首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonphotic entrainment of an overt sleep-wake rhythm and a circadian pacemaker-driving temperature/melatonin rhythm suggests existence of feedback mechanisms in the human circadian system. In this study, the authors constructed a phase dynamics model that consisted of two oscillators driving temperature/melatonin and sleep-wake rhythms, and an additional oscillator generating an overt sleep-wake rhythm. The feedback mechanism was implemented by modifying couplings between the constituent oscillators according to the history of correlations between them. The model successfully simulated the behavior of human circadian rhythms in response to forced rest-activity schedules under free-run situations: the sleep-wake rhythm is reentrained with the circadian pacemaker after release from the schedule, there is a critical period for the schedule to fully entrain the sleep-wake rhythm, and the forced rest-activity schedule can entrain the circadian pacemaker with the aid of exercise. The behavior of human circadian rhythms was reproduced with variations in only a few model parameters. Because conventional models are unable to reproduce the experimental results concerned here, it was suggested that the feedback mechanisms included in this model underlie nonphotic entrainment of human circadian rhythms.  相似文献   

2.
The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.  相似文献   

3.
Exogenous melatonin (0.5-10 mg) has been shown to entrain the free-running circadian rhythms of some blind subjects. The aim of this study was to assess further the entraining effects of a daily dose of 0.5 mg melatonin on the cortisol rhythm and its acute effects on subjective sleep in blind subjects with free-running 6-sulphatoxymelatonin (aMT6s) rhythms (circadian period [tau] 24.23-24.95 h). Ten subjects (9 males) were studied, aged 32 to 65 years, with no conscious light perception (NPL). In a placebo-controlled, single-blind design, subjects received 0.5 mg melatonin or placebo p.o. daily at 2100 h (treatment duration 26-81 days depending on individuals' circadian period). Subjective sleep was assessed from daily sleep and nap diaries. Urinary cortisol and aMT6s were assessed for 24 to 48 h weekly and measured by radioimmunoassay. Seven subjects exhibited an entrained or shortened cortisol period during melatonin treatment. Of these, 4 subjects entrained with a period indistinguishable from 24 h, 2 subjects continued to free run for up to 25 days during melatonin treatment before their cortisol rhythm became entrained, and 1 subject appeared to exhibit a shortened cortisol period throughout melatonin treatment. The subjects who entrained within 7 days did so when melatonin treatment commenced in the phase advance portion of the melatonin PRC (CT6-18). When melatonin treatment ceased, cortisol and aMT6s rhythms free ran at a similar period to before treatment. Three subjects failed to entrain with initial melatonin treatment commencing in the phase delay portion of the PRC. During melatonin treatment, there was a significant increase in nighttime sleep duration and a reduction in the number and duration of daytime naps. The positive effect of melatonin on sleep may be partly due to its acute soporific properties. The findings demonstrate that a daily dose of 0.5 mg melatonin is effective at entraining the free-running circadian systems in most of the blind subjects studied, and that circadian time (CT) of administration of melatonin may be important in determining whether a subject entrains to melatonin treatment. Optimal treatment with melatonin for this non-24-h sleep disorder should correct the underlying circadian disorder (to entrain the sleep-wake cycle) in addition to improving sleep acutely.  相似文献   

4.
Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light ( approximately 450 lux; approximately 1.2 W/m(2)) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration.  相似文献   

5.
Melatonin in circadian sleep disorders in the blind   总被引:2,自引:0,他引:2  
Assessment of sleep patterns in blind people demonstrates a high prevalence of sleep disorders. Our studies have shown that subjects with no conscious light perception (NPL) have a higher occurrence and more severe sleep disorders than those with some degree of light perception (LP). A detailed study of 49 blind individuals showed that those with NPL are likely to have free-running (FR) circadian rhythms (aMT6s, cortisol) including sleep. Non-24-hour (or FR) sleep-wake disorder, characterised by periods of good and bad sleep is a condition that may benefit from melatonin treatment. Melatonin has been administered to NPL subjects with FR circadian rhythms and compared with placebo (or the no-treatment baseline) sleep parameters improved. The results suggest that prior knowledge of the subject's type of circadian rhythm, and timing of treatment in relation to the individual's circadian phase, may improve the efficacy of melatonin.  相似文献   

6.

Background

The phase and amplitude of rhythms in physiology and behavior are generated by circadian oscillators and entrained to the 24-h day by exposure to the light-dark cycle and feedback from the sleep-wake cycle. The extent to which the phase and amplitude of multiple rhythms are similarly affected during altered timing of light exposure and the sleep-wake cycle has not been fully characterized.

Methodology/Principal Findings

We assessed the phase and amplitude of the rhythms of melatonin, core body temperature, cortisol, alertness, performance and sleep after a perturbation of entrainment by a gradual advance of the sleep-wake schedule (10 h in 5 days) and associated light-dark cycle in 14 healthy men. The light-dark cycle consisted either of moderate intensity ‘room’ light (∼90–150 lux) or moderate light supplemented with bright light (∼10,000 lux) for 5 to 8 hours following sleep. After the advance of the sleep-wake schedule in moderate light, no significant advance of the melatonin rhythm was observed whereas, after bright light supplementation the phase advance was 8.1 h (SEM 0.7 h). Individual differences in phase shifts correlated across variables. The amplitude of the melatonin rhythm assessed under constant conditions was reduced after moderate light by 54% (17–94%) and after bright light by 52% (range 12–84%), as compared to the amplitude at baseline in the presence of a sleep-wake cycle. Individual differences in amplitude reduction of the melatonin rhythm correlated with the amplitude of body temperature, cortisol and alertness.

Conclusions/Significance

Alterations in the timing of the sleep-wake cycle and associated bright or moderate light exposure can lead to changes in phase and reduction of circadian amplitude which are consistent across multiple variables but differ between individuals. These data have implications for our understanding of circadian organization and the negative health outcomes associated with shift-work, jet-lag and exposure to artificial light.  相似文献   

7.
生物钟基因研究进展   总被引:7,自引:1,他引:6  
昼夜节律是以大约24 h为周期波动的生物现象.这些节律包括血压、体温、激素水平、血中免疫细胞的数量、睡眠觉醒周期循环等.基因水平上的昼夜节律研究还只是刚起步,介绍不同物种控制昼夜行为的共同基因(如period 、timless 、clock基因等)的研究进展,特别是一些有关调控昼夜节律基因的转录因子的研究.同时讨论果蝇和人类生物钟调节的共同分子机制.  相似文献   

8.
A patient who developed an irregular sleep-wake pattern following prolactin-secreting pituitary microadenoma is described. The patient reported difficulties in sleep onset and awakening at the desired time, which caused major dysfunction in his daily life activities. Despite these difficulties, the sleep-related complaints of the patient remained unrecognized for as long as three yrs. Statistical analyses of the patient's rest-activity patterns revealed that the disruption of the sleep-wake circadian rhythm originated from a disharmony between ultradian (semicircadian) and circadian components. The circadian component displayed shorter than 24 h periodicity most of the time, but the semicircadian component fluctuated between longer and shorter than 12 h periods. Additionally, desynchrony in terms of period length was found in the tentative analyses of the rest-activity pattern, salivary melatonin, and oral temperature. While the salivary melatonin time series data could be characterized by a best-fit cosine curve of 24 h, the time series data of oral temperature was more compatible with 28 h best-fit curve. The rest-activity cycle during the simultaneous measurements, however, was best approximated by a best-fit curve of 21 h. The dysregulation of circadian rhythms occurred concomitantly, but not beforehand, with the onset of pituitary disease, thus suggesting an association between the two phenomena. This association may have interesting implications to the modeling of the circadian time-keeping system. This case also highlights the need to raise the awareness to circadian rhythm sleep disorders and to consider disruptions of sleep-wake cycle in patients with pituitary adenoma.  相似文献   

9.
Effects of forced sleep-wake schedules with and without physical exercise were examined on the human circadian pacemaker under dim light conditions. Subjects spent 15 days in an isolation facility separately without knowing the time of day and followed a forced sleep-wake schedule of a 23 h 40-min period for 12 cycles, and physical exercise was imposed twice per waking period for 2 h each with bicycle- or rowing-type ergometers. As a result, plasma melatonin rhythm was significantly phase advanced with physical exercise, whereas it was not changed without exercise. The difference in phase was already significant 6 days after the start of exercise. The amplitude of melatonin rhythm was not affected. A single pulse of physical exercise in the afternoon or at midnight significantly phase delayed the melatonin rhythms when compared with the prepulse phase, but the amount of phase shift was not different from that observed in the sedentary controls. These findings indicate that physical exercise accelerates phase-advance shifts of the human circadian pacemaker associated with the forced sleep-wake schedule.  相似文献   

10.
The estimation of human circadian rhythms from experimental data is complicated by the presence of “masking” effects associated with the sleep-wake cycle. The observed rhythm may include a component due to masking, as well as the endogenous component linked to a circadian pacemaker. In situations where the relationship between the sleep-wake cycle and the circadian rhythm is not constant, it may be possible to obtain individual estimates of these two components, but methods commonly used for the estimation of circadian rhythms, such as the cosinor analysis, spectral analysis, average waveforms and complex demodulation, have not generally been adapted to identify the modulations that arise from masking. The estimates relate to the observed rhythms, and the amplitudes and acrophases do not necessarily refer to the endogenous rhythm.

In this paper methods are discussed for the separation of circadian and masking effects using regression models that incorporate a sinusoidal circadian variation together with functions of time since sleep and time during sleep. The basic model can be extended to include a time-varying circadian rhythm and estimates are available for the amplitude and phase at a given time, together with their joint confidence intervals and tests for changes in amplitude and acrophase between any two selected times. Modifications of these procedures are discussed to allow for non-sinusoidal circadian rhythms, non-additivity of the circadian and time-since-sleep effects and the breakdown of the usual assumptions concerning the residual errors.

This approach enables systematic masking effects associated with the sleep-wake cycle to be separated from the circadian rhythm, and it has applications to the analysis of data from experiments where the sleep-wake cycle is not synchronized with the circadian rhythm, for example after time-zone transitions or during irregular schedules of work and rest.  相似文献   

11.
Even during “free-running” experiments, in which subjects lived in caves or cellars without any time cues, various circadian rhythms such as core body temperature and the sleep-wake cycle remained for a long time mutually synchronized in one group of subjects. In another group of subjects, or later in the same subjects, a number of unusually long sleep-wake cycles occurred while body temperature persisted in a near-24 hr rhythm. This has been termed “internal desynchronization” by Aschoff & Wever (1962) to emphasize the uncoupling of rhythms. Zulley (1980) and Czeisler et al. (1980) found that the duration of sleep depends regularly on the phase of the sleep onset in the body temperature rhythm, even in the apparently “random and irregular” sleep-wake pattern. The graph which plots, the sleep duration against the sleep onset phase is called sleep duration in this paper. We develop a quantitative, multi-oscillator model of human circadian system following Wever (1979) and Kronauer et al. (1982). Because the simplest model, which describes the state of each component oscillator by only one variable (ptlase) was adopted for each component oscillator, we can determine the intFraction between oscillators using sleep duration. It is found that a three-oscillator model can simulate several qualitative features of human circadian rhythms, such as an irregular free-running pattern and sleep duration. Moreover we find that the model reproduces the mysterious phenomenon of “forbidden wake up”, although we do not incorporate a priori any mechanism to explain it.  相似文献   

12.
The role of melatonin in maintaining proper function of the circadian system has been proposed but very little evidence for such an effect has been provided. To ascertain the role, the aim of the study was to investigate impact of long-term melatonin absence on regulation of circadian system. The parameters of behavior and circadian clocks of rats which were devoid of the melatonin signal due to pinealectomy (PINX) for more than one year were compared with those of intact age-matched controls. PINX led to a decrease in spontaneous locomotor activity and a shortening of the free-running period of the activity rhythm driven by the central clock in the suprachiasmatic nuclei (SCN) in constant darkness. However, the SCN-driven rhythms in activity and feeding were not affected and remained well entrained in the light/dark cycle. In contrast, in these conditions PINX had a significant effect on amplitudes of the clock gene expression rhythms in the duodenum and also partially in the liver. These results demonstrate the significant impact of long-term melatonin absence on period of the central clock in the SCN and the amplitudes of the peripheral clocks in duodenum and liver and suggest that melatonin might be a redundant but effective endocrine signal for these clocks.  相似文献   

13.
Melatonin is of great importance to the investigation of human biological rhythms. Its rhythm in plasma or saliva provides the best available measure of the timing of the internal circadian clock. Its major metabolite 6-sulphatoxymelatonin is robust and easily measured in urine. It thus enables long-term monitoring of human rhythms in real-life situations where rhythms may be disturbed, and in clinical situations where invasive procedures are difficult. Melatonin is not only a "hand of the clock"; endogenous melatonin acts to reinforce the functioning of the human circadian system, probably in many ways. Most is known about its relationship to sleep and the decline in core body temperature and alertness at night. Current perspectives also include a possible influence on major disease risk, arising from circadian rhythm disruption. Melatonin clearly has the ability to induce sleepiness and lower core body temperature during "biological day" and to change the timing of human rhythms when treatment is appropriately timed. It can entrain free-running rhythms and maintain entrainment in most blind and some sighted people. Used therapeutically it has proved a successful treatment for circadian rhythm disorder, particularly the non-24-h sleep wake disorder of the blind. Numerous other clinical applications are under investigation. There are, however, areas of controversy, large gaps in knowledge, and insufficient standardization of experimental conditions and analysis for general conclusions to be drawn with regard to most situations. The future holds much promise for melatonin as a therapeutic treatment. Most interesting, however, will be the dissection of its effects on human genes.  相似文献   

14.
ABSTRACT

In mammals, daily physiological events are regulated by the circadian rhythm, which comprises two types of internal clocks: the central clock and peripheral clocks. Circadian rhythm plays an important role in maintaining physiological functions including the sleep-wake cycle, body temperature, metabolism and organ functions. Circadian rhythm disorder, which is caused, for example, by an irregular lifestyle or long-haul travel, increases the risk of developing disease; therefore, it is important to properly maintain the rhythm of the circadian clock. Food and the circadian clock system are known to be closely linked. Studies on rodents suggest that ingesting specific food ingredients, such as the flavonoid nobiletin, fish oil, the polyphenol resveratrol and the amino acid L-ornithine affects the circadian clock. However, there are few reports on the foods that affect these circadian clocks in humans. In this study, therefore, we examined whether L-ornithine affects the human central clock in a crossover design placebo-controlled human trial. In total, 28 healthy adults (i.e. ≥20 years) were randomly divided into two groups and completed the study protocol. In the 1st intake period, participants were asked to take either L-ornithine (400 mg) capsules or placebo capsules for 7 days. After 7 days’ interval, they then took the alternative test capsules for 7 days in the 2nd intake period. On the final day of each intake period, saliva was sampled at various time points in the dim light condition, and the concentration of melatonin was quantified to evaluate the phase of the central clock. The results revealed that dim light melatonin onset, a recognized marker of central circadian phase, was delayed by 15 min after ingestion of L-ornithine. Not only is this finding an indication that L-ornithine affects the human central clock, but it also demonstrates that the human central clock can be regulated by food ingredients.  相似文献   

15.
There is mounting evidence for the involvement of the sleep-wake cycle and the circadian system in the pathogenesis of major depression. However, only a few studies so far focused on sleep and circadian rhythms under controlled experimental conditions. Thus, it remains unclear whether homeostatic sleep pressure or circadian rhythms, or both, are altered in depression. Here, the authors aimed at quantifying homeostatic and circadian sleep-wake regulatory mechanisms in young women suffering from major depressive disorder and healthy controls during a multiple nap paradigm under constant routine conditions. After an 8-h baseline night, 9 depressed women, 8 healthy young women, and 8 healthy older women underwent a 40-h multiple nap protocol (10 short sleep-wake cycles) followed by an 8-h recovery night. Polysomnographic recordings were done continuously, and subjective sleepiness was assessed. In order to measure circadian output, salivary melatonin samples were collected during scheduled wakefulness, and the circadian modulation of sleep spindles was analyzed with reference to the timing of melatonin secretion. Sleep parameters as well as non-rapid eye movement (NREM) sleep electroencephalographic (EEG) spectra were determined for collapsed left, central, and right frontal, central, parietal, and occipital derivations for the night and nap-sleep episodes in the frequency range .75-25 Hz. Young depressed women showed higher frontal EEG delta activity, as a marker of homeostatic sleep pressure, compared to healthy young and older women across both night sleep episodes together with significantly higher subjective sleepiness. Higher delta sleep EEG activity in the naps during the biological day were observed in young depressed women along with reduced nighttime melatonin secretion as compared to healthy young volunteers. The circadian modulation of sleep spindles between the biological night and day was virtually absent in healthy older women and partially impaired in young depressed women. These data provide strong evidence for higher homeostatic sleep pressure in young moderately depressed women, along with some indications for impairment of the strength of the endogenous circadian output signal involved in sleep-wake regulation. This finding may have important repercussions on the treatment of the illness as such that a selective suppression of EEG slow-wave activity could promote acute mood improvement.  相似文献   

16.
The suprachiasmatic nucleus (SCN) regulates the circadian rhythms of body temperature (T(b)) and vigilance states in mammals. We studied rats in which circadian rhythmicity was abolished after SCN lesions (SCNx rats) to investigate the association between the ultradian rhythms of sleep-wake states and brain temperature (T(br)), which are exposed after lesions. Ultradian rhythms of T(br) (mean period: 3.6 h) and sleep were closely associated in SCNx rats. Within each ultradian cycle, nonrapid eye movement (NREM) sleep was initiated 5 +/- 1 min after T(br) peaks, after which temperature continued a slow decline (0.02 +/- 0.006 degrees C/min) until it reached a minimum. Sleep and slow wave activity (SWA), an index of sleep intensity, were associated with declining temperature. Cross-correlation analysis revealed that the rhythm of T(br) preceded that of SWA by 2-10 min. We also investigated the thermoregulatory and sleep-wake responses of SCNx rats and controls to mild ambient cooling (18 degrees C) and warming (30 degrees C) over 24-h periods. SCNx rats and controls responded similarly to changes in ambient temperature. Cooling decreased REM sleep and increased wake. Warming increased T(br), blunted the amplitude of ultradian T(br) rhythms, and increased the number of transitions into NREM sleep. SCNx rats and controls had similar percentages of NREM sleep, REM sleep, and wake, as well as the same average T(b) within each 24-h period. Our results suggest that, in rats, the SCN modulates the timing but not the amount of sleep or the homeostatic control of sleep-wake states or T(b) during deviations in ambient temperature.  相似文献   

17.
Light influences mammalian circadian rhythms in two different ways: (1) It entrains endogenous oscillators (clocks), which regulate physiology and behavior; and (2) it affects directly and often immediately physiology and behavior (these effects are also referred to as masking). Masking effects of light on pineal melatonin, locomotor activity, and the sleep-wake cycle in mammals and man are reviewed. They seem to represent a universal response in this group. The review reveals that the mechanism of photic inhibition of melatonin is fairly well understood, whereas only little is known about the influence of light on other circadian rhythm outputs, such as locomotor activity. (Chronobiology International, 18(5), 737–758, 2001)  相似文献   

18.
Light influences mammalian circadian rhythms in two different ways: (1) It entrains endogenous oscillators (clocks), which regulate physiology and behavior; and (2) it affects directly and often immediately physiology and behavior (these effects are also referred to as masking). Masking effects of light on pineal melatonin, locomotor activity, and the sleep-wake cycle in mammals and man are reviewed. They seem to represent a universal response in this group. The review reveals that the mechanism of photic inhibition of melatonin is fairly well understood, whereas only little is known about the influence of light on other circadian rhythm outputs, such as locomotor activity. (Chronobiology International, 18(5), 737-758, 2001)  相似文献   

19.
Age-related changes in the intrinsic circadian period (tau) have been hypothesized to account for sleep symptoms in the elderly such as early morning awakening. The authors sought to determine whether the aging process produced quantifiable differences in the tau of totally blind men who had free-running circadian rhythms. The melatonin onset was used as the indicator of circadian phase. Melatonin rhythms had been characterized about a decade previously when the participants were 38 +/- 6 (SD) years old. Both previous and current assessments of tau were derived from at least 3 serial measurements of the 24-h melatonin profile from which the melatonin onset was determined. All 6 participants exhibited a longer tau in the 2nd assessment (mean increase +/- SD of 0.13 +/- 0.08 h; p < 0.01). Four participants exhibited differences in tau with nonoverlapping 95% confidence intervals. The results do not support the commonly held view that tau shortens during human aging. On the contrary, tau appears to slightly, but significantly, lengthen during at least 1 decade in midlife.  相似文献   

20.
RETINAL CIRCADIAN RHYTHMS IN HUMANS *   总被引:6,自引:0,他引:6  
Circadian rhythms in the retina may reflect intrinsic rhythms in the eye. Previous reports on circadian variability in electrophysiological human retinal measures have been scanty, and the results have been somewhat inconsistent. We studied the circadian variation of the electrooculography (EOG), electroretinography (ERG), and visual threshold (VTH) in subjects undergoing a 36h testing period. We used an ultrashort sleep-wake cycle to balance effects of sleep and light-dark across circadian cycles. Twelve healthy volunteers (10 males, 2 females; mean age 26.3 years, standard deviation [SD] 8.0 years, range 19-40 years) participated in the study. The retinal functions and oral temperature were measured every 90 min. The EOG was measured in the light, whereas the ERG and the VTH were measured in the dark. Sleep was inferred from activity detected by an Actillume monitor. The EOG peak-to-peak responses followed a circadian rhythm, with the peak occurring late in the morning (acrophase 12:22). The ERG b-wave implicit time peaked in the early morning (acrophase 06:46). No statistically significant circadian rhythms could be demonstrated in the ERG a-wave implicit time or peak-to-peak amplitude. The VTH rhythm peaked in the early morning (acrophases 07:59 for blue and 07:32 for red stimuli). All retinal rhythms showed less-consistent acrophases than the temperature and sleep rhythms. This study demonstrated several different circadian rhythms in retinal electrophysiological and psychophysical measures of healthy subjects. As the retinal rhythms had much poorer signal-to-noise ratios than the temperature rhythm, these measures cannot be recommended as circadian markers. (Chronobiology International, 18(6), 957-971, 2001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号