0.7 mM. The interacting binding surfaces, concave for IIA(Chb) and convex for HPr, complement each other in terms of shape, residue type, and charge distribution, with predominantly hydrophobic residues, interspersed by some uncharged polar residues, located centrally, and polar and charged residues at the periphery. The active site histidine of HPr, His-15, is buried within the active site cleft of IIA(Chb) formed at the interface of two adjacent subunits of the IIA(Chb) trimer, thereby coming into close proximity with the active site residue, H89E, of IIA(Chb). A His89-P-His-15 pentacoordinate phosphoryl transition state can readily be modeled without necessitating any significant conformational changes, thereby facilitating rapid phosphoryl transfer. Comparison of the IIA(Chb)-HPr complex with the IIA(Chb)-IIB(Chb) complex, as well as with other cytoplasmic complexes of the PTS, highlights a unifying mechanism for recognition of structurally diverse partners. This involves generating similar binding surfaces from entirely different underlying structural elements, large interaction surfaces coupled with extensive redundancy, and side chain conformational plasticity to optimize diverse sets of intermolecular interactions.  相似文献   

8.
The structural and thermodynamic impact of phosphorylation on the interaction of the N-terminal domain of enzyme I (EIN) and the histidine phosphocarrier protein (HPr), the two common components of all branches of the bacterial phosphotransferase system, have been examined using NMR spectroscopy and isothermal titration calorimetry. His-189 is located at the interface of the alpha and alphabeta domains of EIN, resulting in rather widespread chemical shift perturbation upon phosphorylation, in contrast to the highly localized perturbations seen for HPr, where His-15 is fully exposed to solvent. Residual dipolar coupling measurements, however, demonstrate unambiguously that no significant changes in backbone conformation of either protein occur upon phosphorylation: for EIN, the relative orientation of the alpha and alphabeta domains remains unchanged; for HPr, the backbone /Psi torsion angles of the active site residues are unperturbed within experimental error. His --> Glu/Asp mutations of the active site histidines designed to mimic the phosphorylated states reveal binding equilibria that favor phosphoryl transfer from EIN to HPr. Although binding of phospho-EIN to phospho-HPr is reduced by a factor of approximately 21 relative to the unphosphorylated complex, residual dipolar coupling measurements reveal that the structures of the unphosphorylated and biphosphorylated complexes are the same. Hence, the phosphorylation states of EIN and HPr shift the binding equilibria predominantly by modulating intermolecular electrostatic interactions without altering either the backbone scaffold or binding interface. This facilitates highly efficient phosphoryl transfer between EIN and HPr, which is estimated to occur at a rate of approximately 850 s(-1) from exchange spectroscopy.  相似文献   

9.
The solution structure of the final phosphoryl transfer complex in the glucose-specific arm of the Escherichia coli phosphotransferase system, between enzyme IIAGlucose (IIAGlc) and the cytoplasmic B domain (IIBGlc) of the glucose transporter IICBGlc, has been solved by NMR. The interface (approximately 1200-A2 buried surface) is formed by the interaction of a concave depression on IIAGlc with a convex protrusion on IIBGlc. The phosphoryl donor and acceptor residues, His-90 of IIAGlc and Cys-35 of IIBGlc (residues of IIBGlc are denoted in italics) are in close proximity and buried at the center of the interface. Cys-35 is primed for nucleophilic attack on the phosphorus atom by stabilization of the thiolate anion (pKa approximately 6.5) through intramolecular hydrogen bonding interactions with several adjacent backbone amide groups. Hydrophobic intermolecular contacts are supplemented by peripheral electrostatic interactions involving an alternating distribution of positively and negatively charged residues on the interaction surfaces of both proteins. Salt bridges between the Asp-38/Asp-94 pair of IIAGlc and the Arg-38/Arg-40 pair of IIBGlc neutralize the accumulation of negative charge in the vicinity of both the Sgamma atom of Cys-35 and the phosphoryl group in the complex. A pentacoordinate phosphoryl transition state is readily accommodated without any change in backbone conformation, and the structure of the complex accounts for the preferred directionality of phosphoryl transfer between IIAGlc and IIBGlc. The structures of IIAGlc.IIBGlc and the two upstream complexes of the glucose phosphotransferase system (EI.HPr and IIAGlc.HPr) reveal a cascade in which highly overlapping binding sites on HPr and IIAGlc recognize structurally diverse proteins.  相似文献   

10.
The phosphohydrolysis properties of the following phosphoprotein intermediates of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) were investigated: enzyme I, HPr, and the IIAGlc domain of the glucose enzyme II of Bacillus subtilis; and IIAGlc (fast and slow forms) of Escherichia coli. The phosphohydrolysis properties were also studied for the site-directed mutant H68A of B. subtilis IIA Glc. Several conclusions were reached. (i) The phosphohydrolysis properties of the homologous phosphoprotein intermediates of B. subtilis and E. coli are similar. (ii) These properties deviate from those of isolated N delta 1- and N epsilon 2-phosphohistidine indicating the participation of neighbouring residues at the active sites of these proteins. (iii) The rates of phosphohydrolysis of the H68A mutant of B. subtilis IIAGlc were reduced compared with the wild-type protein, suggesting that both His-83 and His-68 are present at the active site of wild-type IIAGlc. (iv) The removal of seven N-terminal residues of E. coli IIAGlc reduced the rates of phosphohydrolysis between pH 5 and 8.  相似文献   

11.
The permeases of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system (PTS), the sugar-specific enzymes II, are energized by sequential phosphoryl transfer from phosphoenolpyruvate to (i) enzyme I, (ii) the phosphocarrier protein HPr, (iii) the enzyme IIA domains of the permeases, and (iv) the enzyme IIBC domains of the permeases which transport and phosphorylate their sugar substrates. A number of site-specific mutants of HPr were examined by using kinetic approaches. Most of the mutations exerted minimal effects on the kinetic parameters characterizing reactions involving phosphoryl transfer from phospho-HPr to various sugars. However, when the well-conserved aspartyl 69 residue in HPr was changed to a glutamyl residue, the affinities for phospho-HPr of the enzymes II specific for mannitol, N-acetylglucosamine, and beta-glucosides decreased markedly without changing the maximal reaction rates. The same mutation reduced the spontaneous rate of phosphohistidyl HPr hydrolysis but did not appear to alter the rate of phosphoryl transfer from phospho-enzyme I to HPr. When the adjacent glutamyl residue 70 in HPr was changed to a lysyl residue, the Vmax values of the reactions catalyzed by the enzymes II were reduced, but the Km values remained unaltered. Changing this residue to alanine exerted little effect. Site-specific alterations in the C terminus of the beta-glucoside enzyme II which reduced the maximal reaction rate of phosphoryl transfer about 20-fold did not alter the relative kinetic parameters because of the aforementioned mutations in HPr. Published three-dimensional structural analyses of HPr and the complex of HPr with the glucose-specific enzyme IIA (IIAGlc) (homologous to the beta-glucoside and N-acetylglucosamine enzyme IIA domains) have revealed that residues 69 and 70 in HPr are distant from the active phosphorylation site and the IIAGlc binding interface in HPr. The results reported therefore suggest that residues D-69 and E-70 in HPr play important roles in controlling conformational aspects of HPr that influence (i) autophosphohydrolysis, (ii) the interaction of this protein with the sugar permeases of the bacterial phosphotransferase system, and (iii) catalysis of phosphoryl transfer to the IIA domains in these permeases.  相似文献   

12.
The hydrophilic subunit of the mannose transporter (IIAB(Man)) of Escherichia coli is a homodimer that contains four tryptophans per monomer, three in the N-terminal domain (Trp12, Trp33, and Trp69) and one in the C-terminal domain (Trp182). Single and double Trp-Phe mutants of IIABMan and of the IIA domain were produced. Fluorescence emission studies revealed that Trp33 and Trp12 are the major fluorescence emitters, Trp69 is strongly quenched in the native protein and Trp182 strongly blue shifted, indicative of a hydrophobic environment. Stabilities of the Trp mutants of dimeric IIA(Man) and IIAB(Man) were estimated from midpoints of the GdmHCl-induced unfolding transitions and from the amount of dimers that resisted dissociation by SDS (sodium dodecyl sulfate), respectively. W12F exhibited increased stability, but only 6% of the wild-type phosphotransferase activity, whereas W33F was marginally and W69F significantly destabilized, but fully active. Second site mutations W33F and W69F in the background of the W12F mutation reduced protein stability and suppressed the functional defect of W12F. These results suggest that flexibility is required for the adjustments of protein-protein contacts necessary for the phosphoryltransfer between the phosphorylcarrier protein HPr, IIA(Man), IIB(Man), and the incoming mannose bound to the transmembrane IIC(Man)-IID(Man) complex.  相似文献   

13.
The solution structure of the post-transition state complex between the isolated cytoplasmic A (IIAMtl) and phosphorylated B (phospho-IIBMtl) domains of the mannitol transporter of the Escherichia coli phosphotransferase system has been solved by NMR. The active site His-554 of IIAMtl was mutated to glutamine to block phosphoryl transfer activity, and the active site Cys-384 of IIBMtl (residues of IIBMtl are denoted in italic type) was substituted by serine to permit the formation of a stable phosphorylated form of IIBMtl. The two complementary interaction surfaces are predominantly hydrophobic, and two methionines on IIBMtl, Met-388 and Met-393, serve as anchors by interacting with two deep pockets on the surface of IIAMtl. With the exception of a salt bridge between the conserved Arg-538 of IIAMtl and the phosphoryl group of phospho-IIBMtl, electrostatic interactions between the two proteins are limited to the outer edges of the interface, are few in number, and appear to be weak. This accounts for the low affinity of the complex (Kd approximately 3.7 mm), which is optimally tuned to the intact biological system in which the A and B domains are expressed as a single polypeptide connected by a flexible 21-residue linker. The phosphoryl transition state can readily be modeled with no change in protein-protein orientation and minimal perturbations in both the backbone immediately adjacent to His-554 and Cys-384 and the side chains in close proximity to the phosphoryl group. Comparison with the previously solved structure of the IIAMtl-HPr complex reveals how IIAMtl uses the same interaction surface to recognize two structurally unrelated proteins and explains the much higher affinity of IIAMtl for HPr than IIBMtl.  相似文献   

14.
The solution structure of the second protein-protein complex of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system, that between histidine-containing phosphocarrier protein (HPr) and glucose-specific enzyme IIA(Glucose) (IIA(Glc)), has been determined by NMR spectroscopy, including the use of dipolar couplings to provide long-range orientational information and newly developed rigid body minimization and constrained/restrained simulated annealing methods. A protruding convex surface on HPr interacts with a complementary concave depression on IIA(Glc). Both binding surfaces comprise a central hydrophobic core region surrounded by a ring of polar and charged residues, positive for HPr and negative for IIA(Glc). Formation of the unphosphorylated complex, as well as the phosphorylated transition state, involves little or no change in the protein backbones, but there are conformational rearrangements of the interfacial side chains. Both HPr and IIA(Glc) recognize a variety of structurally diverse proteins. Comparisons with the structures of the enzyme I-HPr and IIA(Glc)-glycerol kinase complexes reveal how similar binding surfaces can be formed with underlying backbone scaffolds that are structurally dissimilar and highlight the role of redundancy and side chain conformational plasticity.  相似文献   

15.
The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) includes a collection of proteins that accomplish phosphoryl transfer from phosphoenolpyruvate (PEP) to a sugar in the course of transport. The soluble proteins of the glucose transport pathway also function as regulators of diverse systems. The mechanism of interaction of the phosphoryl carrier proteins with each other as well as with their regulation targets has been amenable to study by nuclear magnetic resonance (NMR) spectroscopy. The three-dimensional solution structures of the complexes between the N-terminal domain of enzyme I and HPr and between HPr and enzyme IIA(Glc) have been elucidated. An analysis of the binding interfaces of HPr with enzyme I, IIA(Glc) and glycogen phosphorylase revealed that a common surface on HPr is involved in all these interactions. Similarly, a common surface on IIA(Glc) interacts with HPr, IIB(Glc) and glycerol kinase. Thus, there is a common motif for the protein-protein interactions characteristic of the PTS.  相似文献   

16.
Histidine-containing protein, HPr, of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system has an active site that involves His-15, which is phosphorylated to form a N delta 1-P-histidine, Arg-17, and the carboxy-terminal residue Glu-85. Mutant HPrs with alterations to the three C-terminal residues, Glu-85, Leu-84, and Glu-83, were produced by site-directed mutagenesis. The properties of these mutants were assessed by kinetic analysis of enzyme I, enzyme IImannose, enzyme IIN-acetylglucosamine, and enzyme IImannitol, and the phosphohydrolysis properties of the HPr mutants. The results show that it is the C-terminal alpha-carboxyl of Glu-85 that is involved in the active site, and this involvement may be restricted to the phosphoryl donor action of HPr. The contribution of this alpha-carboxyl group is modest as the deletion of Glu-85 resulted in the reduction of the enzyme II activity (kcat/Km) to about 33%. Removal of both Glu-85 and Leu-84 yields an HPr that is an impaired substrate of both the enzyme I and enzyme II reactions. Glu-83 appears to have no role in the active site.  相似文献   

17.
The lactose transport protein (LacS) of Streptococcus thermophilus is a chimeric protein consisting of an amino-terminal carrier domain and a carboxyl-terminal phosphoenolpyruvate:sugar phosphotransferase system (PTS) IIA protein domain. The histidine residues of LacS were changed individually into glutamine or arginine residues. Of the 11 histidine residues present in LacS, only the His-376 substitution in the carrier domain significantly affected sugar transport. The region around His-376 was found to exhibit sequence similarity to the region around His-322 of the lactose transport protein (LacY) of Escherichia coli, which has been implicated in sugar binding and in coupling of sugar and H+ transport. The H376Q mutation resulted in a reduced rate of uptake and altered affinity for lactose (beta-galactoside), melibiose (alpha-galactoside), and the lactose analog methyl-beta-D-thiogalactopyranoside. Similarly, the extent of accumulation of the galactosides by cells expressing LacS(H376Q) was highly reduced in comparison to cells bearing the wild-type protein. Nonequilibrium exchange of lactose and methyl-beta-D-thiogalactopyranoside by the H376Q mutant was approximately 2-fold reduced in comparison to the activity of the wild-type transport protein. The data indicate that His-376 is involved in sugar recognition and is important, but not essential, for the cotransport of protons and galactosides. The carboxyl-terminal domain of LacS contains 2 histidine residues (His-537 and His-552) that are conserved in seven homologous IIA protein(s) (domains) of PTSs. P-enolpyruvate-dependent phosphorylation of wild-type LacS, but not of the mutant H552Q, was demonstrated using purified Enzyme I and HPr, the general energy coupling proteins of the PTS, and inside-out membrane vesicles isolated from E. coli in which the lactose transport gene was expressed. The His-537 and His-552 mutations did not affect transport activity when the corresponding genes were expressed in E. coli.  相似文献   

18.
The Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system (PTS) in prokaryotes mediates the uptake and phosphorylation of its numerous substrates through a phosphoryl transfer chain where a phosphoryl transfer protein, HPr, transfers its phosphoryl group to any of several sugar-specific Enzyme IIA proteins in preparation for sugar transport. A phosphoryl transfer protein of the PTS, NPr, homologous to HPr, functions to regulate nitrogen metabolism and shows virtually no enzymatic cross-reactivity with HPr. Here we describe the genetic engineering of a "chimeric" HPr/NPr protein, termed CPr14 because 14 amino acid residues of the interface were replaced. CPr14 shows decreased activity with most PTS permeases relative to HPr, but increases activity with the broad specificity mannose permease. The results lead to the proposal that HPr is not optimal for most PTS permeases but instead represents a compromise with suboptimal activity for most PTS permeases. The evolutionary implications are discussed.  相似文献   

19.
The lactose transport protein (LacS) of Streptococcus thermophilus has a C-terminal hydrophilic domain that is homologous to IIA protein and protein domains of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The IIA domain of LacS is phosphorylated on His-552 by the general energy coupling proteins of the PTS, which are Enzyme I and HPr. To study the effect of phosphorylation on transport, the LacS protein was purified and incorporated into liposomes with the IIA domain facing outwards. This allowed the phosphorylation of the membrane-reconstituted protein by purified HPr(His approximately P) of S. thermophilus. Phosphorylation of LacS increased the V(max) of counterflow transport, whereas the V(max) of the proton motive force (delta p)-driven lactose uptake was not affected. In line with a range of kinetic studies, we propose that phosphorylation affects the rate constants for the reorientation of the ternary complex (LacS with bound lactose plus proton), which is rate-determining for counterflow but not for delta p-driven transport.  相似文献   

20.
The oral bacterium Streptococcus salivarius takes up lactose via a transporter called LacS that shares 95% identity with the LacS from Streptococcus thermophilus, a phylogenetically closely related organism. S. thermophilus releases galactose into the medium during growth on lactose. Expulsion of galactose is mediated via LacS and stimulated by phosphorylation of the transporter by HPr(His approximately P), a phosphocarrier of the phosphoenolpyruvate:sugar phosphotransferase transport system (PTS). Unlike S. thermophilus, S. salivarius grew on lactose without expelling galactose and took up galactose and lactose concomitantly when it is grown in a medium containing both sugars. Analysis of the C-terminal end of S. salivarius LacS revealed a IIA-like domain (IIA(LacS)) almost identical to the IIA domain of S. thermophilus LacS. Experiments performed with purified proteins showed that S. salivarius IIA(LacS) was reversibly phosphorylated on a histidine residue at position 552 not only by HPr(His approximately P) but also by HPr(Ser-P)(His approximately P), a doubly phosphorylated form of HPr present in large amounts in rapidly growing S. salivarius cells. Two other major S. salivarius PTS proteins, IIAB(L)(Man) and IIAB(H)(Man), were unable to phosphorylate IIA(LacS). The effect of LacS phosphorylation on growth was studied with strain G71, an S. salivarius enzyme I-negative mutant that cannot synthesize HPr(His approximately P) or HPr(Ser-P)(His approximately P). These results indicated that (i) the wild-type and mutant strains had identical generation times on lactose, (ii) neither strain expelled galactose during growth on lactose, (iii) both strains metabolized lactose and galactose concomitantly when grown in a medium containing both sugars, and (iv) the growth of the mutant was slightly reduced on galactose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号