首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutrotrophins are increasingly appreciated as potential modulators of neuronal function in the adult central nervous system (CNS). To describe the neurotrophin environment within the adult CNS, mRNA and protein expression patterns of neurotrophins-3 and –4 and of brain-derived neurotrophin were investigated in adult rat spinal cord and brain. Co-localization studies with CNS cell type-specific markers demonstrates that multiple cell types, including both neurons and glia, express these neurotrophins in the normal adult CNS. Although widely implicated in important CNS functions such as synaptic plasticity, biological activity of endogenous CNS neurotrophins has not been directly demonstrated. With a sensitive neurite outgrowth bioassay we demonstrate that CNS neurotrophins elicit neurite outgrowth and are biologically active. Moreover, antibody-blocking studies suggest that these three neurotrophins may comprise the bulk of adult CNS neurotrophic activity.  相似文献   

2.
Recent work has shown that estrogen receptor mRNA and protein co-localize with neurotrophin receptor systems in the developing basal forebrain. In the present study we examined the potential for reciprocal regulation of estrogen and neurotrophin receptor systems by their ligands in a prototypical neurotrophin target, the PC12 cell. using in situ hybridization histochemistry, RT-PCR and a modified nuclear exchange assay, we found both estrogen receptor mRNA and estrogen binding in PC12 cells. Moreover, while estrogen binding was relatively low in naive PC12 cells, long-term exposure to NGF enhanced estrogen binding in these cells by sixfold. Furthermore, concurrent exposure to estrogen and NGF receptor mRNAs deifferentially regulated the expression of the two NGF receptor mRNAs. The expression of trkA mRNA was up-regulated, while p75NGFR mRNA was down-regulated transiently. The present data indicate that NGF may increase neuronal sensitivity to estrogen, and that estrogen, by differentially regulating p75NGFR and trkA mRNA, may alter the ratio fo the two NGF receptors, and, conseuqnetly, neurotrophin responsivity. In view of the widespread co-localization of estrogen and neurotrophin receptor systems in the developing CNS, the reciprocal regulation of these receptor systems by NGF and estrogen may have important implications for processes governing neural maturation and the maintenance of neural funciton. 1994 John Wiley & Sons, Inc.  相似文献   

3.
Notch is an integral membrane protein that functions as receptor for ligands such as jagged and delta that are associated with the surface of neighboring cells. Upon ligand binding, notch is proteolytically cleaved within its transmembrane domain by presenilin‐1 (the enzymatic component of the γ‐secretase complex) resulting in the release of a notch intracellular domain which translocates to the nucleus where it regulates gene expression. Notch signaling plays multiple roles in the development of the CNS including regulating neural stem cell (NSC) proliferation, survival, self‐renewal and differentiation. Notch is also present in post‐mitotic neurons in the adult CNS wherein its activation influences structural and functional plasticity including processes involved in learning and memory. Recent findings suggest that notch signaling in neurons, glia, and NSCs may be involved in pathological changes that occur in disorders such as stroke, Alzheimer’s disease and CNS tumors. Studies of animal models suggest the potential of agents that target notch signaling as therapeutic interventions for several different CNS disorders.  相似文献   

4.
The importance of neural impulse activity in regulating neuronal plasticity is widely appreciated; increasingly, it is becoming apparent that activity-dependent communication between neurons and glia is critical in regulating many aspects of nervous system development and plasticity. This communication takes place not only at the synapse, but also between premyelinating axons and glia, which form myelin in the PNS and CNS. Recent work indicates that neural impulse activity releases ATP and adenosine from non-synaptic regions of neurons, which activates purinergic receptors on myelinating glia. Acting through this receptor system, neural impulse activity can regulate gene expression, mitosis, differentiation, and myelination of Schwann cells (SCs) and oligodendrocytes, helping coordinate nervous system development with functional activity in the perinatal period. ATP and adenosine have opposite effects on differentiation of Schwann cells and oligodendrocytes, providing a possible explanation for the opposite effects of impulse activity reported on myelination in the CNS and PNS.  相似文献   

5.
The development of the CNS in vertebrate embryos involves the generation of different sub-types of neurons and glia in a complex but highly-ordered spatio-temporal manner. Zebrafish are commonly used for exploring the development, plasticity and regeneration of the CNS, and the recent development of reliable protocols for isolating and culturing neural stem/progenitor cells(NSCs/NPCs) from the brain of adult fish now enables the exploration of mechanisms underlying the induction/specification/differentiation of these cells. Here, we refined a protocol to generate proliferating and differentiating neurospheres from the entire brain of adult zebrafish. We demonstrated via RT-qPCR that some isoforms of ip3 r, ryr and stim are upregulated/downregulated significantly in differentiating neurospheres, and via immunolabelling that 1,4,5-inositol trisphosphate receptor(IP3 R) type-1 and ryanodine receptor(RyR) type-2 are differentially expressed in cells with neuron-or radial glial-like properties. Furthermore, ATP but not caffeine(IP3 R and RyR agonists, respectively), induced the generation of Ca~(2+) transients in cells exhibiting neuron-or glial-like morphology. These results indicate the differential expression of components of the Ca~(2+) -signaling toolkit in proliferating and differentiating cells. Thus, given the complexity of the intact vertebrate brain, neurospheres might be a useful system for exploring neurodegenerative disease diagnosis protocols and drug development using Ca~(2+) signaling as a read-out.  相似文献   

6.
GABA (gamma-aminobutyric acid) is a major inhibitory synaptic neurotransmitter with widespread distribution in the central nervous system (CNS). GABA can also modulate axonal excitability by activation of GABAA receptors in CNS white matter regions where synapses and neuronal cell bodies are not present. Studies on cultured glia cells have revealed the synthesis of GABA in rat optic nerve O-2A progenitor cells that give rise to oligodendrocytes and type 2 astrocytes in vitro. We report here that: (i) GABA is detected by immuno-electron microscopy in intact rat optic nerve and is localized to glia and pre-myelinated axons during the first few weeks of postnatal development, but is markedly reduced or absent in the adult; and (ii) neonatal optic nerve is depolarized by GABAA receptor agonists or by the inhibition of GABA uptake. These results demonstrate the presence of functional GABAA receptors, and GABA uptake and release mechanisms in developing rat optic nerve, and suggest that excitability of developing axons can be modulated by endogenous neurotransmitter at non-synaptic sites.  相似文献   

7.
Essentially, three neuroectodermal-derived cell types make up the complex architecture of the adult CNS: neurons, astrocytes and oligodendrocytes. These elements are endowed with remarkable morphological, molecular and functional heterogeneity that reaches its maximal expression during development when stem/progenitor cells undergo progressive changes that drive them to a fully differentiated state. During this period the transient expression of molecular markers hampers precise identification of cell categories, even in neuronal and glial domains. These issues of developmental biology are recapitulated partially during the neurogenic processes that persist in discrete regions of the adult brain. The recent hypothesis that adult neural stem cells (NSCs) show a glial identity and derive directly from radial glia raises questions concerning the neuronal-glial relationships during pre- and post-natal brain development. The fact that NSCs isolated in vitro differentiate mainly into astrocytes, whereas in vivo they produce mainly neurons highlights the importance of epigenetic signals in the neurogenic niches, where glial cells and neurons exert mutual influences. Unravelling the mechanisms that underlie NSC plasticity in vivo and in vitro is crucial to understanding adult neurogenesis and exploiting this physiological process for brain repair. In this review we address the issues of neuronal/glial cell identity and neuronal-glial interactions in the context of NSC biology and NSC-driven neurogenesis during development and adulthood in vivo, focusing mainly on the CNS. We also discuss the peculiarities of neuronal-glial relationships for NSCs and their progeny in the context of in vitro systems.  相似文献   

8.
Developmental ethanol exposure produces significant central nervous system (CNS) abnormalities. The cellular mechanisms of ethanol neurotoxicity, however, remain elusive. Recent data implicate altered neurotrophin signaling pathways in ethanol-mediated neuronal death. The present study investigated ethanol-induced alterations in neurotrophin receptor proteins in the rat CNS following chronic ethanol treatment during gestation, via liquid diet to pregnant dams. Brains were dissected on P1 and P10, and Western blots for the neurotrophin receptors TrkA, TrkB, TrkC, and p75 were quantified. Such ethanol treatment produced significant changes in neurotrophin receptor levels in the hippocampus, septum, cerebral cortex, and cerebellum. Receptor levels in hippocampus, septum, and cerebellum, tended to be decreased, while levels in cortex were consistently increased. Males were generally more affected than females. While most of these alterations were transient, sustained or delayed changes were present in P10 septum, cortex, and cerebellum. These results indicate that developmental ethanol exposure produces major changes in the normal physiological levels of the neurotrophin receptors throughout the CNS. These changes in the receptor complement during critical prenatal stages could relate to the anomalous development of the CNS seen in the fetal alcohol syndrome. This relationship is discussed, together with the potential biological effects of such dramatic changes in neurotrophin receptor expression.  相似文献   

9.
The study of adult neural cell production has concentrated on neurogenesis. The mechanisms controlling adult gliogenesis are still poorly understood. Here, we provide evidence for a homeostatic process that maintains the population of glial cells in the Drosophila adult brain. Flies lacking microRNA miR-31a start adult life with a normal complement of glia, but transiently lose glia due to apoptosis. miR-31a expression identifies a subset of predominantly gliogenic adult neural progenitor cells. Failure to limit expression of the predicted E3 ubiquitin ligase, Rchy1, in these cells results in glial loss. After an initial decline in young adults, glial numbers recovered due to compensatory overproduction of new glia by adult progenitor cells, indicating an unexpected plasticity of the Drosophila nervous system. Experimentally induced ablation of glia was also followed by recovery of glia over time. These studies provide evidence for a homeostatic mechanism that maintains the number of glia in the adult fly brain.  相似文献   

10.
11.
M. Berry  P. Hubbard  A. M. Butt 《Brain Cell Biology》2002,31(6-7):457 ppl=-467
We present evidence that NG2+ glia are an integral part of an oligodendrocyte/synantocyte (OS) lineage stream the progenitors of which begin to produce both glial phenotypes at about birth. The NG2 CSPG is differentially distributed within the OS lineage, being expressed in progenitors and synantocytes but not in oligodendrocytes. All cells in the OS lineage, except the primordial stem cells, express O4. The oligodendrocyte line reacts with CD9, but synantocytes are CD9?. Nonetheless, synantocytes are morphologically complex and specialised glia which contact axolemma in myelinated fibres at nodes of Ranvier and synaptic terminals, and form >99% of all NG2+ glia in the adult CNS. Thus, the other NG2+ phenotype, the adult oligodendrocyte progenitor cell (AOPC), constitutes a small population of <1% of all NG2+ glia in the mature CNS. AOPC are a heterogeneous set of cells probably originating from multiple sources which, by definition, produce oligodendrocytes in the adult to replace loss after trauma, demyelination and normal ‘wear and tear’. The definitive functions of synantocytes remain undefined.  相似文献   

12.
It is well established that gonadal steroids mediate sexual differentiation of the brain via direct effects on neurons during a restricted critical period. In addition, estrogen can influence glial morphology in the adult brain, andin vitrostudies suggest estrogen induces glial differentiation. However, there is a lack ofin vivoevidence for steroid effects on glia during the critical period. We report here a hormone-mediated sexual differentiation of arcuate glia as early as Postnatal Day 1. Using glial fibrillary acidic protein immunoreactivity (GFAP-ir), we compared the responsiveness of astroglia in the rat arcuate nucleus among five hormonally different groups. The results indicate increased GFAP-ir cell surface area 24 hr after hormonal manipulation in castrate males compared to intact males, intact females (ANOVA;P< 0.01), and females injected with testosterone propionate (50 μg; ANOVA;P< 0.05). However, astroglia in intact males extended their processes significantly greater distances from the cell body compared to all other treatment groups (ANOVA;P< 0.01). The GFAP-ir cells were categorized into four distinct classes ranging from a simple bipolar to a fully stellate morphology. The frequency distribution of classes varied between groups with more stellate cells found in intact males. Finally, these sex differences in arcuate glia persisted into adulthood. We hypothesize that during the critical period, testosterone, or its metabolite estrogen, induce sexual differentiation of glia. We further hypothesize that in females glial cells remain partially undifferentiated and this may be important to glial plasticity seen in adult female arcuate.  相似文献   

13.
In normal adult retinas, NGF receptor TrkA is expressed in retinal ganglion cells (RGC), whereas glia express p75(NTR). During retinal injury, endogenous NGF, TrkA, and p75(NTR) are up-regulated. Paradoxically, neither endogenous NGF nor exogenous administration of wild type NGF can protect degenerating RGCs, even when administered at high frequency. Here we elucidate the relative contribution of NGF and each of its receptors to RGC degeneration in vivo. During retinal degeneration due to glaucoma or optic nerve transection, treatment with a mutant NGF that only activates TrkA, or with a biological response modifier that prevents endogenous NGF and pro-NGF from binding to p75(NTR) affords significant neuroprotection. Treatment of normal eyes with an NGF mutant-selective p75(NTR) agonist causes progressive RGC death, and in injured eyes it accelerates RGC death. The mechanism of p75(NTR) action during retinal degeneration due to glaucoma is paracrine, by increasing production of neurotoxic proteins TNF-α and α(2)-macroglobulin. Antagonists of p75(NTR) inhibit TNF-α and α(2)-macroglobulin up-regulation during disease, and afford neuroprotection. These data reveal a balance of neuroprotective and neurotoxic mechanisms in normal and diseased retinas, and validate each neurotrophin receptor as a pharmacological target for neuroprotection.  相似文献   

14.
The yin and yang of neurotrophin action   总被引:13,自引:0,他引:13  
Neurotrophins have diverse functions in the CNS. Initially synthesized as precursors (proneurotrophins), they are cleaved to produce mature proteins, which promote neuronal survival and enhance synaptic plasticity by activating Trk receptor tyrosine kinases. Recent studies indicate that proneurotrophins serve as signalling molecules by interacting with the p75 neurotrophin receptor (p75NTR). Interestingly, proneurotrophins often have biological effects that oppose those of mature neurotrophins. Therefore, the proteolytic cleavage of proneurotrophins represents a mechanism that controls the direction of action of neurotrophins. New insights into the 'yin and yang' of neurotrophin activity have profound implications for our understanding of the role of neurotrophins in a wide range of cellular processes.  相似文献   

15.
The current study examines regulation of CYP7B1, a DHEA 7alpha-hydroxylase, by sex hormones. Transfection with estrogen receptor alpha and treatment with 17beta-estradiol in human embryonic kidney 293 cells significantly increased CYP7B1 catalytic activity and mRNA, and stimulated a human CYP7B1 reporter gene. Transfection with estrogen receptor beta showed similar but less significant effects. In the absence of receptors, 17beta-estradiol suppressed CYP7B1 activity, suggesting that estrogenic effects may be different in cells not expressing receptors. Quantitation of CYP7B1 mRNA in adult and fetal human tissues showed markedly higher CYP7B1 mRNA levels in fetal tissues compared with the corresponding adult ones, except in the liver. This indicates a tissue-specific, developmental regulation of CYP7B1 and suggests an important function for this enzyme in fetal life. DHEA secreted by fetal adrenals is an essential precursor for placental estrogen formation. Since CYP7B1 diverts DHEA from the sex hormone biosynthetic pathway, estrogen receptor-mediated up-regulation of CYP7B1 should lead to less DHEA available for sex hormone synthesis and may help to maintain normal levels of estrogens and androgens in human tissues, especially during fetal development. Regulation by estrogens may also be of importance in other processes where CYP7B1 is involved, including cholesterol homeostasis, cellular proliferation, and CNS function.  相似文献   

16.
Neurotrophin signaling is essential for normal nervous system development and adult function. Neurotrophins are secreted proteins that signal via interacting with two neurotrophin receptor types: the multifaceted p75 neurotrophin receptor and the tropomyosin receptor kinase receptors. In vivo, neurons compete for the limited quantities of neurotrophins, a process that underpins neural plasticity, axonal targeting, and ultimately survival of the neuron. Thirty years ago, it was discovered that p75 neurotrophin receptor and tropomyosin receptor kinase A form a complex and mediate high-affinity ligand binding and survival signaling; however, despite decades of functional and structural research, the mechanism of modulation that yields this high-affinity complex remains unclear. Understanding the structure and mechanism of high-affinity receptor generation will allow development of pharmaceuticals to modulate this function for treatment of the many nervous system disorders in which altered neurotrophin expression or signaling plays a causative or contributory role. Here we re-examine the key older literature and integrate it with more recent studies on the topic of how these two receptors interact. We also identify key outstanding questions and propose a model of inside-out allosteric modulation to assist in resolving the elusive high-affinity mechanism and complex.  相似文献   

17.
High-affinity tyrosine kinase A (trkA) neurotrophin receptors on neurons and nonneuronal cells elicit differentiation or survival functions in response to nerve growth factor (NGF), whereas the low-affinity neurotrophin (p75) receptor modulates trkA activity or can independently cause apoptosis or NFkappaB-mediated survival functions. We examined dental tissues for the presence of trkA-like immunoreactivity (trkA-IR), to determine which nonneuronal cell types express it in normal compared with inflamed teeth and how the trkA-positive cells relate to those expressing the p75 receptor and/or NGF. Normal and injured rat molars (dentin cavity for 4 h, 16-24 h, 3 days, 16 days, or 5 weeks) were immunoreacted using the ABC detection system for two anti-trkA antibodies (sTA, Santa Cruz Biotechnology; rTA, L. Reichardt) and antibodies against p75 and NGF, all of which also stained pulpal nerve fibers. We report that, when using the sTA antibody (recognizing the intracellular carboxy terminal), nonneuronal trkA-IR was found in odontoblasts of normal teeth and also in invading polymorphonuclear leukocytes (PMNs) and reparative odontoblasts after injury. When using rTA (recognizing the extracellular domain of the receptor), nonneuronal trkA-IR was only found in odontoblasts. Odontoblasts also had NGF-IR but did not label for NGF mRNA. The lack of odontoblast NGF mRNA suggests that NGF is passed from fibroblasts to the adjacent odontoblasts, where it is picked up by receptor-mediated mechanisms for regulation of odontoblast function. Tooth injury disrupts this system such that trkA-IR decreases in injured odontoblasts, p75 decreases in fibroblasts, and NGF is upregulated by fibroblasts and accumulates in the injured pulp and surviving odontoblasts. Pulpal NGF may contribute to chemoattraction for the invading leukocytes or their sTA-IR may have been induced in response to pulpal NGF. Thus, tooth pulp has a different distribution of nonneuronal NGF and its paracrine receptors during inflammation compared with normal conditions.  相似文献   

18.
The neurotrophins mediate their effects through binding to two classes of receptors, a tyrosine kinase receptor, member of the Trk family, and the low-affinity neurotrophin receptor, p75LNGFR, of as yet undefined signalling capacity. The need for a two-component receptor system in neurotrophin signalling is still not understood. Using site-directed mutagenesis, we have identified positively charged surfaces in BDNF, NT-3 and NT-4 that mediate binding to p75LNGFR. Arg31 and His33 in NT-3, and Arg34 and Arg36 in NT-4, located in an exposed hairpin loop, were found to be essential for binding to p75LNGFR. In BDNF, however, positively charged residues critical for p75LNGFR binding (Lys95, Lys96 and Arg97) were found in a spatially close but distinct loop region. Models of each neurotrophin were built using the coordinates of NGF. Analysis of their respective electrostatic surface potentials revealed similar clusters of positively charged residues in each neurotrophin but with differences in their precise spatial locations. Disruption of this positively charged interface abolished binding to p75LNGFR but not activation of cognate Trk receptors or biological activity in Trk-expressing fibroblasts. Unexpectedly, loss of low-affinity binding in NT-4, but not in BDNF or NT-3, affected receptor activation and biological activity in neuronal cells co-expressing p75LNGFR and TrkB, suggesting a role for p75LNGFR in regulating biological responsiveness to NT-4. These findings reveal a possible mechanism of ligand discrimination by p75LNGFR and suggest this receptor may selectively modulate the biological actions of specific neurotrophin family members.  相似文献   

19.
20.
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号