首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in enzymic activity during cultivation of human cells in vitro   总被引:1,自引:0,他引:1  
The composition of chromatin, its template activity and the activity of certain chromatin-associated enzymes, including DNA polymerase (DP) and soluble RNase, DNase, DP and seryl tRNA synthetase, were examined in early and late passage of WI-38 cells and of WI-38VA13 cells.No significant changes in soluble RNase, DNase, seryl tRNA synthetase or soluble and chromatin-associated DP were found with increasing passage of WI-38 cells. The activity of seryl tRNA synthetase and DP in WI38VA13 cells was, however, significantly higher than WI-38 cells in all passages. A decline in RNA synthesizing activity of chromatin, an increase in the proportion of RNA and histone in chromatin, as well as an increase in the activities of ‘chromatin-associated enzymes’ (RNase, DNase, protease, nucleoside triphosphatase, DPN pyrophosphorylase) were noted in WI-38 cells with increasing passages. Although RNA synthesizing activity of chromatin from WI38VA13 cells was lower than that from WI-38 cells, the former also were much lower in ‘chromatin-associated enzymes’. An increase of chromatin-associated enzymes responsible for RNA, DNA and protein degradation in WI-38 cells in successive passages, and a much lower activity of these enzymes in WI-38VA13 cells (which have an indefinite doubling potential in vitro) suggests that an elevation in the activity of these enzymes, which would seriously interfere with the chromatin function, could result in ‘aging’ of WI-38 cells.  相似文献   

2.
3.
The small RNA profile during Drosophila melanogaster development   总被引:16,自引:0,他引:16  
Small RNAs ranging in size between 20 and 30 nucleotides are involved in different types of regulation of gene expression including mRNA degradation, translational repression, and chromatin modification. Here we describe the small RNA profile of Drosophila melanogaster as a function of development. We have cloned and sequenced over 4000 small RNAs, 560 of which have the characteristics of RNase III cleavage products. A nonredundant set of 62 miRNAs was identified. We also isolated 178 repeat-associated small interfering RNAs (rasiRNAs), which are cognate to transposable elements, satellite and microsatellite DNA, and Suppressor of Stellate repeats, suggesting that small RNAs participate in defining chromatin structure. rasiRNAs are most abundant in testes and early embryos, where regulation of transposon activity is critical and dramatic changes in heterochromatin structure occur.  相似文献   

4.
A technique is described to identify the rare sequences within an RNA molecule that are available for efficient interaction with complementary DNA probes: the target RNA is digested by RNase H in the presence of a random pool of complementary DNA fragments generated from the same DNA preparation that was used for target RNA synthesis. The DNA region was amplified by PCR, partially digested with DNase and denatured prior to RNA binding. In the presence of single-stranded DNA fragments the RNA was digested with RNase H such that, on average, each molecule was cut once. Cleavage sites were detected by gel electrophoresis either directly with end-labeled RNA or by primer extension. The pattern of accessible sites on c- raf mRNA was determined and compared with the known profile of activity of oligonucleotides found in cells, showing the merit of the method for predicting oligonucleotides which are efficient for in vivo antisense targeting. New susceptible sites in the 3'-untranslated region of c- raf mRNA were identified. Also, four RNAs were probed to ascertain to what extent structure predicts accessibility: the P4-P6 domain of the Tetrahymena group I intron, yeast tRNAAsp, Escherichia coli tmRNA and a part of rat 18S rRNA.  相似文献   

5.
The rates of hydrolysis of the following polyribonucleotides as catalysed by RNase I, an enzyme specific for single stranded RNAs, follow the sequence shown; poly (A) > 23S RNA > 5S RNA ? 16S RNA > 4S RNA = poly (I). poly (C). The rates were measured by direct spectrophotometric as well as by trichloroacetic acid precipitation methods. The extents of inhibition of RNase I-catalysed hydrolysis of poly (A) by each of the above-mentioned polyribonucleotides follow the reverse order. Taking into account the fact that double stranded RNAs are inhibitory to RNase I it may be concluded from the above results that 5S RNA has much less ordered structure than 4S RNAs. This prediction is contrary to expectations and its validity will be known when the tertiary structure of 5S RNA will be worked out. These results also indicate that 16S RNA may have more folded structure than 23S RNA.  相似文献   

6.
7.
8.
modulo belongs to the modifier of Position Effect Variegation class of Drosophila genes, suggesting a role for its product in regulating chromatin structure. Genetics assigned a second function to the gene, in protein synthesis capacity. Bifunctionality is consistent with protein localization in two distinct subnuclear compartments, chromatin and nucleolus, and with its organization in modules potentially involved in DNA and RNA binding. In this study, we examine nucleic acid interactions established by Modulo at nucleolus and chromatin and the mechanism that controls the distribution and balances the function of the protein in the two compartments. Structure/function analysis and oligomer selection/amplification experiments indicate that, in vitro, two basic terminal domains independently contact DNA without sequence specificity, whereas a central RNA Recognition Motif (RRM)-containing domain allows recognition of a novel sequence-/motif-specific RNA class. Phosphorylation moreover is shown to down-regulate DNA binding. Evidence is provided that in vivo nucleolar Modulo is highly phosphorylated and belongs to a ribonucleoprotein particle, whereas chromatin-associated protein is not modified. A functional scheme is finally proposed in which modification by phosphorylation modulates Mod subnuclear distribution and balances its function at the nucleolus and chromatin.  相似文献   

9.
The S9.6 antibody is broadly used to detect RNA:DNA hybrids but has significant affinity for double-stranded RNA. The impact of this off-target RNA binding activity has not been thoroughly investigated, especially in the context of immunofluorescence microscopy. We report that S9.6 immunofluorescence signal observed in fixed human cells arises predominantly from ribosomal RNA, not RNA:DNA hybrids. S9.6 staining was unchanged by pretreatment with the RNA:DNA hybrid–specific nuclease RNase H1, despite verification in situ that S9.6 recognized RNA:DNA hybrids and that RNase H1 was active. S9.6 staining was, however, significantly sensitive to RNase T1, which specifically degrades RNA. Additional imaging and biochemical data indicate that the prominent cytoplasmic and nucleolar S9.6 signal primarily derives from ribosomal RNA. Importantly, genome-wide maps obtained by DNA sequencing after S9.6-mediated DNA:RNA immunoprecipitation (DRIP) are RNase H1 sensitive and RNase T1 insensitive. Altogether, these data demonstrate that imaging using S9.6 is subject to pervasive artifacts without pretreatments and controls that mitigate its promiscuous recognition of cellular RNAs.  相似文献   

10.
Jain C 《Journal of bacteriology》2012,194(15):3883-3890
Escherichia coli contains multiple 3' to 5' RNases, of which two, RNase PH and polynucleotide phosphorylase (PNPase), use inorganic phosphate as a nucleophile to catalyze RNA cleavage. It is known that an absence of these two enzymes causes growth defects, but the basis for these defects has remained undefined. To further an understanding of the function of these enzymes, the degradation pattern of different cellular RNAs was analyzed. It was observed that an absence of both enzymes results in the appearance of novel mRNA degradation fragments. Such fragments were also observed in strains containing mutations in RNase R and PNPase, enzymes whose collective absence is known to cause an accumulation of structured RNA fragments. Additional experiments indicated that the growth defects of strains containing RNase R and PNPase mutations were exacerbated upon RNase PH removal. Taken together, these observations suggested that RNase PH could play a role in structured RNA degradation. Biochemical experiments with RNase PH demonstrated that this enzyme digests through RNA duplexes of moderate stability. In addition, mapping and sequence analysis of an mRNA degradation fragment that accumulates in the absence of the phosphorolytic enzymes revealed the presence of an extended stem-loop motif at the 3' end. Overall, these results indicate that RNase PH plays a novel role in the degradation of structured RNAs and provides a potential explanation for the growth defects caused by an absence of the phosphorolytic RNases.  相似文献   

11.
Phylogenetic analysis and evolution of RNase P RNA in proteobacteria.   总被引:11,自引:0,他引:11       下载免费PDF全文
The secondary structures of the eubacterial RNase P RNAs are being elucidated by a phylogenetic comparative approach. Sequences of genes encoding RNase P RNA from each of the recognized subgroups (alpha, beta, gamma, and delta) of the proteobacteria have now been determined. These sequences allow the refinement, to nearly the base pair level, of the phylogenetic model for RNase P RNA secondary structure. Evolutionary change among the RNase P RNAs was found to occur primarily in four discrete structural domains that are peripheral to a highly conserved core structure. The new sequences were used to examine critically the proposed similarity (C. Guerrier-Takada, N. Lumelsky, and S. Altman, Science 246:1578-1584, 1989) between a portion of RNase P RNA and the "exit site" of the 23S rRNA of Escherichia coli. Phylogenetic comparisons indicate that these sequences are not homologous and that any similarity in the structures is, at best, tenuous.  相似文献   

12.
The ubiquitous occurrence of ribonuclease P (RNase P) as a ribonucleoprotein and the catalytic properties of bacterial RNase P RNAs indicate that RNA fulfills an ancient and important role in the function of this enzyme. This review focuses on efforts to determine the structure of the bacterial RNase P RNA ribozyme. Phylogenetic comparative analysis of a library of bacterial RNase P RNA sequences has resulted in a well-developed secondary structure model and allowed identification of some elements of tertiary structure. The native structure has been redesigned by circular permutation to facilitate intra- and inter-molecular crosslinking experiments in order to gain further structural information. The crosslinking constraints, together with the constraints provided by comparative analyses, have been incorporated into a first-order model of the structure of the ribozyme-substrate complex. The developing structural perspective allows the design of self-cleaving pre-tRNA-RNase P RNA conjugates which are useful tools for additional structure-probing experiments.Abbreviations cpRNA circularly permuted RNA  相似文献   

13.
An investigation of metabolically stable, chromatin-associated RNA in HeLa cells has revealed that three small RNA species, 193, 171 and 127 nucleotides in length, are covalently linked to double-stranded chromosomal DNA through phosphodiester bonds. These DNA-linked RNAs appear to be members of the small nuclear RNA species that have been identified in a wide variety of eukaryotic cells, and they are tentatively identified as species C, D and G′, in the nomenclature system currently employed for HeLa cell small nuclear RNAs. These DNA-linked RNAs do not appear to be involved in priming DNA replication, since they are of relatively high metabolic stability (t12 = 19 hours in HeLa cells with a 21·5-hour cell generation time) and since their covalently contiguous DNA stretches are not enriched in newly replicated material. They lack saturated pyrimidine bases (level of detection = 0·15 mol %) and are therefore not “chromosomal RNA”, as defined by its proponents. The covalent linkage of these small RNA species with chromosomal DNA was discovered by virtue of the fact that when highly purified HeLa cell chromatin is dissociated by chaotropic solutes, these RNAs are released in association with small pieces of double-stranded DNA (approx. 475 nucleotide pairs). These DNA-RNA complexes can then be purified by removing the bulk, high molecular weight DNA by ultra-centrifugation. The resulting DNA-RNA complexes are shown to be covalently joined by several criteria, including equilibrium density-gradient centrifugation in either Cs2SO4/dimethylsulfoxide or aqueous Cs2SO4/formaldehyde after thermal denaturation (90 °C in 50% formamide, which is 55 deg. C above the melting temperature of this DNA), by the chromat ographicbehavior of the complexes on hydroxylapatite before and after thermal denaturation, and by the demonstration of alkali-resistant ribonucleotides flanking the 3′ hydroxyl termini of the DNA, the latter criterion providing evidence for 3′ to 5′ DNA-RNA phosphodiester bonds. Reconstruction experiments involving addition of the purified RNAs to nuclei or chromatin demonstrate that the covalent DNA-RNA linkages do not arise by ligation events during cell fractionation. Further experiments indicate the existence of a dynamic equilibrium of these small nuclear RNA species between chromosomal and nucleoplasmic loci in vivo, and other considerations suggest that this equilibrium may be cell cycle-dependent. The DNA adjacent to these covalently linked RNAs has the same melting temperature as total HeLa chromosomal DNA and its reassociation kinetics reveal the presence of both repeated and non-repeated sequences, implying that the DNA-linked RNAs are widely distributed throughout the HeLa cell genome. It is proposed that these DNA-linked RNAs are involved in the tertiary structure of chromatin, particularly in relation to the cell cycle.  相似文献   

14.
RNA silencing in Drosophila   总被引:7,自引:0,他引:7  
Kavi HH  Fernandez HR  Xie W  Birchler JA 《FEBS letters》2005,579(26):5940-5949
  相似文献   

15.
吕占军  王秀芳  翟羽  宋淑霞 《遗传》2003,25(1):30-36
同样的基因在不同的分化细胞中表达不同,基因的选择性表达问题涉及分化和衰老的本质。转录基因对DNaseⅠ(DNA酶Ⅰ)消化敏感,本文研究了RNA对小鼠重组染色质白蛋白基因DNaseⅠ消化敏感性的影响。分离BALB/c小鼠脑细胞核,加入终浓度为2mol/L的NaCl破坏核小体结构,加入不同量、不同来源的RNA,装透析袋,逐渐降低离子强度进行染色质重组。重组染色质中加入DNaseⅠ消化DNA,PCR扩增白蛋白基因的外显子1到外显子2约1200bp区段,PAGE电泳后,用银染色观察不同来源RNA促进DNaseⅠ对白蛋白基因的消化作用。不同组织来源(肝、肺、肾、脑)RNA对小鼠重组染色质中白蛋白基因DNaseⅠ消化敏感性均有促进作用,其中肝和肺RNA促进消化作用较强;酵母tRNA无显著促进消化作用;消化促进作用与RNA剂量有关。RNA能增加DNaseⅠ对白蛋白基因的消化敏感性且有组织(细胞)来源特异性。又委托丹麦Chemical R D 实验室合成2条与白蛋白基因互补的各23核苷酸的RNA,用其进行重组试验。结果表明,重组混合物中含有低至0.2μg/mL的RNA,即可以发挥显著的DNase I消化促进作用。  相似文献   

16.
X染色体的DNA序列结构不同于6、7、8、10、11、12号染色体   总被引:1,自引:1,他引:0  
吕占军  翟羽  王秀芳  宋淑霞 《遗传学报》2003,30(11):1051-1060
雌性哺乳动物X染色体上的大部分基因均因X染色体失活作用而失去表达能力 ,X染色体长臂表现失活更明显。虽然对X染色体失活的许多方面都有所了解 ,但是仍然不清楚失活信号沿着X染色体全长扩散的机制。为了了解X染色体是否有不同于其他染色体的基因组学特征 ,这些特征是否关系到X染色体的失活扩散和维持 ,分析 6、7、8、1 0、1 1、1 2号染色体和X染色体DNA序列 7碱基 (7nt)组合水平的结构是否显示差异。从NCBI基因库(http :∥www .ncbi.nlm .nih .gov genome guide)下载 7条染色体长臂各 6 0Mb区域。将这 6 0Mb区域分为 0 5Mb (或 5 0kb)一段 ,对每一段DNA做 7nt字符串组合分析 ,如 1~ 7,2~ 8,3~ 9…… ,记录每种 7nt字符串的频率 ,A、C、G和T4个硷基的 7nt字符串共有 4 7=1 6 384种组合。根据数字差异显示的结果 (http :∥www .ncbi.nlm .nih .gov genome guide) ,选择在扁桃腺生发中心B细胞中高表达的基因 70个 ,用以计算所有内含子 (有义链 )的 7nt频率值。每个内含子被记录为一组 7nt频率值 ,求和相同基因中的所有内含子相同 7nt字符串的频率值 ,再用该和乘以该基因的表达频率得该基因 7nt字符串的频率值 ,求和 70个基因的 7nt字符串的频率值称做intron 7nt,该值试图模拟细胞中RNA小片段的总和。  相似文献   

17.
18.
19.
Structural implications of novel diversity in eucaryal RNase P RNA   总被引:4,自引:0,他引:4  
Previous eucaryotic RNase P RNA secondary structural models have been based on limited diversity, representing only two of the approximately 30 phylogenetic kingdoms of the domain Eucarya. To elucidate a more generally applicable structure, we used biochemical, bioinformatic, and molecular approaches to obtain RNase P RNA sequences from diverse organisms including representatives of six additional kingdoms of eucaryotes. Novel sequences were from acanthamoeba (Acathamoeba castellanii, Balamuthia mandrillaris, Filamoeba nolandi), animals (Caenorhabditis elegans, Drosophila melanogaster), alveolates (Theileria annulata, Babesia bovis), conosids (Dictyostelium discoideum, Physarum polycephalum), trichomonads (Trichomonas vaginalis), microsporidia (Encephalitozoon cuniculi), and diplomonads (Giardia intestinalis). An improved alignment of eucaryal RNase P RNA sequences was assembled and used for statistical and comparative structural analysis. The analysis identifies a conserved core structure of eucaryal RNase P RNA that has been maintained throughout evolution and indicates that covariation in size occurs between some structural elements of the RNA. Eucaryal RNase P RNA contains regions of highly variable length and structure reminiscent of expansion segments found in rRNA. The eucaryal RNA has been remodeled through evolution as a simplified version of the structure found in bacterial and archaeal RNase P RNAs.  相似文献   

20.
We have mapped a gene in the mitochondrial DNA of Candida (Torulopsis) glabrata and shown that it is required for 5' end maturation of mitochondrial tRNAs. It is located between the tRNAfMet and tRNAPro genes, the same tRNA genes that flank the mitochondrial RNase P RNA gene in the yeast Saccharomyces cerevisiae. The gene is extremely AT rich and codes for AU-rich RNAs that display some sequence homology with the mitochondrial RNase P RNA from S. cerevisiae, including two regions of striking sequence homology between the mitochondrial RNAs and the bacterial RNase P RNAs. RNase P activity that is sensitive to micrococcal nuclease has been detected in mitochondrial extracts of C. glabrata. An RNA of 227 nucleotides that is one of the RNAs encoded by the gene that we mapped cofractionated with this mitochondrial RNase P activity on glycerol gradients. The nuclease sensitivity of the activity, the cofractionation of the RNA with activity, and the homology of the RNA with known RNase P RNAs lead us to propose that the 227-nucleotide RNA is the RNA subunit of the C. glabrata mitochondrial RNase P enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号