首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eosinophil cationic protein (ECP) is a ribonuclease secreted from activated eosinophils that may cause tissue injure as a result of eosinophilic inflammation. ECP possesses bactericidal, antiviral and helminthotoxic activity and inhibits mammalian cell growth. The mechanism by which ECP exerts its toxicity is not known but it has been related to the ability of the protein to destabilise lipid bilayers. We have assessed the involvement of some cationic and aromatic surface exposed residues of ECP in the inhibition of proliferation of mammalian cell lines. We have constructed ECP mutants for the selected residues and assessed their ability to prevent cell growth. Trp10 and Trp35 together with the adjacent stacking residue are critical for the damaging effect of ECP on mammalian cell lines. These residues are also crucial for the membrane disruption activity of ECP. Other exposed aromatic residues packed against arginines (Arg75-Phe76 and Arg121-Tyr122) and specific cationic amino acids (Arg101and Arg104) of ECP play a secondary role in the cell growth inhibition. This may be related to the ability of the protein to bind carbohydrates such as those found on the surface of mammalian cells.  相似文献   

2.
Human eosinophil granules contain several basic proteins including eosinophil cationic protein (ECP), eosinophil-derived neurotoxin (EDN) and major basic protein (MBP). ECP and MBP are potent helminthotoxins while EDN is less so. Both ECP and EDN possess neurotoxic and ribonuclease activities. A clone representing ECP mRNA was isolated from an eosinophil lambda ZAP cDNA library. The cDNA sequence codes for a preprotein of 160 amino acids and a protein of 133 amino acids, the amino terminus of which is identical to the known partial amino acid sequence of ECP. The ECP nucleotide sequence shows similarity to EDN, rat pancreatic ribonuclease, and human angiogenin; all are members of the ribonuclease gene superfamily. Although the deduced amino acid sequence of ECP shares identical active site and substrate binding site residues with EDN, angiogenin, and human pancreatic ribonuclease, the ribonuclease activity of ECP is 50 to 100 times less than that of EDN possibly because of the lack of a positively charged residue at human pancreatic ribonuclease position 122. The calculated isoelectric point (10.8), electronic charge (14.5), and cationic charge distribution of ECP are different from those of EDN but similar to those of MBP, which may account in part for the greater helminthotoxic activity of ECP when compared to EDN. These data suggest that ECP and EDN are derived from a common ancestral ribonuclease gene and that ECP has evolved into a potent helminthotoxin similar in some respects to MBP, while losing much of its ribonuclease activity.  相似文献   

3.
The eosinophil granule contains a series of basic proteins, including major basic protein, eosinophil peroxidase, eosinophil-derived neurotoxin (EDN), and eosinophil cationic protein (ECP). Both EDN and ECP are neurotoxins and helminthotoxins. Comparison of the partial N-terminal amino acid sequences of EDN and ECP showed 67% identity; surprisingly, they also showed structural homology to pancreatic ribonuclease (RNase). Therefore, we determined whether EDN and ECP possess RNase enzymatic activity. By spectrophotometric assay of acid soluble nucleotides formed from yeast RNA, purified EDN showed RNase activity similar to bovine pancreatic RNase, whereas ECP was 50 to 100 times less active. The RNase activity associated with ECP was not significantly inhibited after exposure of ECP to polyclonal or monoclonal antibody to EDN. These results indicate that EDN and ECP both possess RNase activity, the RNase activity of EDN and ECP is specific, and EDN and ECP have maintained not only structural but also functional homology to pancreatic RNase.  相似文献   

4.
Eosinophil cationic protein (ECP)/ribonuclease 3 is a member of the RNase A superfamily involved in inflammatory processes mediated by eosinophils. ECP is bactericidal, helminthotoxic, and cytotoxic to tracheal epithelium cells and to several mammalian cell lines although its RNase activity is low. We studied the thermal stability of ECP by fourth-derivative UV absorbance spectra, circular dichroism, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The T (1/2) values obtained with the different techniques were in very good agreement (T (1/2) approximately 72 degrees C), and the stability was maintained in the pH range between 5 and 7. The ECP calorimetric melting curve showed, in addition to the main transition, a pretransitional conformational change with a T (1/2) of 44 degrees C. Both calorimetric transitions disappeared after successive re-heatings, and the ratio DeltaH versus DeltaH (vH) of 2.2 indicated a significant deviation from the two-state model. It was observed that the thermal unfolding was irreversible. The unfolding process gives rise to changes in the environment of aromatic amino acids that are partially maintained in the refolded protein with the loss of secondary structure and the formation of oligomers. From the thermodynamic analysis of ECP variants, the contribution of specific amino acids, such as Trp10 and the region 115-122, to thermal stability was also determined. The high thermal stability of ECP may contribute to its resistance to degradation when the protein is secreted to the extracellular medium during the immune response.  相似文献   

5.
Eosinophil granule proteins, eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin are members of the RNase A superfamily, which play a crucial role in host defense against various pathogens as they are endowed with several biological activities. Some of the biological activities possessed by ECP have been attributed to its strong basic character. In the current study, we have investigated the role of five unique basic residues, Arg22, Arg34, Arg61, Arg77 and His64 of ECP in its catalytic, cytotoxic, antibacterial and antiparasitic activities. These residues were changed to alanine to generate single and double mutants. None of the selected residues was found to be involved in the RNase activity of ECP. The substitution of all five residues individually was detrimental for the cytotoxic, antibacterial and antiparasitic activities of ECP; however, mutation of Arg22 and Arg34 resulted in the most significant effects. The double mutants also had reduced biological activities. All ECP mutants that had significantly reduced toxicity also had reduced membrane destabilization activity. Our study demonstrates that Arg22, Arg34, Arg61, Arg77 and His64 of ECP are crucial for its membrane destabilization activity, which appears to be the underlying mechanism of its cytotoxic, antibacterial and antiparasitic activities.  相似文献   

6.
The eosinophil cationic protein (ECP) is an eosinophil-secreted RNase involved in the immune host defense, with a cytotoxic activity against a wide range of pathogens. The protein displays antimicrobial activity against both Gram-negative and Gram-positive strains. The protein can destabilize lipid bilayers, although the action at the membrane level can only partially account for its bactericidal activity. We have now shown that ECP can bind with high affinity to the bacteria-wall components. We have analyzed its specific association to lipopolysaccharides (LPSs), its lipid A component, and peptidoglycans (PGNs). ECP high-affinity binding capacity to LPSs and lipid A has been analyzed by a fluorescent displacement assay, and the corresponding dissociation constants were calculated using the protein labeled with a fluorophor. The protein also binds in vivo to bacteria cells. Ultrastructural analysis of cell bacteria wall and morphology have been visualized by scanning and transmission electron microscopy in both Escherichia coli and Staphylococcus aureus strains. The protein damages the bacteria surface and induces the cell population aggregation on E. coli cultures. Although both bacteria strain cells retain their shape and no cell lysis is patent, the protein can induce in E. coli the outer membrane detachment. ECP also activates the cytoplasmic membrane depolarization in both strains. Moreover, the depolarization activity on E. coli does not require any pretreatment to overcome the outer membrane barrier. The protein binding to the bacteria-wall surface would represent a first encounter step key in its antimicrobial mechanism of action.  相似文献   

7.
The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity   总被引:5,自引:0,他引:5  
The eosinophil cationic protein (ECP) is a specific cytotoxic constituent of granules. In this work we demonstrated that ECP has a ribonuclease activity. Purified ECP was resolved by ion exchange chromatography into subfractions, which all showed ribonuclease activity. Another eosinophil granule protein, EPX, identical with eosinophil-derived neurotoxin (EDN) had a 125-fold higher RNase activity than ECP. ECP may exert its cytotoxic effects on parasites and cells because of its extreme basicity alone or it may be internalized and act by degrading mRNA.  相似文献   

8.
Eosinophil cationic protein (ECP; RNase 3) is a human ribonuclease found only in eosinophil leukocytes that belongs to the RNase A superfamily. This enzyme is bactericidal, helminthotoxic and cytotoxic to mammalian cells and tissues. The protein has been cloned, heterologously overexpressed, purified and crystallized. Its crystal structure has been determined and refined using data up to 1. 75 A resolution. The molecule displays the alpha+beta folding topology typical for members of the ribonuclease A superfamily. The catalytic active site residues are conserved with respect to other ribonucleases of the superfamily but some differences appear at substrate recognition subsites, which may account, in part, for the low catalytic activity. Most strikingly, 19 surface-located arginine residues confer a strong basic character to the protein. The high concentration of positive charges and the particular orientation of the side-chains of these residues may also be related to the low activity of ECP as a ribonuclease and provides an explanation for its unique cytotoxic role through cell membrane disruption.  相似文献   

9.
We examined the bactericidal activity of two proteins that are abundant in the cytoplasmic granules of human eosinophils, major basic protein (MBP) and eosinophil cationic protein (ECP). Unlike the human neutrophil's peptide defensins, both MBP and ECP killed stationary phase Staphylococcus aureus 502A in a simple nutrient-free buffer solution. Although MBP also killed Escherichia coli ML-35 with considerable efficacy under these experimental conditions, the in vitro activity of ECP against E. coli was considerably enhanced if mid-logarithmic phase bacteria replaced stationary phase organisms or if the assay medium was enriched with trypticase soy broth. The antibacterial activity of both eosinophil proteins was modulated by incubation time, protein concentration, temperature and pH. A pBR322-transformed derivative of E. coli ML-35 was used to examine the effects of ECP and MBP on integrity of the bacterial inner membrane (IM) and outer membrane. Although both MBP and ECP caused outer and inner membrane permeabilization when nutrients were present, only MBP was effective under nutrient-free conditions. Two proton ionophores (DNP and carbonyl cyanide m-chlorophenyl hydrazone) protected E. coli from the bactericidal effects of ECP but not from MBP. These findings establish that MBP and ECP have bactericidal properties and suggest that these proteins kill E. coli by similar but nonidentical mechanisms marked by an attack on the target cell's membranes. In view of evidence that high concentrations of ECP and MBP exist in cytoplasmic granules whose contents are translocated to phagocytic vacuoles, we suggest that MBP and ECP contribute to the eosinophil's ability to kill ingested bacteria.  相似文献   

10.
To study the cytotoxic reactions responsible for mediating eosinophil damage to schistosomula of Schistosoma mansoni, we have used cytoplasts (eosinophil or neutrophil vesicles devoid of granules and nuclei, with an intact oxidase in their plasma membrane) in combination with purified eosinophil cationic protein (ECP) or major basic protein (MBP) in a cytotoxicity test toward schistosomula. Suboptimal concentrations of ECP (10(-6) M) or MBP (10(-6) M) resulting in less than 10% killing were used in combination with cytoplasts. Cytoplasts alone in the presence of immune serum tested over a wide range of cytoplast:schistosomula ratios generated superoxide and hydrogen peroxide, but were unable to damage schistosomula. However, when a suboptimal ECP concentration (10(-6) M) was combined with neutroplasts or eosinoplasts, 43.9% +/- 8.5 (n = 7) and 24.7% +/- 9.8 (n = 3), respectively, of the schistosomula were killed. Oxygen metabolites were responsible for the synergism, because cytoplasts from a patient with chronic granulomatous disease were unable to act in synergy with ECP. In contrast to ECP, no synergism was found between cytoplasts and MBP (10(-6) to 2 X 10(-5)M). These results show that oxygen metabolites are important for the killing of schistosomula by lowering the concentration of ECP needed to inflict damage.  相似文献   

11.
The eosinophil cationic protein (ECP) is a human antimicrobial protein involved in the host immune defense that belongs to the pancreatic RNase A family. ECP displays a wide range of antipathogen activities. The protein is highly cationic and its bactericidal activity is dependant on both cationic and hydrophobic surface exposed residues. Previous studies on ECP by site-directed mutagenesis indicated that the RNase activity is not essential for its bactericidal activity. To further understand the ECP bactericidal mechanism, we have applied enzymatic and chemical limited cleavage to search for active sequence determinants.Following a search for potential peptidases we selected the Lys-endoproteinase, which cleaves the ECP polypeptide at the carboxyl side of its unique Lys residue, releasing the N-terminal fragment (0-38).Chemical digestion using cyanogen bromide released several complementary peptides at the protein N-terminus. Interestingly, ECP treatment with cyanogen bromide represents a new example of selective chemical cleavage at the carboxyl side of not only Met but also Trp residues. Recombinant ECP was denatured and carboxyamidomethylated prior to enzymatic and chemical cleavage. Irreversible denaturation abolishes the protein bactericidal activity.The characterization of the digestion products by both enzymatic and chemical approaches identifies a region at the protein N-terminus, from residues 11 to 35, that retains the bactericidal activity. The most active fragment, ECP(0-38), is further compared to ECP derived synthetic peptides. The region includes previously identified stretches related to lipopolysaccharide binding and bacteria agglutination. The results contribute to define the shortest ECP minimized version that would retain its antimicrobial properties. The data suggest that the antimicrobial RNase can provide a scaffold for the selective release of cytotoxic peptides.  相似文献   

12.
Eosinophil cationic protein (ECP/RNase 3) and the skin derived ribonuclease 7 (RNase 7) are members of the RNase A superfamily. RNase 3 is mainly expressed in eosinophils whereas RNase 7 is primarily secreted by keratinocytes. Both proteins present a broad-spectrum antimicrobial activity and their bactericidal mechanism is dependent on their membrane destabilizing capacities. Using phospholipid vesicles as membrane models, we have characterized the protein membrane association process. Confocal microscopy experiments using giant unilamellar vesicles illustrate the morphological changes of the liposome population. By labelling both lipid bilayers and proteins we have monitored the kinetic of the process. The differential protein ability to release the liposome aqueous content was evaluated together with the micellation and aggregation processes. A distinct morphology of the protein/lipid aggregates was visualized by transmission electron microscopy and the proteins overall secondary structure in a lipid microenvironment was assessed by FTIR. Interestingly, for both RNases the membrane interaction events take place in a different behaviour and timing: RNase 3 triggers first the vesicle aggregation, while RNase 7 induces leakage well before the aggregation step. Their distinct mechanism of action at the membrane level may reflect different in vivo antipathogen functions.  相似文献   

13.
CATs,a family of three distinct mammalian cationic amino acid transporters   总被引:2,自引:0,他引:2  
E. I. Closs 《Amino acids》1996,11(2):193-208
Summary Three related mammalian carrier proteins that mediate the transport of cationic amino acids through the plasma membrane have been identified in murine and human cells (CAT for cationic amino acid transporter). Models of the CAT proteins in the membrane suggest they have 12 or 14 transmembrane domains connected by short hydrophilic loops and intracellular N- and C-termini. The transport activity of the CAT proteins is sensitive to trans-stimulation and independent of the presence of sodium ions. These features agree with the behaviour of carrier proteins mediating facilitated diffusion. The three CAT proteins, CAT-1, CAT-2A and CAT-2(B) are encoded by two different genes (CAT-1 and CAT-2). CAT-1 and CAT-2(B) exhibit transport properties consistent with system y+, the principal mechanism for cellular uptake of cationic amino acids. In contrast, CAT-2A has tenfold lower substrate affinity, greater apparent maximal velocity and it is much less sensitive to trans-stimulation. In addition to structural and functional aspects, this review discusses the role of the CAT proteins for supplying substrate to NO synthases and the property of the rodent CAT-1 proteins to function as virus receptors.Abbreviations CAT cationic amino acid transporter - m mouse - h human - r rat - Tea T cell early activation protein - CAA cationic amino acids - TM transmembrane spanning domain - rBAT related to b0,+ amino acid transporter - 4F2hc 4F2 heavy chain cell surface antigen - MuLV murine leukemia viruses - Km Michaelis Menten constant  相似文献   

14.
Abstract Antimicrobial RNases are small cationic proteins belonging to the vertebrate RNase A superfamily and endowed with a wide range of antipathogen activities. Vertebrate RNases, while sharing the active site architecture, are found to display a variety of noncatalytical biological properties, providing an excellent example of multitask proteins. The antibacterial activity of distant related RNases suggested that the family evolved from an ancestral host-defence function. The review provides a structural insight into antimicrobial RNases, taking as a reference the human RNase 3, also named eosinophil cationic protein (ECP). A particular high binding affinity against bacterial wall structures mediates the protein action. In particular, the interaction with the lipopolysaccharides at the Gram-negative outer membrane correlates with the protein antimicrobial and specific cell agglutinating activity. Although a direct mechanical action at the bacteria wall seems to be sufficient to trigger bacterial death, a potential intracellular target cannot be discarded. Indeed, the cationic clusters at the protein surface may serve both to interact with nucleic acids and cell surface heterosaccharides. Sequence determinants for ECP activity were screened by prediction tools, proteolysis and peptide synthesis. Docking results are complementing the structural analysis to delineate the protein anchoring sites for anionic targets of biological significance.  相似文献   

15.
The eosinophil cationic protein (ECP) is an eosinophil‐secreted RNase involved in the immune host defense, with a cytotoxic activity against a wide range of pathogens. During inflammation and eosinophilia disorders, ECP is secreted to the inflammation area, where it would contribute to the immune response. ECP secretion causes also severe damage to the host own tissues. ECP presents a high affinity for heparin and this property might be crucial for its immunomodulating properties, antipathogen action, and its toxicity against eukaryotic cells. ECP, also known as human RNase 3, belongs to the mammalian RNase A superfamily and its RNase activity is required for some of its biological properties. We have now proven that ECP heparin binding affinity depends on its RNase catalytic site, as the enzymatic activity is blocked by heparin. We have applied molecular modeling to analyze ECP binding to heparin representative probes, and identified protein residues at the catalytic and substrate binding sites that could contribute to the interaction. ECP affinity for heparin and other negatively charged glycosaminoglycans (GAGs) can explain not only its binding to the eukaryote cells glycocalix but also the reported high affinity for the specific carbohydrates at bacteria cell wall, promoting its antimicrobial action. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The eosinophil cationic protein (ECP) is a small polypeptide that originates from activated eosinophil granulocytes. A wide range of stimuli has been shown to induce the secretion of ECP. The gene that encodes the human ECP is located on chromosome 14, and the protein shares the overall three-dimensional structure and the RNase active-site residues with other proteins in the RNase A superfamily. Several single-nucleotide polymorphisms in the human ECP gene have been currently described. ECP has many biological functions, including an immunoregulatory function, the regulation of fibroblast activity, and the induction of mucus secretion in the airway. Additionally, the protein is a potent cytotoxic molecule and has the capacity to kill mammalian and nonmammalian cells. The purpose of this article was to review the known biological and genetic characteristics of ECP that contribute to the understanding of this protein's role in the development and progression of a wide variety of diseases.  相似文献   

17.
The human eosinophil granule contains a number of cationic proteins that have been identified and purified to homogeneity, including the major basic protein (MBP), the eosinophil cationic protein (ECP), and the eosinophil-derived neurotoxin (EDN). Because of confusion in the literature regarding the distinctiveness of MBP and ECP, we investigated the immunochemical and physicochemical properties of these purified proteins by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE), by specific double antibody radioimmunoassays (RIA) for MBP and ECP, and by fractionation of acid-solubilized eosinophil granules on Sephadex G-50 columns. Analysis of a mixture of the three purified proteins by SDS-PAGE showed that they migrated as three distinct bands with differing m.w. Comparison by specific RIA for MBP and ECP did not demonstrate any appreciable immunochemical cross-reactivities among the three proteins. Sephadex G-50 column fractions of acid-solubilized eosinophil granules were analyzed by RIA and by SDS-PAGE analysis of individual column fractions. MBP, ECP, and EDN eluted at different volumes from Sephadex G-50 columns as determined by RIA and SDS-PAGE. Soluble extracts of eosinophil granules from patients with the hypereosinophilic syndrome contained between six and 64 times more MBP than ECP on a weight basis. These observations demonstrate that MBP, ECP, and EDN are distinctive cationic proteins of the human eosinophil granule and that eosinophil granules from patients with eosinophilia contain considerably greater quantities of MBP than ECP.  相似文献   

18.
The interaction between the highly basic and cytotoxic eosinophil cationic protein (ECP) and human plasma proteins is described. The major plasma protein responsible for complex-formation with ECP was shown to be the 'fast' form of alpha 2-macroglobulin (alpha 2M). Large amounts of complexes were observed in a serum obtained from a patient with hypereosinophilic syndrome. The amount of complexes that could be generated in vitro in normal fresh serum was rather low and was even less in fresh citrated plasma. Complex-formation between the non-proteolytic ECP and alpha 2M was augmented in the presence of methylamine. Binding of ECP to alpha 2M was also induced by the proteinases cathepsin G and thrombin, and the binding was competitive with cathepsin G. Methylamine and the proteinases seem to share a common mechanism in inducing binding of ECP. The nature of the ECP-alpha 2M interaction is non-covalent, but withstands high salt concentrations. The interaction with alpha 2M may reflect a mechanism by which the organism protects itself against the deleterious effects of the highly cytotoxic protein ECP.  相似文献   

19.
Major basic protein (MBP), an arginine-rich basic polypeptide that constitutes the crystalloid core of the large specific eosinophil granule, has previously been shown to stimulate noncytolytic histamine release from human basophils and rat mast cells by an IgE-independent mechanism. Two additional basic polypeptides present in eosinophil granules, eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN), were examined for similar activity in the present study. Acid-solubilized eosinophil granules were fractionated by chromatography on a Sephadex G-50 column. Incubation of basophil-containing human mononuclear cells with the individual column fractions demonstrated that histamine release occurred only with the fractions that contained MBP. The selectivity of the basophil response for MBP was confirmed by using equimolar concentrations of purified MBP, ECP, and EDN. In contrast, both MBP and ECP, but not EDN, stimulated histamine release from purified rat peritoneal mast cells. Reduction and alkylation of the MBP molecule diminished the response of human basophils to MBP but enhanced the potency of the molecule with rat mast cells. The distinct potency of MBP as a stimulus for histamine secretion from human basophils suggests that eosinophil release of MBP may be a specific event in the augmentation of immediate hypersensitivity reactions and other disorders characterized by eosinophilia.  相似文献   

20.
Eosinophil cationic protein (ECP), one of the major components of basic granules of eosinophils, is cytotoxic to tracheal epithelium. However, the extent of this effect on other cell types has not been evaluated in vitro. In this study, we evaluated the effect of ECP on 13 mammalian cell lines. ECP inhibited the growth of several cell lines including those derived from carcinoma and leukemia in a dose-dependent manner. The IC(50) values on A431 cells, MDA-MB-453 cells, HL-60 cells and K562 cells were estimated to be approximately 1-5 microm. ECP significantly suppressed the size of colonies of A431 cells, and decreased K562 cells in G1/G0 phase. However, there was little evidence that ECP killed cells in either cell line. These effects of ECP were not enhanced by extending its N-terminus. Rhodamine B isothiocyanate-labeled ECP started to bind to A431 cells after 0.5 h and accumulated for up to 24 h, indicating that specific affinity for the cell surface may be important. The affinity of ECP for heparin was assessed and found to be reduced when tryptophan residues, one of which is located at a position in the catalytic subsite of ribonuclease in ECP, were modified. The growth-inhibitory effect was also attenuated by this modification. These results suggest that growth inhibition by ECP is dependent on cell type and is cytostatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号